COMP 551 – Applied Machine Learning Lecture 20: Gaussian processes

Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca)

Slides mostly by: Herke van Hoof (herke.vanhoof@mcgill.ca)

Class web page: *www.cs.mcgill.ca/~hvanho2/comp551*

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.

Announcements

 Change in office hours next week: Wednesday from 11am-12pm, MC 232

- Project 4 Kaggle submission due today!
 - Written report due tomorrow
 - No hard-copy needs to be submitted! Just submit on MyCourses
 - # Kaggle submissions increased to 4/day

Announcements

Public I	Leaderboa	Private Leaderbo	ard				
This leaderboard is calculated with approximately 30% of the test data. The final results will be based on the other 70%, so the final standings may be different.					🛓 Raw Data 🛛 📿 Refresh		
#	∆1w	Team Name	Kernel	Team Members	Score 🕝	Entries	Las
1	new	Gucci Gang			0.99299	2	1
2	.▲1	Sigma Mu			0.98399	20	3
3	▲5	Axoloti		- A	0.98066	11	21
4	₹3	Algeeks		A A 💽	0.97666	25	2
5	new	MENG			0.97366	5	21
6	• 4	КСМ			0.97333	7	1
7	₹2	Team Biceps			0.97299	13	2
8	• 4	ASDFSWAG			0.97199	9	
9	new	FreeSmoke			0.97166	1	1
10	new	asdas		1	0.97166	1	

Beyond linear regression

- Relying on features can be problematic
- We tried to avoid using features before...
 - Lecture 8, instance based learning. Use distances!
 - Lecture 12, support vector machines. Use kernels!

- This class: extend regression to nonparametric models
 - Gaussian processes!

Recall: Kernels

 A kernel is a function of two arguments which corresponds to a dot product in some feature space

$$k(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\phi}(\mathbf{x}_i)^T \boldsymbol{\phi}(\mathbf{x}_j)$$

- Advantage of using kernels:
 - Sometimes evaluating k() is cheaper than evaluating features and taking the dot product $k(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j)^d$
 - Sometimes *k*() corresponds to an inner product in a feature space with infinite dimensions $k(\mathbf{x}_i, \mathbf{x}_j) = \exp - \|\mathbf{x}_i - \mathbf{x}_j\|^2$

Recall: Kernels

- Kernelize algorithm:
 - Try to formulate algorithm so feature vectors only ever occur in inner products
 - Replace inner products by kernel evaluations (kernel trick)

Recall: kernel regression

- Given dataset, how do we calculate y value for new input?
- <u>Regression:</u> learn weighted function of features $y = w^T x$
- Kernel regression: don't learn any parameters!
- Instead, use y's of neighbouring data points!!

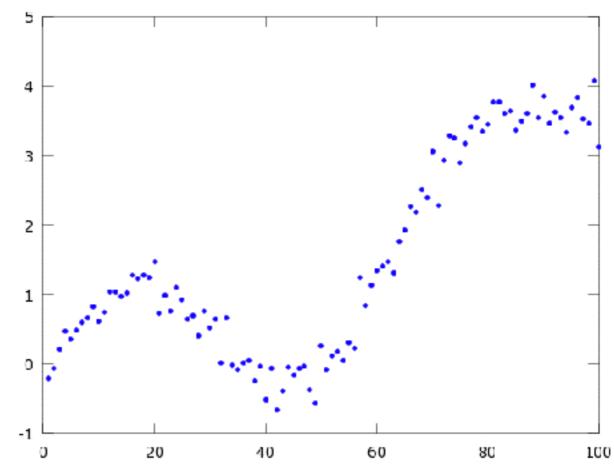


Image source: http://mccormickml.com/

Recall: kernel regression

• What *y* should we predict for *x*=60?

