Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca)

Slides mostly by: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~hvanho2/comp551

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.
Announcements

• No class next week
 – Easter Monday
 – Midterm on Wednesday

• Project 5: problem statement released. Three tracks
 – Improve baselines
 – Model ablation
 – Reproducibility challenge
What is unsupervised learning?

- Given only input data: \(D = \langle x_i \rangle, \ i=1:n \), find some patterns or regularity in the data.

- Typically use **generative approaches**: model the available data.

- Different classes of problems:
 1. Clustering
 2. Anomaly detection
 3. Dimensionality reduction
 4. Autoregression
A simple clustering example

• A fruit merchant approaches you, with a set of apples to classify according to their variety.
 – Tells you there are five varieties of apples in the dataset.
 – Tells you the weight and colour of each apple in the dataset.

• Can you label each apple with the correct variety?
 – What would you need to know / assume?

\[\text{Data} = \langle x_1, _ \rangle, \langle x_2, _ \rangle, \ldots, \langle x_n, _ \rangle \]
A simple clustering example

• You know there are 5 varieties.

• Assume each variety generates apples according to a (variety-specific) 2-D Gaussian distribution.
A simple clustering example

• You know there are 5 varieties.

• Assume each variety generates apples according to a (variety-specific) 2-D Gaussian distribution.

• If you know μ_i, σ_i^2 for each class, it’s easy to classify the apples.

• If you know the class of each apple, it’s easy to estimate μ_i, σ_i^2.
A simple clustering example

- You know there are 5 varieties.

- Assume each variety generates apples according to a (variety-specific) 2-D Gaussian distribution.

- If you know \(\mu_i, \sigma_i^2 \) for each class, it’s easy to classify the apples.

- If you know the class of each apple, it’s easy to estimate \(\mu_i, \sigma_i^2 \).

What if we know neither?
A simple algorithm: K-means clustering

• **Objective:** Cluster \(n \) instances into \(K \) distinct classes.

• **Preliminaries:**
 - **Step 1:** Pick the desired number of clusters, \(K \).
 - **Step 2:** Assume a parametric distribution for each class (e.g. Normal).
 - **Step 3:** Randomly estimate the parameters of the \(K \) distributions.
A simple algorithm: K-means clustering

• **Objective:** Cluster n instances into K distinct classes.

• **Preliminaries:**
 – **Step 1:** Pick the desired number of clusters, K.
 – **Step 2:** Assume a parametric distribution for each class (e.g. Normal).
 – **Step 3:** Randomly estimate the parameters of the K distributions.

• **Iterate, until convergence:**
 – **Step 4:** Assign instances to the most likely classes based on the current parametric distributions.
 – **Step 5:** Estimate the parametric distribution of each class based on the latest assignment.
This data could easily be modeled by Gaussians.

1. Ask user how many clusters.

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.
2. Randomly guess k centers:
 \[\{ \mu_1, \ldots, \mu_k \} \] (assume \(\sigma^2 \) is known).
K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.
2. Randomly guess k centers:
 \[\{ \mu_1, \ldots, \mu_k \} \] (assume \(\sigma^2 \) is known).
3. Assign each data point to the center.

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.
2. Randomly guess k centers:
 \(\{ \mu_1, \ldots, \mu_k \} \) (assume \(\sigma^2 \) is known).
3. Assign each data point to the center.
4. Each center finds the centroid of the points it owns.

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.
2. Randomly guess k centers:
 \[\{ \mu_1, \ldots, \mu_k \} \text{ (assume } \sigma^2 \text{ is known)} \]
3. Assign each data point to the closest center.
4. Each center finds the centroid of the points it owns… and jumps there.

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm starts
K-means algorithm continues (2)

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm continues (3)
K-means algorithm continues (4)

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm continues (5)

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm continues (6)

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm continues (7)
K-means algorithm continues (8)

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm continues (9)

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm terminates
A simple algorithm: K-means clustering

- **Objective**: Cluster n instances into K distinct classes.

- **Preliminaries**:
 - **Step 1**: Pick the desired number of clusters, K.
 - **Step 2**: Assume a parametric distribution for each class (e.g. Normal).
 - **Step 3**: Randomly estimate the parameters of the K distributions.

