Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca)

Slides by: Ryan Lowe

Class web page: www.cs.mcgill.ca/~hvanho2/comp551
Announcements

• First round of project presentations is this Wednesday, 6-7:30pm in
 – Instructions in announcements / email
 – Covers
 – Starts **right on time**

• TAs (Prasanna + Sanjay) will host a joint office hour for
 assignment 3 clarifications, from **1-2pm on Thursday in TR 3104**

• My office hours today will be from 11am-12pm outside MC111N
 (lounge area)
Reinforcement learning

- RL is a general-purpose framework for decision-making
 - RL is for an agent with the capacity to act
 - Each action influences the agent’s future state
 - Success is measured by a scalar reward signal
 - Goal: select actions to maximise future reward
Robot in a room

actions: UP, DOWN, LEFT, RIGHT

UP
80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

• what is the solution?

Example and slides from Peter Bodik, UC Berkeley
Is this a solution?

- only if actions deterministic
 - not in this case (actions are stochastic)
Optimal policy
Reward for each step: -2
Reward for each step: -0.1
Reward for each step: -0.04
Reward for each step: -0.01
Reward for each step: +0.01

-1

-1
Markov Decision Process (MDP)

- set of states S, set of actions A, initial state S_0
- transition model $P(s,a,s')$
 - $P(\ [1,1], \ \text{up}, \ [1,2] \) = 0.8$
- reward function $r(s)$
 - $r(\ [4,3] \) = +1$
- **Goal**: maximize cumulative reward in the long run
- policy: mapping from S to A
 - $\pi(s)$ or $\pi(s,a)$ (deterministic vs. stochastic)
- reinforcement learning
 - transitions and rewards usually not available
 - how to change the policy based on experience
Reward hypothesis

- Core assumption (reward hypothesis):
 All goals can be described by the maximization of the expected cumulative reward

- Do you agree with this?
Challenges

• Rewards may be delayed, or may seem correlated with useless actions
 – Credit assignment problem: which actions do we credit for +’ve (or –’ve) rewards?

• Entire world may not be observable --- can only see a small fraction of it

• Observations or actions may be noisy

• Actions may have long-term consequences

• Rewards may be sparse/ hard to find
Examples of RL problems

- Robotics
- Game playing (Go, Atari, Chess, etc.)
- Health care (learning treatment plans)
- Data centre cooling
- Managing investments
- Artificial general intelligence?
Reinforcement Learning

- Will present core RL ideas from David Silver’s Deep RL Tutorial, ICML 2016
 - Slides 13-50
RL: open problems

- RL isn’t solved yet! There are several important problems that are under active investigation
 - Exploration
 - Model-based RL
 - Temporal abstraction
 - Multi-agent RL
In RL, as you move around, you update your policy and/or value function based on the rewards you get.

But, in the beginning, how do you decide to move around the environment? How do you know you’ve seen everything that’s important?

Most common exploration strategy in RL: **epsilon-greedy**

With probability \(\epsilon \), take a random action instead of the best one.

This obviously isn’t very efficient!
Montezuma’s Revenge

- Atari game with many rooms to explore, very hard for RL algorithms
Count-based exploration

• Better exploration strategy: ‘count-based’
 – Learn to count how many times you’ve been in certain places, try to go where you’ve explored less so far

• https://www.youtube.com/watch?v=0yl2wJ6F8r0

• Explores much more than epsilon-greedy!

• But still not quite what we want (hard to scale to very large worlds, want to explore based on rewards)

• How can we build agents that intelligently explore new environments?
Model-based RL

- Previously discussed RL algorithms are model-free: they don’t learn a model of the environment, $p(s'|s, a)$

- Intuitively, learning a model of the environment is extremely useful: allows you to predict what will happen in the future

- Can reason about actions and their consequences before actually taking them!
 - Much more data-efficient, don’t need to try all possible actions

- How do you decide whether to take a certain action?
Humans use a mix of model-based (\(\bullet\)) and model-free (\(\bullet\)) RL

Unfortunately, current model-based RL doesn't work very well

Hard to learn exact model of the environment — small differences with real environment accumulate!
 - Hard to deal with partial observability

Need to find a way of learning models that work well over longer time horizons
Temporal abstraction

- Consider the actions taken to make a cup of coffee
 - Go to the kitchen, take out the beans
 - Grind the beans
 - Put the beans and water in the coffee machine, turn it on
 - Put cup under machine, receive coffee
- Involves a sequence of steps (‘high-level actions’), each of which is composed of several ‘low-level actions’
Temporal abstraction

- Regular RL just decides on a low-level action to perform at each time step
- **But if time steps are really short, this isn’t very efficient!**
 Humans don’t think of the next muscle to twitch every millisecond
- *Need a way to plan at multiple levels of abstraction*
- Some methods have been tried in RL (e.g. options), but still an open problem
One of the main forces pushing humans to be more intelligent is the presence of other humans.

Would it help to train RL agents in environments with many other agents? Specifically, can use self-play (agent plays against itself).

Idea: at beginning of training, agent is weak, but faces opponents who are also weak. At end of training, agent faces strong versions of itself.

Used to train strong agents to play Go, Chess, DotA.
Learning from self-play in Dota 2

- https://blog.openai.com/dota-2/
Reinforcement learning: outlook

- Non-deep RL doesn’t scale very well to high-dimensional problems
- Deep RL still very ‘brittle’ --- can be very sensitive to hyperparameters, initial conditions, etc.
 - See ‘Deep RL doesn’t work yet’, blog post by Alex Irpan: https://www.alexirpan.com/2018/02/14/rl-hard.html
- Still many unsolved problems
- Requires a lot of compute power
- BUT very general framework that will likely be useful for
Next class

• The future of machine learning and AI
 – First half of class: cool new results in ML
 – Second half of class: safety/ethical implications of ML. Will AI take over the world, or not? Will have time for discussion.
Other resources on RL

• Lecture series by David Silver
 – Videos: https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxT
 – Slides: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

• Reinforcement Learning textbook