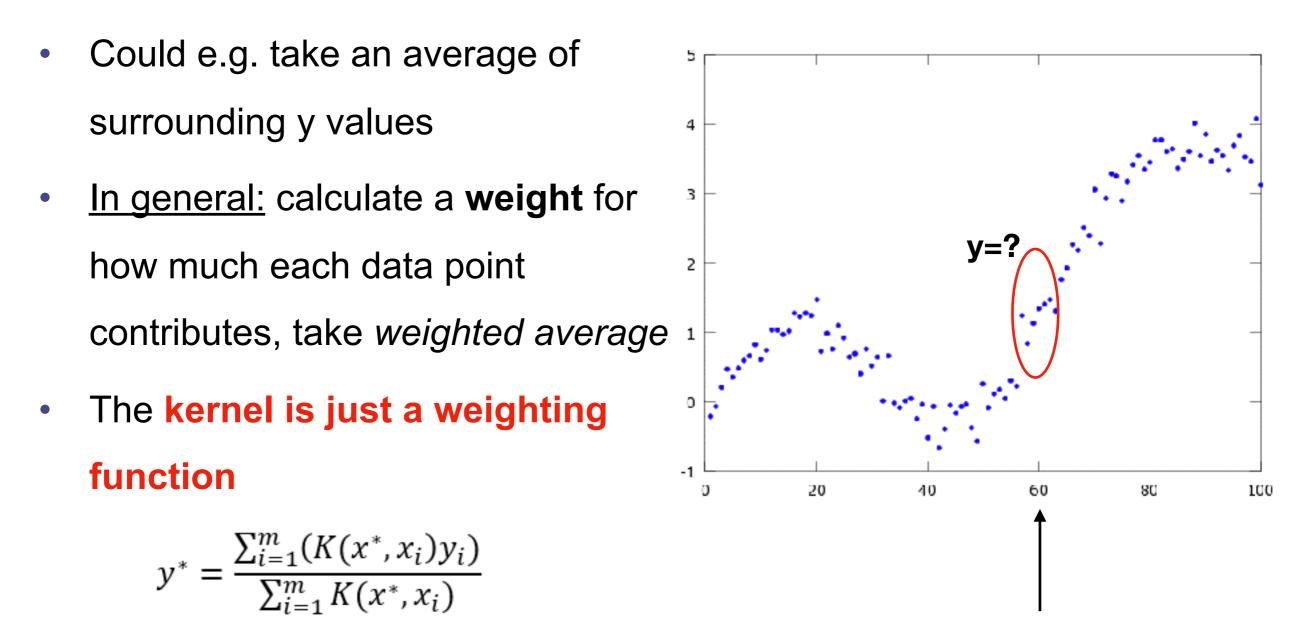


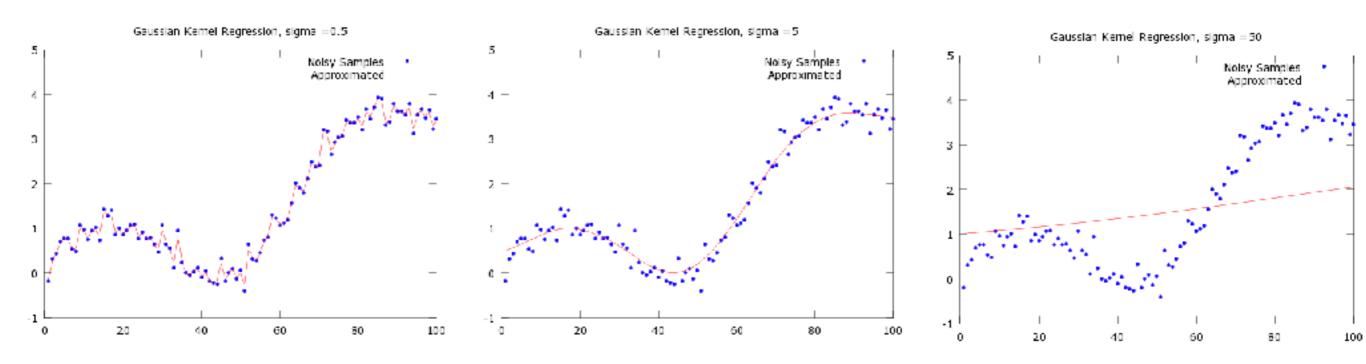
Image source: http://mccormickml.com/

8

Herke van Hoof

Recall: kernel regression

- Common kernel is Gaussian: $K(x^*, x_i) = e^{-\frac{(x_i x^*)^2}{2\sigma^2}}$
- Points nearby contribute more, points further away contribute less
- Variance controls how many neighbouring points are used



Higher sigma -> smoother function

Image source: http://mccormickml.com/

Recall: Kernel regression

 Kernel regression is non-parametric: no parameters are explicitly learned, just use nearby datapoint to make predictions

 Kernel can be thought of as a 'distance measure', defining which points are considered 'nearby' for each input

- We kernelized linear regression can we kernelize Bayesian linear regression?
 - Start with just the mean

Inspect solution mean from Bayesian linear regression

$$p(y^*|\mathcal{D}) = \mathcal{N}\left(\sigma^{-2}\mathbf{x}^{*T}\mathbf{S}_N\mathbf{X}^T\mathbf{y}, \sigma^2 + \mathbf{x}^T\mathbf{S}_N\mathbf{x}\right) \qquad (1)$$

$$\mathbf{S}_N = (\alpha \mathbf{I} + \sigma^{-2}\mathbf{X}^T\mathbf{X})^{-1} \qquad (2)$$

- Vector **y** concatenates training outputs
- Matrix **X** has one column for each feature (length N)

one row for each datapoint (length M)

• Mean prediction is mean of the Gaussian:

$$y^* = \sigma^{-2} \mathbf{x}^{*T} (\alpha \mathbf{I} + \sigma^{-2} \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

• Step 2: Reformulate to only have inner products of features $y^* = \sigma^{-2} \mathbf{x}^{*T} (\alpha \mathbf{I} + \sigma^{-2} \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

If \mathbf{P}, \mathbf{R} are positive definite, then

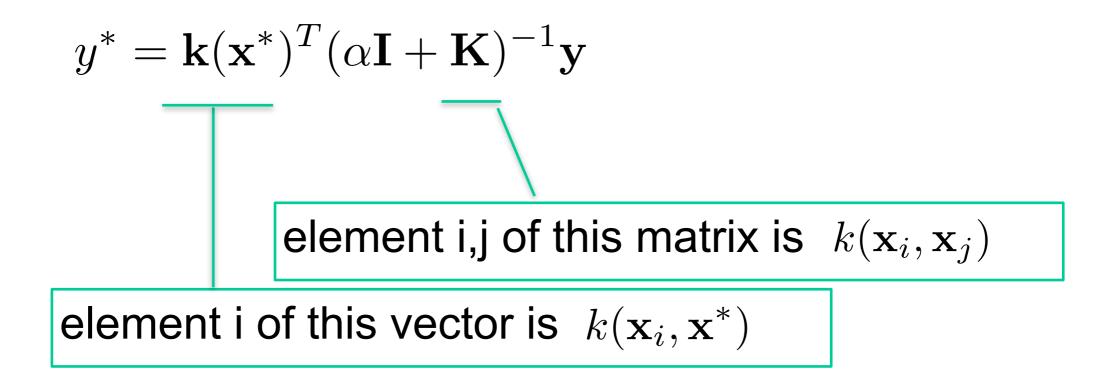
 $(\mathbf{P}^{-1} + \mathbf{B}^T \mathbf{R}^{-1} \mathbf{B})^{-1} \mathbf{B}^T \mathbf{R}^{-1} = \mathbf{P} \mathbf{B}^T (\mathbf{B} \mathbf{P} \mathbf{B}^T + \mathbf{R})^{-1}$