- **Iterate, until convergence**:
 - **Step 4**: Assign instances to the most likely classes based on the current parametric distributions. **Hard assignment**
 - **Step 5**: Estimate the parametric distribution of each class based on the latest assignment. **Maximization step**
Properties of K-means

- Optimality?
Properties of K-means

- **Optimality?**
 - Converges to a local optimum.
 - Can use random re-starts to get better local optimum.
 - Alternately, can choose your initial centers carefully:
 - Place μ_1 on top of a randomly chosen datapoint.
 - Place μ_2 on top of datapoint that is furthest from μ_1.
 - Place μ_3 on top of datapoint that is furthest from both μ_1 and μ_2.
Properties of K-means

- **Optimality?**
 - Converges to a local optimum.
 - Can use random re-starts to get better local optimum.
 - Alternately, can choose your initial centers carefully:
 - Place μ_1 on top of a randomly chosen datapoint.
 - Place μ_2 on top of datapoint that is furthest from μ_1.
 - Place μ_3 on top of datapoint that is furthest from both μ_1 and μ_2.

- **Complexity?**
Properties of K-means

- **Optimality?**
 - Converges to a local optimum.
 - Can use random re-starts to get better local optimum.
 - Alternately, can choose your initial centers carefully:
 - Place μ_1 on top of a randomly chosen datapoint.
 - Place μ_2 on top of datapoint that is furthest from μ_1.
 - Place μ_3 on top of datapoint that is furthest from both μ_1 and μ_2.

- **Complexity?** $O(knm)$ where $k = \#\text{centers}$

 $n = \#\text{datapoints}$

 $m = \text{dimensionality of data}$
K-means: pros and cons

• Good:
 – We realize that maximizing parameters is easy once we have assignments

• Bad:
 – What about points that are about equally far to two clusters?
 – We can only update the mean (not variance)
 – We have to assume equal variance between clusters
Beyond K-means

• How do we fit data where variance is unknown or non-identical between clusters?

Copyright C.M. Bishop, PRML
Gaussian Mixture Model

- **Idea**: Fit data with a combination of Gaussian distributions.

- Like a ‘soft’ version of K-means

- What defines a set of Gaussians?
Gaussian Mixture Model

- **Idea**: Fit data with a combination of Gaussian distributions.

- Write \(p(x) \) as a linear combination of Gaussians:
 \[
 p(x) = \sum_{k=1}^{K} p(z_k) \ p(x \mid z_k)
 \]
 where \(p(z_k) \) is the probability of the \(k^{th} \) mixture component
 and \(p(x \mid z_k) = N(x \mid \mu_k, \sigma_k^2) \) is the prob. of \(x \) for the \(k^{th} \) mixture component.

- Determining \(p(z \mid x) \) is easy once we know parameters \(p(z_k), \mu_k, \sigma_k^2 \),
 (Bayes rule)
Gaussian **Mixture** Model

- **Maximum likelihood** often gives good parameter estimate:

\[
p(X|\theta) = \sum_Z p(X,Z|\theta)
\]

- **Why is it hard here?**
Expectation Maximization (more generally)

- Iterative method for learning the maximum likelihood estimate of a probabilistic model, when the model contains unobservable variables.
Expectation Maximization (more generally)

• Iterative method for learning the maximum likelihood estimate of a probabilistic model, when the model contains unobservable variables.

• Main idea:
 – If we knew all variables (e.g. cluster assignments) we could easily maximize the likelihood
 – With unobserved variables, we “fantasize” how the data should look based on the current parameter setting. I.e. Compute Expected sufficient statistics.
 – Then we Maximize parameter setting, based on these statistics.
Expectation Maximization (more generally)

• Start with some initial parameter setting.

• **Repeat** (as long as desired):

 – **Expectation (E) step**: Complete the data by assigning “values” to the missing items.

 – **Maximization (M) step**: Compute the maximum likelihood parameter setting based on the completed data.

Once the data is completed (E-step), computing the log-likelihood and new parameters (M-step) is easy! This is what we did for K-means.
EM for clustering

- **Objective**: Cluster \(n \) instances into \(K \) distinct classes.

