COMP 551 — Applied Machine Learning
Lecture 20: Gaussian processes

Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca)
Slides mostly by: Herke van Hoof (herke.vanhoof@mcgill.ca)

Class web page: www.cs.mcqill.ca/~hvanho2/compb51

Unless otherwise noted, all material posted for this course are copyright of the
Instructor, and cannot be reused or reposted without the instructor’s written permission.




Announcements

« Change in office hours next week: Wednesday from 11am-12pm,

MC 232

* Project 4 Kaggle submission due today!
*  Written report due tomorrow

* No hard-copy needs to be submitted! Just submit on

MyCourses

« # Kaggle submissions increased to 4/day
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Announcements

Public Leaderboard

This leaderboerd is calculated with approximately 30% of the tzst data.

Private Leaderboard

The final results will be based on the other 70%, so the final standings may be different.

~J

10

Alw

new

al

a5

v 3

new

v4

new

new

Team Name
Gucci Gang
Sigma Mu
Axolotl

Al geeks
MENG

KCM

Team Biceps
ASDFSWAG
FreeSmoke

asdas

Kernel

Team Members

R
S0

A

R
R
RIS
LR R
R

R

R

& Raw Data £ Refresh

Score ©

0.99299

0.98399

0.98066

0.97666

0.97366

0.97333

0.97299

0.97199

0.97166

0.97166

Fntries

20

11

25

~J

13

| ast

d

21h

2h

21m

1d

2d

Herke van Hoof



Beyond linear regression

» Relying on features can be problematic

*  We tried to avoid using features before...

» Lecture 8, instance based learning. Use distances!

* Lecture 12, support vector machines. Use kernels!

« This class: extend regression to nonparametric models

* (Gaussian processes!
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Recall: Kernels

A kernel is a function of two arguments which corresponds to a

dot product in some feature space

k(xi,%xj) = ¢(Xz’)T¢(Xj)

Advantage of using kernels:
« Sometimes evaluating k() is cheaper than evaluating features
i _ T d
and taking the dot product k(Xi,Xj) — (Xz' Xj)
«  Sometimes k() corresponds to an inner product in a feature

space with infinite dimensions k(Xi, Xj) — exp — HXz — X, ||2
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Recall: Kernels

» Kernelize algorithm:

* Try to formulate algorithm so feature vectors only ever occur in

Inner products

* Replace inner products by kernel evaluations (kernel trick)
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Recall: kernel regression

Given dataset, how do we

calculate y value for new input?

Regression: learn weighted at- Lt
function of features y = w/T x qs " T
Kernel regression: don’t learn 2 |- i
any parameters! A _ﬁ.. 5 ]
Instead, use y’s of neighbouring °| | | «, ) -
data points!! 1 ” p ” - .

Image source: http://mccormickml.com/
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Recall: kernel regression

What y should we predict for x=607

Could e.g. take an average of > I ] |

surrounding y values 4t .

w
|
|

In_ general: calculate a weight for

how much each data point 2 y=? i
contributes, take weighted average : .~ -\ .

The kernel is just a weighting
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Image source: http://mccormickml.com/
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Recall: kernel regression

_ _ _(xj—x*)?
- Common kernel is Gaussian: K(x*,x;) =e 202
» Points nearby contribute more, points further away contribute less
« Variance controls how many neighbouring points are used

« Higher sigma -> smoother function

Image source: http://mccormickml.com/
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Recall: Kernel regression

Kernel regression is non-parametric: no parameters are explicitly

learned, just use nearby datapoint to make predictions

Kernel can be thought of as a ‘distance measure’, defining which

points are considered ‘nearby’ for each input

We kernelized linear regression — can we kernelize Bayesian

linear regression?

e Start with just the mean
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Kernelizing the mean function

Inspect solution mean from Bayesian linear regression
p(y™|D) = N(@_ZX*TSNXTQ 0% + xS nx)
Sy = (el 4+ 02X X)7!

Vector y concatenates training outputs

Matrix X has one column for each feature (length N)

one row for each datapoint (length M)

Mean prediction is mean of the Gaussian:

y* _ U_QX*T(OKI—I—U_QXTX)_lXTy

(from last class)

(1)
(2)
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Kernelizing the mean function

Step 2: Reformulate to only have inner products of features
y* _ O'_2X*T(O{I 4+ O'_2XTX)_1XTy

If P. R are positive definite, then

(P'+B'R'B)"'B'R' =PB’/(BPB? +R)!

y" = O'_QX*TXT(O(I + J_QXXT)_ly

k(X*)T I{

element i,j of this matrix is ¢(Xz')T¢(Xj)

element i of this vector is ¢(x;)" ¢ (x*)
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Kernelizing the mean function

Step 2: Reformulate to only have inner products of features
y =0 *x" (ol + 0_2XT\X)_1XTy

# features x #features

# datapoints x #datapoints

y" = U_ZX*TXT(&I + J_QXXT)_ly

k(x*)! K\

element i,j of this matrix is ¢(Xz’)T¢(Xj)

element i of this vector is ¢(x;)" ¢ (x*)
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Kernelizing the mean function

« Step 3: Replace inner products by kernel evaluations

y* =k(x") (eI +K) 'y

\

element i,j of this matrix is k(x;,x,)

element i of this vector is £(x;,x™)

Remember: Mean function is same as ridge regression

* This is kernel ridge regression
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Recall: Ridge regression