$$y^* = \frac{\sigma^{-2} \mathbf{x}^{*T} \mathbf{X}^T (\alpha \mathbf{I} + \frac{\sigma^{-2} \mathbf{X} \mathbf{X}^T}{\mathbf{K}})^{-1} \mathbf{y}}{\mathbf{k} (\mathbf{x}^*)^T \mathbf{K}}$$

element i,j of this matrix is $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$
element i of this vector is $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}^*)$

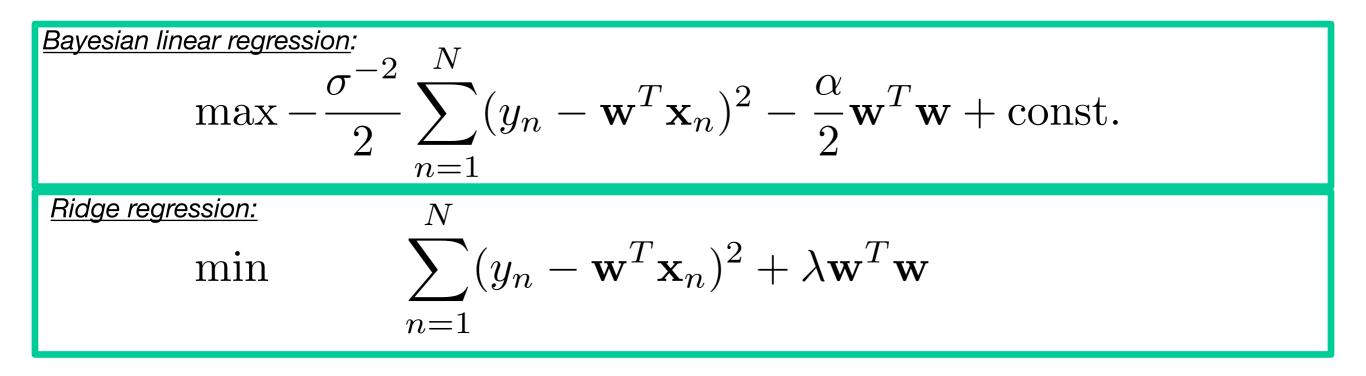
Step 2: Reformulate to only have inner products of features $y^* = \sigma^{-2} \mathbf{x}^{*T} (\alpha \mathbf{I} + \sigma^{-2} \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ # features x #features # datapoints x #datapoints $y^* = \sigma^{-2} \mathbf{x}^{*T} \mathbf{X}^T (\alpha \mathbf{I} + \sigma^{-2} \mathbf{X} \mathbf{X}^T)^{-1} \mathbf{y}$ $\mathbf{k}(\mathbf{x}^*)^T$ \mathbf{K} element i,j of this matrix is $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ element i of this vector is $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}^*)$

• Step 3: Replace inner products by kernel evaluations



- Remember: Mean function is same as ridge regression
- This is **kernel** ridge regression

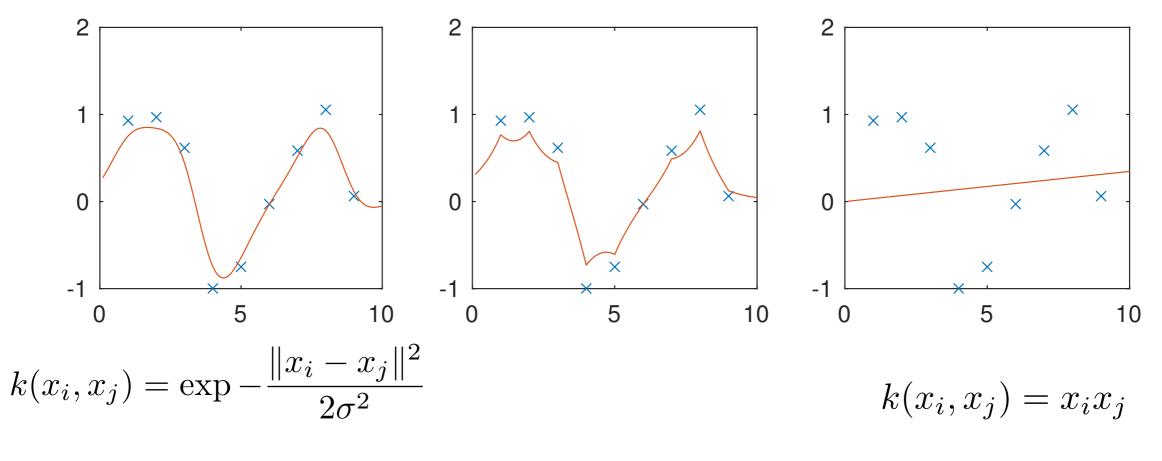
Recall: Ridge regression



- Difference between the two? Bayesian linear regression *learns a* distribution over parameters
- So kernelized mean prediction with Bayesian linear regression <=> kernel ridge regression, $\lambda=\alpha\sigma^2$