- **Preliminaries**:
 - **Step 1**: Pick the desired number of clusters, \(K \).
 - **Step 2**: Assume a parametric distribution for each class (e.g. Normal).
 - **Step 3**: Randomly estimate the parameters of the \(K \) distributions.

- **Iterate, until convergence**:
 - **Step 4**: Assign responsibility for instances to classes based on the current parametric distributions. **Soft assignment**
 - **Step 5**: Estimate the parametric distribution of each class based on the latest assignment. **Maximization step**
EM for clustering
Expectation Maximization: Properties

- Likelihood function is guaranteed to improve (or stay the same) with each iteration.
- Convergence to a local optimum of the likelihood function.
- Re-starts with different initial parameters are often necessary.
- K-means can be seen as a specific case of EM (where variance is fixed to a value that decreases to 0)

EM is very useful in practice!
Anomaly detection

http://www.anomalydetectionresearch.com
Anomaly detection

- K-means (and other discriminative approaches) tend to be ineffective when one class is much more rare than the other.
Anomaly detection

- K-means (and other discriminative approaches) tend to be ineffective when one class is much more rare than the other.

- A simple **generative** approach:
 - Fit a model, $p(x)$ using the input data.
 - Set a decision threshold ε and predict $Y = \{1 \text{ if } p(x) > \varepsilon, \ 0 \text{ otherwise}\}$.
 - Use a validation set to measure performance (can use cross-validation to set ε).
Anomaly detection vs Supervised learning

Anomaly detection
- Small number of positive examples (e.g. <10).
- Large number of negative examples (e.g. >100).

Supervised learning
- (Usually) similar number of positive and negative examples

Anomaly detection vs Supervised learning

Anomaly detection

- Small number of positive examples (e.g. <10).
- Large number of negative examples (e.g. >100).
- Many different “types” of anomalies, so don’t want to fit a model for the positive class.

Supervised learning

- (Usually) similar number of positive and negative examples
- More homogeneity within classes, or enough data to sufficiently characterize each class.

A simple example

Does the distribution of nominal data look familiar?

A simple example

Another GMM!

A simple example

- GMM can be fit again with EM
- Note that before we were mainly interested in the cluster assignments (which items go together)
- Here we are interested in the final density

Another GMM!
Dimensionality reduction

• Given points in an m-dimensional space (for large m), project to a low dimensional space while preserving trends in the data.

• Principal Components Analysis
Autoregressive models for time series

• The problem:
 – Given a time series: \(X = \{x_1, x_2, \ldots, x_T\} \)
 – Predict \(x_t \) from \(x_{1:t-1} \).
Autoregressive models for time series

• The problem:
 – Given a time series: \(X = \{x_1, x_2, \ldots, x_T\} \)
 – Predict \(x_t \) from \(x_{1:t-1} \).

• A simple autoregressive (AR) model:
 \[
 X_t = w_0 + \varepsilon + \sum_{i=1:p} w_i x_{t-i} + \varepsilon_t
 \]
 where \(w_i \) are the parameters and \(\varepsilon_t \) is white noise.
Autoregressive models for time series

• The problem:
 – Given a time series: $X = \{x_1, x_2, \ldots, x_T\}$
 – Predict x_t from $x_{1:t-1}$.

• A simple autoregressive (AR) model:
 $$X_t = w_0 + \varepsilon + \sum_{i=1:p} w_i x_{t-i} + \varepsilon_t$$
 where w_i are the parameters and ε_t is white noise.

• Can also use more complicated models (e.g. neural networks) for this
WaveNet

- Uses a 1-D CNN to predict next audio sample
- Can add supervised component: condition on text to be generated
WaveNet

- Audio samples: https://deepmind.com/blog/wavenet-generative-model-raw-audio/
What you should know

• The general form of the unsupervised learning problem.

• Basic functioning and properties of useful algorithms:
 – K-means / Gaussian mixture models
 – Expectation-maximization

• Characteristics of common problems:
 – clustering, anomaly detection, dimensionality reduction, autoregression, autoencoding