Modern Challenges in Building End-to-End Dialogue Systems Ryan Lowe McGill University ### **Primary Collaborators** Joelle Pineau McGill Chia-Wei Liu McGill Iulian V. Serban U. Montreal Nissan Pow McGill Mike Noseworthy McGill Laurent Charlin HEC Montreal ### Dialogue Systems ### Modular Dialogue Systems Traditional system consists of modules Each module optimized with separate objective function Achieves good performance with small amounts of data **Problem**: does not work well in general domains! ### End-to-End Dialogue Systems A single model trained directly on conversational data Uses a single objective function, usually maximum likelihood on next response • Significant recent work using neural networks to predict the next response. (Ritter et al., 2011; Sordoni et al., 2015; Shang et al., 2015) ### End-to-End Dialogue Systems Advantages of end-to-end systems: - 1) Does not require feature engineering (only architecture engineering). - 2) Can be transferred to different domains. - Does not require supervised data for each module! (collecting this data does not scale well) ### Challenge #1: Data ### Dialogue Datasets - Building general-purpose dialogue systems requires lots of data - The best datasets are proprietary - We need large (>500k dialogues), open-source datasets to make progress # Ubuntu Dialogue Corpus - Large dataset of ~1 million tech support dialogues - Scraped from Ubuntu IRC channel - 2-person dialogues extracted from chat stream | Sender Recipier | | t Utterance | | | |-----------------|------|--|--|--| | Old | | I dont run graphical ubuntu,
I run ubuntu server. | | | | bur[n]er | Old | you can use "ps ax" and "kill (PID#)" | | | | kuja | Taru | Haha sucker. | | | | Taru | Kuja | ? | | | | kuja | Taru | Anyways, you made the changes right? | | | | Taru | Kuja | Yes. | | | | kuja | Taru | Then from the terminal type: sudo apt-get update | | | | Taru | Kuja | I did. | | | Lowe*, Pow*, Serban, Pineau. "The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems." *SIGDIAL*, 2015. #### Other Datasets - Twitter Corpus, 850k Twitter dialogues (Ritter et al., 2011) - Movie Dialog Dataset, <u>1 million Reddit dialogues</u> (Dodge et al. 2016) - Our survey paper covering existing datasets: Serban, Lowe, Charlin, Pineau. "A Survey of Available Corpora for Building Data-Driven Dialogue Systems." *arXiv:1512.05742*, 2015. • Needs more work! ### Challenge #2: Generic Responses # The Problem of Generic Responses - Most models trained to predict most likely next utterance given context - But some utterances are likely given any context! Neural models often generate "I don't know", or "I'm not sure" to most contexts ``` Input: What are you doing? -0.86 I don't know. -1.03 I don't know! -1.06 Nothing. -1.09 Get out of the way. - Input: what is your name? -0.91 I don't know. -0.92 I don't know! -0.92 I don't know, sir. -0.97 Oh, my god! Input: How old are you? -0.79 I don't know. -1.06 I'm fine. -1.17 I'm all right. -1.17 I'm not sure. ``` (Li et al., 2016) #### Encoder-Decoder - Use RNN to encode text into fixed-length vector representation - Use another RNN to decode representation to text Can make this hierarchical Cho et al. "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation." *EMNLP* 2014. Serban, Sordoni, Bengio, Courville, Pineau. "Building End-to-End Dialogue Systems using Generative Hierarchical Neural Network Models" *AAAI*, 2015. ### Variational Encoder-Decoder (VHRED) - Augment encoder-decoder with Gaussian latent variable - Inspired by VAE (Kingma & Welling, 2014) - When generating <u>first</u> sample latent variable, <u>then</u> use it to condition generation Serban, Sordoni, Lowe, Charlin, Pineau, Courville, Bengio. "A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues." *arXiv:1605.06069*, 2016. # Variational Encoder-Decoder (VHRED) - VHRED generates longer responses with higher entropy - Outperforms baselines in most experiments Table 1: Wins, losses and ties (in %) of the VHRED model against the baselines based on the human study on Twitter (mean preferences $\pm 90\%$ confidence intervals) | | Short Contexts | | | Long Contexts | | | |-----------------|----------------------------------|----------------------------------|----------------|----------------------------------|----------------|----------------| | Opponent | Wins | Losses | Ties | Wins | Losses | Ties | | VHRED vs LSTM | 32.3 ± 2.4 | $\textbf{42.5} \pm \textbf{2.6}$ | 25.2 ± 2.3 | 41.9 ± 2.2 | 36.8 ± 2.2 | 21.3 ± 1.9 | | VHRED vs HRED | 42.0 ± 2.8 | 31.9 ± 2.6 | 26.2 ± 2.5 | $\textbf{41.5} \pm \textbf{2.8}$ | 29.4 ± 2.6 | 29.1 ± 2.6 | | VHRED vs TF-IDF | $\textbf{51.6} \pm \textbf{3.3}$ | 17.9 ± 2.5 | 30.4 ± 3.0 | $\textbf{47.9} \pm \textbf{3.4}$ | 11.7 ± 2.2 | 40.3 ± 3.4 | ## Variational Encoder-Decoder (VHRED) i love katie waissel more than like, anything in life. \rightarrow i wanna c the show again! i need <number> meet her again! n i want a b-day tweet nxt week doubt that will happen x VHRED: me too. i'm going to have to wait for her to come back. i'm so excited. LSTM: i'm sure she will. i'm sure she'll be fine. HRED: i'm sure she'll be fine, i'm sure she'll be fine. ah echt? dan anrtwoord ik volgende keer via twitter als je me smst. \rightarrow haha doe maar p. goed bezig hoor myrthe d \rightarrow goed bezig? die snap ik even niet p VHRED: haha, ik heb er geen zin in de something, maar ik heb er geen something meer something LSTM: haha something something HRED: something something something something something something something my math teacher over here talkn bout nickels nd i'm tryna make big money i need to be in calculus o lol VHRED: i need to go to the gym and get my hair done lol LSTM: lol HRED: how u been ### Diversity-Promoting Objective •Uses new objective: maximize the mutual information between source sentence S and target T $$\hat{T} = \underset{T}{\operatorname{arg\,max}} \left\{ \log p(T|S) - \lambda \log p(T) \right\}$$ - Can be considered a penalty on generic responses - Gives slightly better results ``` Input: What are you doing? −0.86 I don't know. -1.09 Get out of here. -1.03 I don't know! -1.09 I'm going home. -1.06 Nothing. -1.09 Oh my god! -1.09 Get out of the way. -1.10 I'm talking to you. Input: what is your name? -0.91 I don't know. -0.92 I don't know! -1.55 My name is Robert. -0.92 I don't know, sir. -1.58 My name is John. -0.97 Oh, my god! -1.59 My name's John. Input: How old are you? -0.79 I don't know. -1.06 I'm fine. -1.64 Twenty-five. -1.17 I'm all right. -1.66 Five. -1.17 I'm not sure. -1.71 Eight. ``` Li, Galley, Brockett, Gao, Dolan. "A Diversity-Promoting Objective Function for Neural Conversational Models." *arXiv:1510.03055*, 2016. ### Challenge #3: Evaluation ### Automatic Dialogue Evaluation Want a fully automatic way of evaluating the quality of a dialogue system • If there is no notion of 'task completion', this is very hard Current methods compare the generated system response to the ground-truth next response # Comparison of ground-truth utterance # Comparison of ground-truth utterance - 1) Word-overlap metrics: - •BLEU, METEOR, ROUGE - 2) Word embedding-based metrics: - Vector extrema, greedy matching, embedding average ### Generated Response Yes, let's go see that movie about Turing! ### Ground-truth response Nah, I'd rather stay at home, thanks. **SCORE** ### Human study - Created 100 questions each for Twitter and Ubuntu datasets (20 contexts with responses from 5 'diverse models') - 25 volunteers from CS department at McGill - Asked to judge response quality on a scale from 1 to 5 - Compared human ratings with ratings from automatic evaluation metrics ### Goal (inter-annotator) Figure 3: Scatter plots showing the correlation between two randomly chosen groups of human volunteers on the Twitter corpus (left) and Ubuntu Dialogue Corpus (right). Liu*, Lowe*, Serban*, Noseworthy*, Charlin, Pineau. "How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Systems." *EMNLP*, 2016. ### Reality (BLEU) Liu*, Lowe*, Serban*, Noseworthy*, Charlin, Pineau. "How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Systems." *EMNLP*, ### Reality (vector-based) Liu*, Lowe*, Serban*, Noseworthy*, Charlin, Pineau. "How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Systems." *EMNLP*, 2016. ### Reality (ROUGE & METEOR) Liu*, Lowe*, Serban*, Noseworthy*, Charlin, Pineau. "How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Systems." *EMNLP*, #### **Correlation Results** | | Twitter | | | Ubuntu | | | | | |---------------|----------|---------|---------|---------|----------|---------|-----------|---------| | Metric | Spearman | p-value | Pearson | p-value | Spearman | p-value | Pearson | p-value | | Greedy | 0.2119 | 0.034 | 0.1994 | 0.047 | 0.05276 | 0.6 | 0.02049 | 0.84 | | Average | 0.2259 | 0.024 | 0.1971 | 0.049 | -0.1387 | 0.17 | -0.1631 | 0.10 | | Extrema | 0.2103 | 0.036 | 0.1842 | 0.067 | 0.09243 | 0.36 | -0.002903 | 0.98 | | METEOR | 0.1887 | 0.06 | 0.1927 | 0.055 | 0.06314 | 0.53 | 0.1419 | 0.16 | | BLEU-1 | 0.1665 | 0.098 | 0.1288 | 0.2 | -0.02552 | 0.8 | 0.01929 | 0.85 | | BLEU-2 | 0.3576 | < 0.01 | 0.3874 | < 0.01 | 0.03819 | 0.71 | 0.0586 | 0.56 | | BLEU-3 | 0.3423 | < 0.01 | 0.1443 | 0.15 | 0.0878 | 0.38 | 0.1116 | 0.27 | | BLEU-4 | 0.3417 | < 0.01 | 0.1392 | 0.17 | 0.1218 | 0.23 | 0.1132 | 0.26 | | ROUGE | 0.1235 | 0.22 | 0.09714 | 0.34 | 0.05405 | 0.5933 | 0.06401 | 0.53 | | Human | 0.9476 | < 0.01 | 1.0 | 0.0 | 0.9550 | < 0.01 | 1.0 | 0.0 | Table 3: Correlation between each metric and human judgements for each response. Correlations shown in the human row result from randomly dividing human judges into two groups. Liu*, Lowe*, Serban*, Noseworthy*, Charlin, Pineau. "How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Systems." *EMNLP*, ### Next Utterance Classification - Instead of evaluating model responses, can use an auxiliary task - Have models predict next utterance in conversation from a list (multiple-choice style) - Mitigates problem with response diversity (and many other advantages!) | Speaker A: yo . | | | |---|-------------|---------------| | Speaker B: damone . i | t 's mark . | | | | Best Answer | Second Answer | | shut up . lemme do it , red . | | | | tomorrow . | | | | well of course in my
youth i was simply
known as goldthwait . | | | | sorry . that wasn 't
quite what i was
looking for . | | | | mark . what happened to your date ? | | | Lowe, Serban, Noseworthy, Charlin, Pineau. "On the Evaluation of Dialogue Systems with Next Utterance Classification." *SIGDIAL*, 2016. ### Summary - End-to-end systems are promising, but we have a long way to go. - Work on collecting larger, better datasets! This is the most useful for the community! - Don't rely on <u>only</u> word-overlap metrics like BLEU! Use human evaluations (for now...) ### Thank you! #### References - Dodge, J., Gane, A., Zhang, X., Bordes, A., Chopra, S., Miller, A., ... & Weston, J. (2016). Evaluating prerequisite qualities for learning end-to-end dialog systems. In *ICLR*. - Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In ICLR. - Li, J., Galley, M., Brockett, C., Gao, J., & Dolan, B. (2015). A diversity-promoting objective function for neural conversation models. arXiv preprint arXiv:1510.03055. - Ritter, A., Cherry, C., & Dolan, W. B. (2011). Data-driven response generation in social media. In *EMNLP*. - Shang, L., Lu, Z., & Li, H. (2015). Neural responding machine for short-text conversation. arXiv preprint arXiv:1503.02364. - Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., & Dolan, B. (2015). A neural network approach to context-sensitive generation of conversational responses. In *NAACL-HLT*. #### Other curiosities Hard to evaluate when the proposed response has a different length than the ground-truth response | | Mean score | | | | |---------|------------------|-----------------|---------|--| | | $\Delta w \le 6$ | $\Delta w >= 6$ | p-value | | | | (n=47) | (n=53) | | | | BLEU-1 | 0.1724 | 0.1009 | < 0.01 | | | BLEU-2 | 0.0744 | 0.04176 | < 0.01 | | | Average | 0.6587 | 0.6246 | 0.25 | | | METEOR | 0.2386 | 0.2073 | < 0.01 | | | Human | 2.66 | 2.57 | 0.73 | | #### Other curiosities Removing stop words from BLEU evaluation actually makes things worse | | Spearman | p-value | Pearson | p-value | |--------|----------|---------|---------|---------| | BLEU-1 | 0.1580 | 0.12 | 0.2074 | 0.038 | | BLEU-2 | 0.2030 | 0.043 | 0.1300 | 0.20 | Table 4: Correlation between BLEU metric and human judgements after removing stopwords and punctuation for the Twitter dataset.