Kernel ridge regression

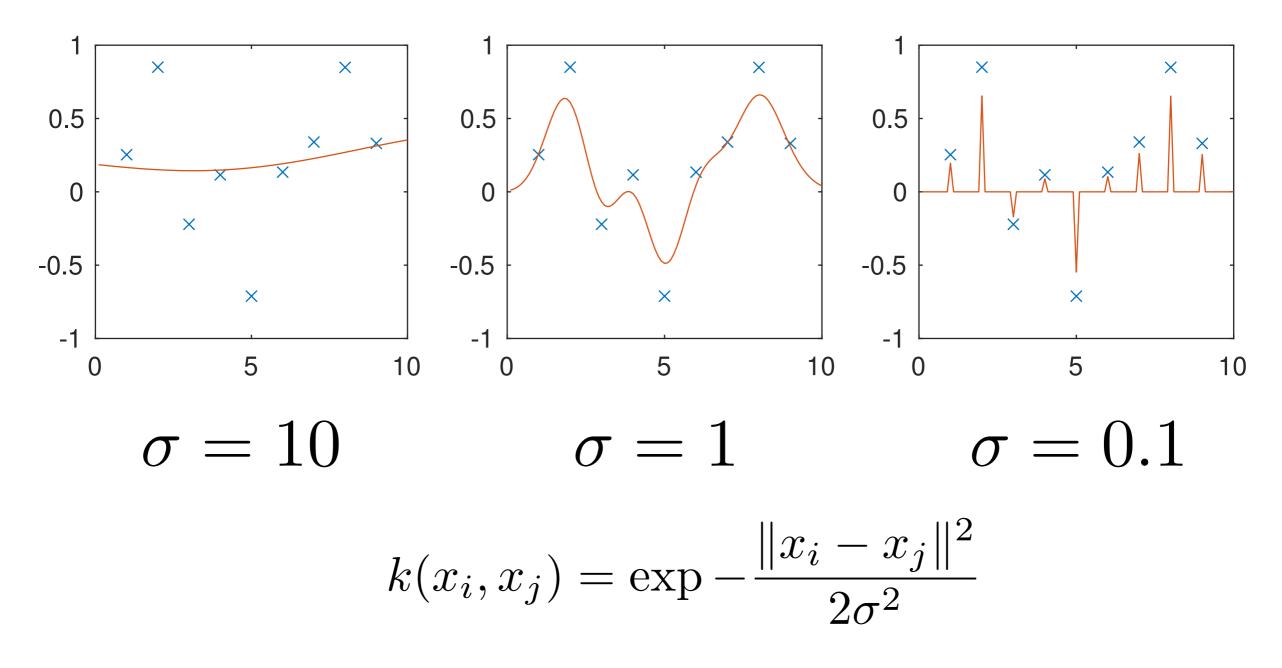
• Choosing a kernel:



$$k(x_i, x_j) = \exp -|x_i - x_j|$$

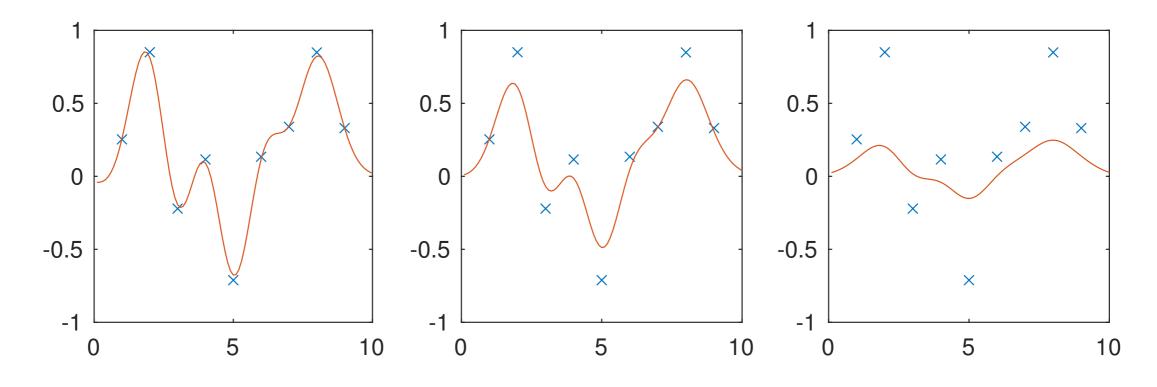
Kernel ridge regression

• Setting parameters: sigma controls what data points are 'close'



Kernel ridge regression

• Setting parameters: alpha controls 'smoothness'

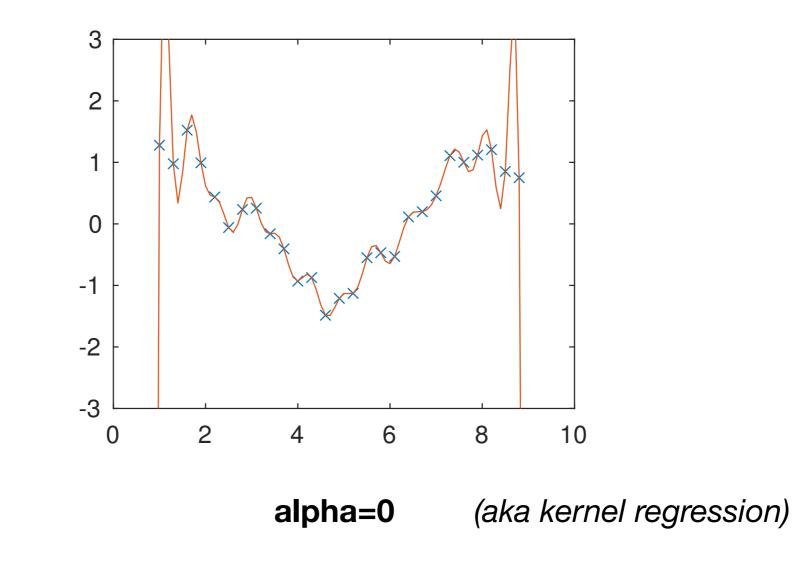


Small alpha

$$y^* = \mathbf{k}(\mathbf{x}^*)^T (\alpha \mathbf{I} + \mathbf{K})^{-1} \mathbf{y}$$

Why add the 'ridge'?

• As before, kernel regression can easily overfit: *regularisation is critical!*



Kernel regression: Practical issues

• Compare ridge regression: $\mathbf{w} = (\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

inverse
$$O(d^3)$$
 matrix-vector product $O(d^2N)$
prediction $O(d)$
memory $O(d)$

• Kernel ridge regression: $y^* = \mathbf{k}(\mathbf{x}^*)^T (\alpha \mathbf{I} + \mathbf{K})^{-1} \mathbf{y}$

inverse, product $O(N^3)$ prediction O(N)memory O(N)

d = feature dimensionN = # datapoints

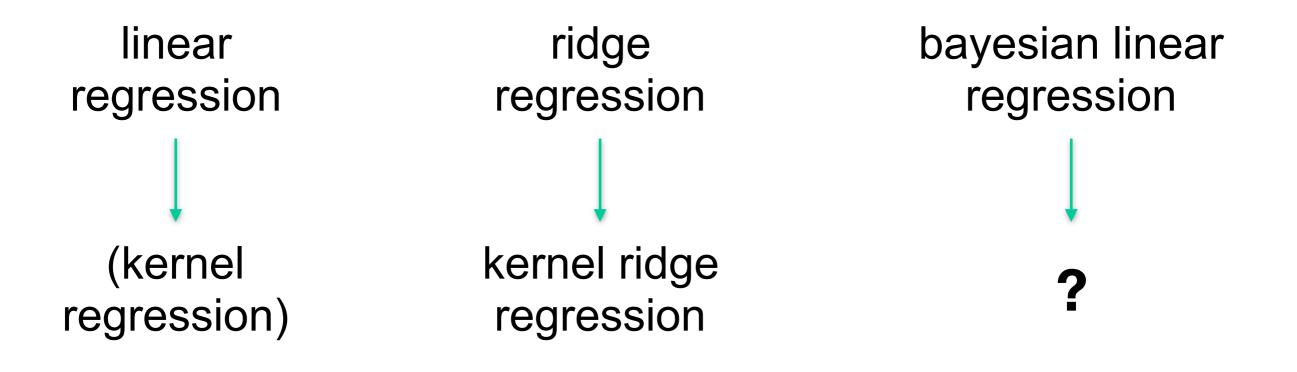
20

Kernel regression: Practical issues

- If we have a small set of good features it's faster to do regression in feature space
- However, if no good features are available (or we need a very big set of features), kernel regression might yield better results
- Often, it is easier to pick a kernel than to choose a good set of features

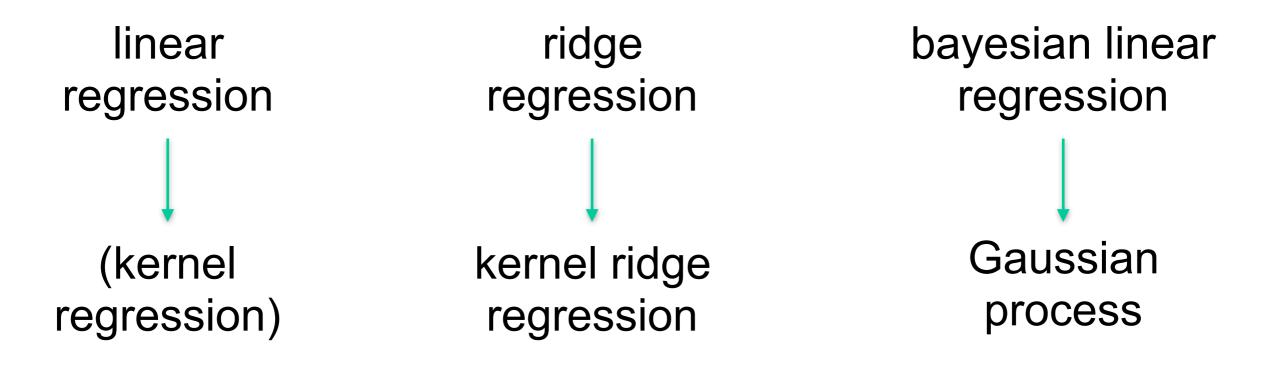
Kernelizing Bayesian linear regression

- We have now kernelized ridge regression
- Can we kernelize Bayesian linear regression, too?
 - i.e. can we kernelize the covariance / uncertainty?



Kernelizing Bayesian linear regression

- We have now kernelized ridge regression
- Can we kernelize Bayesian linear regression, too?
 - i.e. can we kernelize the covariance / uncertainty?
- Yes, and this is called Gaussian process regression (GPR)

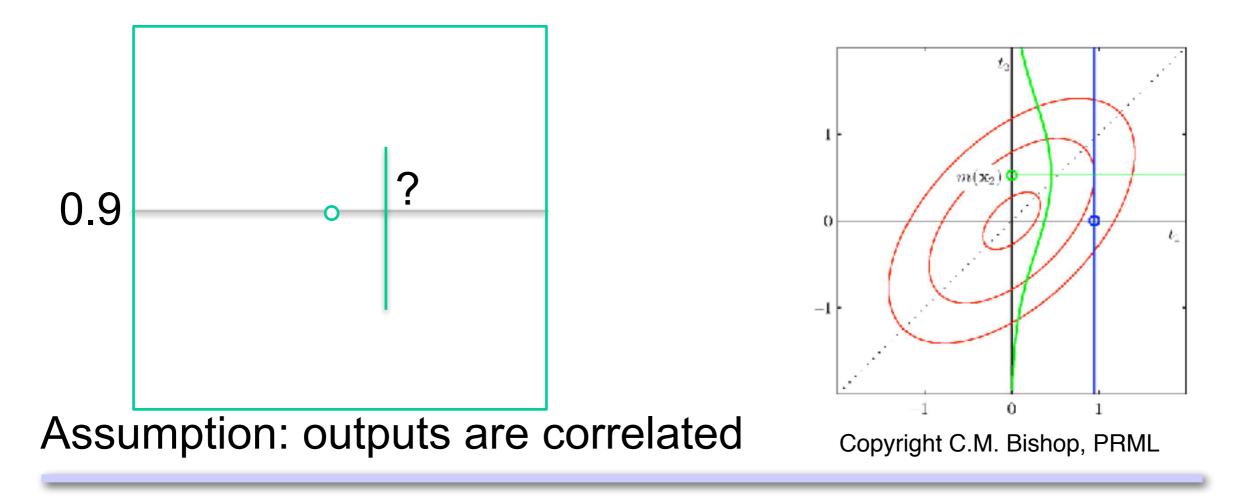


Gaussian processes: high level

- GPs are defined by a mean function, and a covariance function
- Mean function derived in the same way as kernel ridge regression (based on surrounding data points)
- Covariance defined by the kernel: Cov(f(x), f(x')) = k(x, x')
- Bayesian method need to specify prior distribution

Gaussian processes

- Mean function derived already, variance can be similarly derived
- Formal definition: a function f is a GP if any finite set of values $f(x_1), \ldots, f(x_n)$ follows a multivariate Gaussian distribution



Deriving GP equations

- Model:
 - We are interested in the function values $y_1, y_2, ...$, at a set of points $\mathbf{x}_1, \mathbf{x}_2, ...$ We observe target values *t* for the training set, but we assume these are noisy $t_n = y_n + \epsilon$

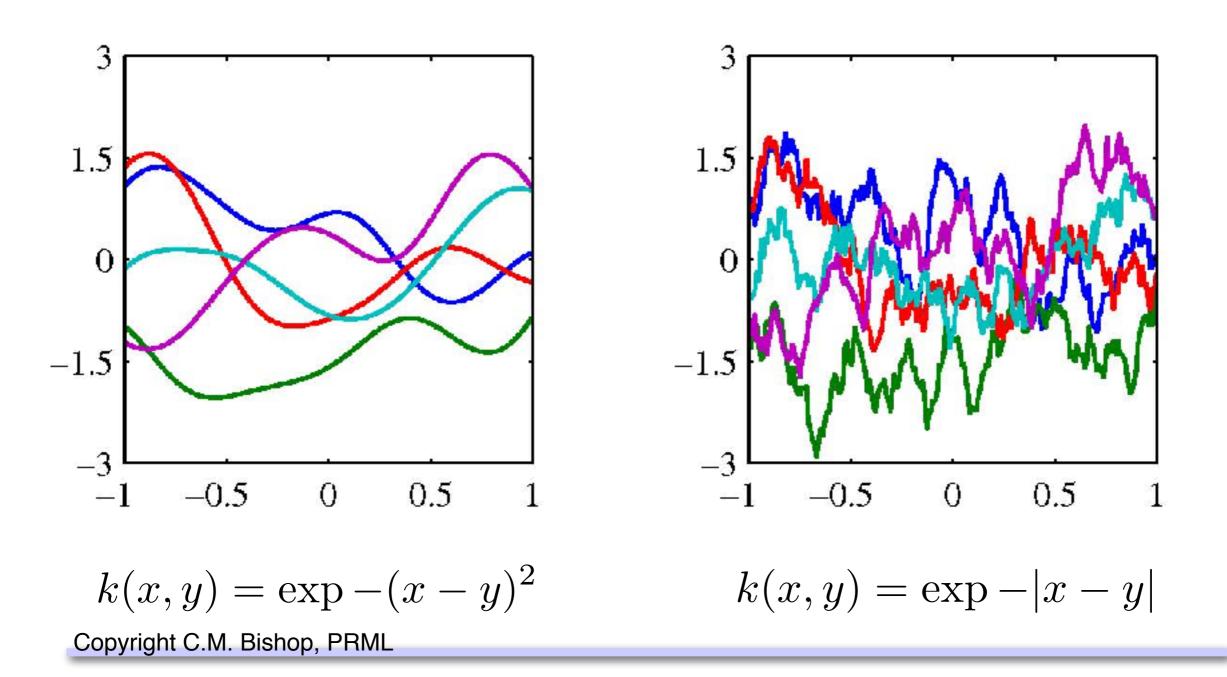
• Prior:
$$\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$$

With \mathbf{y} a vector of function values
and \mathbf{K} the kernel matrix

- Likelihood (Gaussian noise on output): $\mathbf{t} \sim \mathcal{N}(\mathbf{y}, \beta^{-1}\mathbf{I})$

Examples from the prior

 $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$



GP Regression

- Prior and likelihood are Gaussian
- Again obtain a closed form solution

$$\begin{split} \mathbb{E}[y^*] &= \mathbf{y}^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{k}(\mathbf{x}^*) \quad \text{kernel ridge regression} \\ &\text{Cov}[y^*] &= k(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}(\mathbf{x}^*)^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{k}(\mathbf{x}^*) \\ &\text{prior} \quad \text{reduction in variance due to} \\ &\text{variance} \quad \text{reduction in variance due to} \\ \end{aligned}$$

• Prediction of new observations

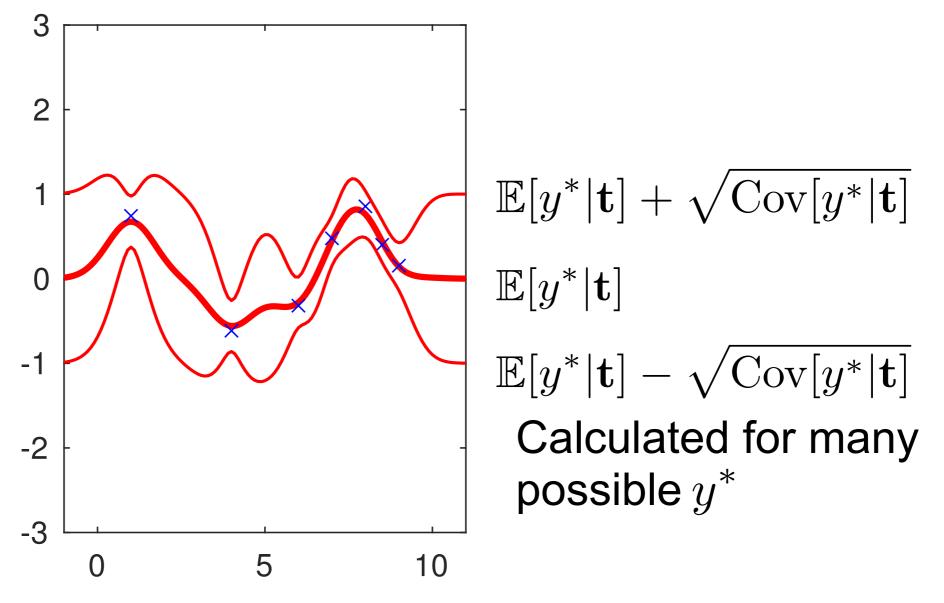
$$\operatorname{Cov}[t^*] = k(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}(\mathbf{x}^*)^T (\mathbf{K} + \beta^{-1}\mathbf{I})^{-1} \mathbf{k}(\mathbf{x}^*) + \beta^{-1}$$

• Easy to implement!

add noise term

GP Regression

• Results of GP regression



t: set of observed points

- Hyperparameters
 - Assumed noise (variance of likelihood)

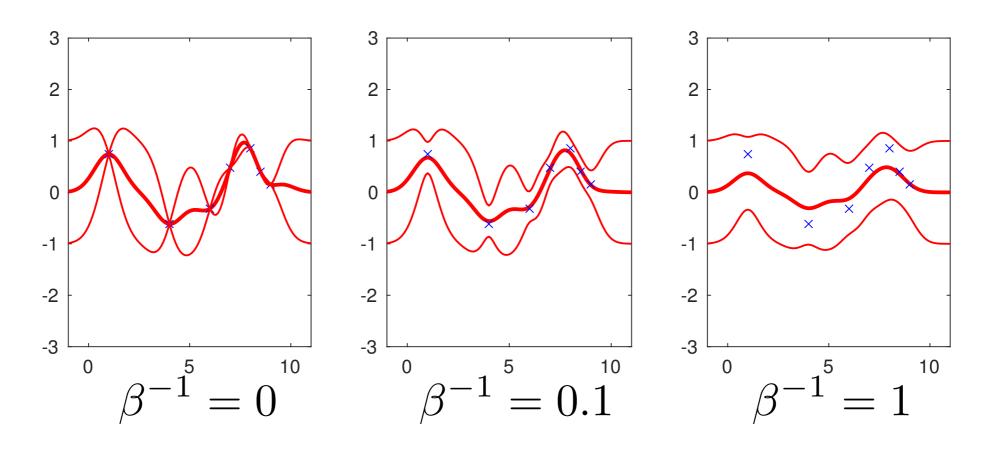
$$\mathbf{t} \sim \mathcal{N}(\mathbf{y}, \beta^{-1}\mathbf{I})$$

- Any parameters of the kernel
 - Typical kernel:

$$k(\mathbf{x}_i, \mathbf{x}_j) = s^2 \exp{-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}}$$

- s: scale (standard deviation prior to seeing data)
- σ : bandwidth (which datapoint are considered close)
- Effective regularisation: $\beta^{-1}s^{-1}$
- Knowing the 'meaning' of parameters helps tune them

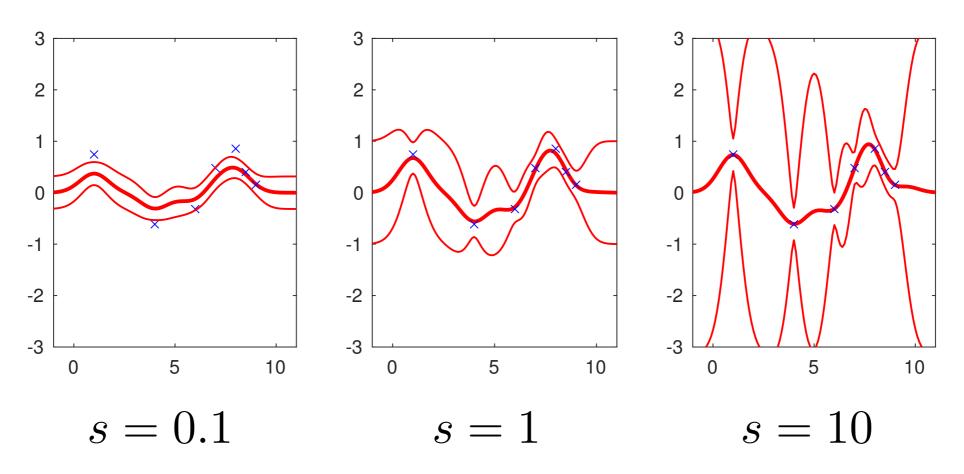
- Assumed noise (variance of likelihood) $\mathbf{t} \sim \mathcal{N}(\mathbf{y}, \beta^{-1}\mathbf{I})$
- Effective regularisation: $\beta^{-1}s^{-1}$



• Mostly changes behaviour close to train points

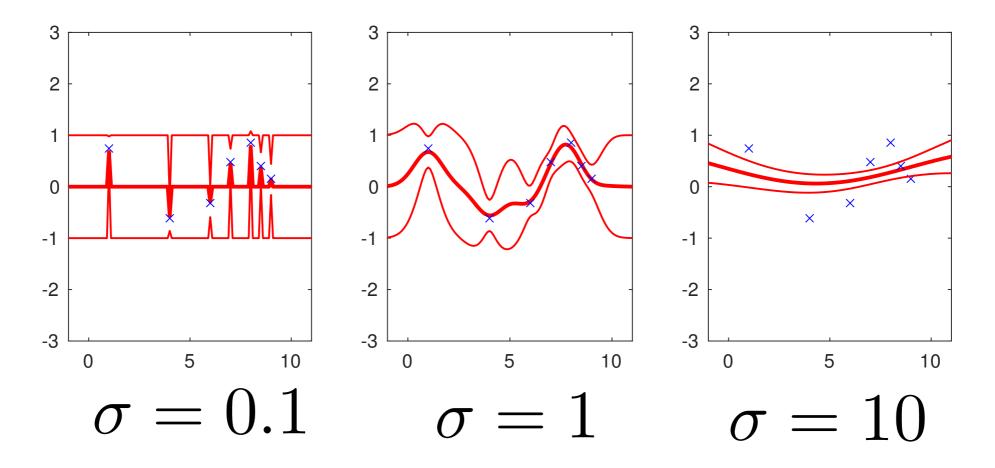
• Kernel
$$k(\mathbf{x}_i, \mathbf{x}_j) = s^2 \exp{-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}}$$

- Effective regularisation $\beta^{-1}s^{-1}$



Mostly changes behaviour further away from training points

• Kernel
$$k(\mathbf{x}_i, \mathbf{x}_j) = s^2 \exp{-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}}$$



Changes what is considered 'close' or 'far'

GPs: Practical issues

- Complexity pretty much similar to kernel regression
- Except for calculating predictive variance

$$\mathbb{E}[y^*] = \mathbf{y}^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{k}(\mathbf{x}^*)$$

 $\operatorname{Cov}[y^*] = k(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}(\mathbf{x}^*)^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{k}(\mathbf{x}^*)$

- inverse, product $O(N^3)$
- prediction $O(N) O(N^2)$
- memory O(N)

GPs: Practical issues

- For small dataset, GPR is a state-of-the-art method!
 - <u>Advantage:</u> provides uncertainty, flexible yet can control overfitting
 - Computational costs acceptable for small datasets (<10 000)
 - Has been applied to robotics & control, hyperparameter optimization, MRI data, weather prediction, ...
- For large datasets, uncertainty not as important, GPs are expensive
- Good approximations exist

• Specifying the right prior (kernel!) is important!

More resources on GPs

- Lectures by Nando de Freitas:
 - https://www.youtube.com/watch?

v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--

EdyJ5lbFl8UuGjecvVw66F6

- 'Gaussian processes for dummies'
 - <u>http://katbailey.github.io/post/gaussian-processes-for-dummies/</u>
- Gaussian processes textbook
 - <u>http://www.gaussianprocess.org/gpml/</u> (free download)

Bayesian methods in practice

- Time complexity varies compared to frequentist methods
- Memory complexity can be higher
 - e.g. need to store mean + uncertainty : quadratic, not linear
- Lots of data everywhere: posterior close to point estimate
 - (might as well use frequentist methods)
- Little data everywhere
 - Prior information helps bias/variance trade-off
- Some areas with little data, some areas with lots of data
 - Uncertainty helps to decide where predictions are reliable

Inference in more complex models

- We saw some examples with closed-form posterior
- In many complex models, no closed-form representation
- Variational inference (deterministic)
 - Consider family of distributions we **can** represent (Gaussian)
 - Use optimisation techniques to find best of these
- **Sampling** (stochastic)
 - Try to directly sample from the posterior
 - Expectations can be approximated using the samples
- Maximum a posterior (point estimate)

What you should know

- Previous lectures:
 - What is the Bayesian view of probability?
 - Why can the Bayesian view be beneficial?
 - Role of the following distributions:
 - Likelihood, prior, posterior, posterior predictive
 - Key idea of Bayesian regression and its properties
- This lecture:
 - Key idea of kernel regression and its properties
 - Main idea behind Gaussian process regression