Bayesian linear reqression: N
—2

max 02 Z(yn —wix,)? — %WTW + const.

n=1

> (yn

n=1

Ridge regression:

- Difference between the two? Bayesian linear regression /earns a

distribution over parameters

* So kernelized mean prediction with Bayesian linear regression

<=> kernel ridge regression, \ = a0
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Kernel ridge regression

« Choosing a kernel:

2 - 2 - -
1 x X X 1 x X X 1 x X X
X X X X
0 0 oD% x_
X X
1 x -1 - 1 x
0 5 10 0 5 10 0 5 10
s — ;]
(s, ;) = exp— (i, 25) =z,

k(xi,z;) = exp —|x; — ;|
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0.5

-0.5 |

Kernel ridge regression

Setting parameters: sigma controls what data points are ‘close’

|

|

X X X X X
I 05} 0.5 |
X\s/x</ 0 1
| * | ol Sk x
X
0.5 0.5 V
X X X
| p | p |
0 S 10 0 3 10 0 3
o= 10 o=1 oc=20.1
|z — 553'H2
k(z;,x;) = exp 5
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Kernel ridge regression

« Setting parameters: alpha controls ‘smoothness’

X X X X
0.5 | 1 05 0.5 | ]
X X
X
X X
0 0 0 /\ﬂ
X
0.5 | 1 -05¢ 0.5 |
X X X
-1 - -1 - -1 -
0 5 10 0 5 10 0 5 10
Small alpha Medium alpha Large alpha

y* =k(x") (eI +K) 'y
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Why add the ‘ridge’?

» As before, kernel regression can easily overfit: regularisation is

critical!

0 2 Z 6 8 10

alpha=0 (@aka kernel regression)
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Kernel regression: Practical issues

Compare ridge regression: w — ()\I + XTX)_ley

inverse O(d3) matrix-vector product O(d2 N)
prediction O(d)
memory O(d)

Kernel ridge regression: y* _ k(X*)T(OéI 4 K)—ly

inverse, product O (N?)

prediction
O(N ) d = feature dimension
memory O(N) N = # datapoints
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Kernel regression: Practical issues

If we have a small set of good features it's faster to do

regression in feature space

However, if no good features are available (or we need a very big

set of features), kernel regression might yield better results

Often, it is easier to pick a kernel than to choose a good set of

features
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Kernelizing Bayesian linear regression

*  We have now kernelized ridge regression
- Can we kernelize Bayesian linear regression, too?

* i.e. can we kernelize the covariance / uncertainty?

linear ridge bayesian linear
regression regression regression
(kernel kernel ridge o
regression) regression -
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Kernelizing Bayesian linear regression

*  We have now kernelized ridge regression
« Can we kernelize Bayesian linear regression, too?
* i.e. can we kernelize the covariance / uncertainty?

* Yes, and this is called Gaussian process regression (GPR)

linear ridge bayesian linear
regression regression regression
(kernel kernel ridge Gaussian
regression) regression process

23 Herke van Hoof



Gaussian processes: high level

GPs are defined by a mean function, and a covariance function

Mean function derived in the same way as kernel ridge regression

(based on surrounding data points)
Covariance defined by the kernel: Cov(f(x), f(x’)) = k(x,x’)

Bayesian method — need to specify prior distribution

24 Herke van Hoof



(Gaussian processes

* Mean function derived already, variance can be similarly derived

- Formal definition: a function fis a GP if any finite set of values

f(x_1), ..., f(x_n) follows a multivariate Gaussian distribution

0.9

Assumption: outputs are correlated

0

1 QO 1

Copyright C.M. Bishop, PRML
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Deriving GP equations

 Model:

*  We are interested in the function values Y1, Y2, ., at a set of

points X1, X9, .... We observe target values t for the training
set, but we assume these are noisy tn = Yp, + €
.« Prior: 'y ~N(0,K) P |
With y a vector of function values : Q
and K the kernel matrix 1 OT—T S |
« Likelihood (Gaussian noise on output): O &~"°
t~ Ny, 570) s
3

-1 )

J e 1
Copyright C.M. Bishop, PRML
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Examples from the prior

y ~ N(0,K)

“ “
3 - : : 3

1.5

0

-1.5}

—3 : . :
-1 0.5 0 0.5 1

2

k(z,y) =exp—|z —y

k(z,y) = exp —(z — y)

Copyright C.M. Bishop, PRML
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GP Regression

Prior and likelihood are Gaussian

Again obtain a closed form solution

ly*] = yT (K4 871I)"tk(x*) | kernel ridge regression

Covly™] = k(x",x") —k(x")" (K + 87 'I) " "k(x")

prior reduction in variance due to
variance close training points

Prediction of new observations

Cov[t"] = k(x",x") —k(x")" (K+ 7' D) 'k(x") + 87°

Easy to implement! add noise
term
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GP Regression

* Results of GP regression

3
2 |

'3 [y* [t] + /Cov[y*|t]
0 L]y” [t]

s ily*[t] — /Covy*|t]
o | Calculated for many
: possible y*

t: set of observed points
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GP Regression: hyperparameters

* Hyperparameters
* Assumed noise (variance of likelihood) ¢ ~ Ny, 5—11)
* Any parameters of the kernel
» Typical kernel:
Ixi — x|
2072

» s: scale (standard deviation prior to seeing data)

k(x;,X;) = s° exp

« 0 : bandwidth (which datapoint are considered close)

« Effective regularisation: 5_18_1

«  Knowing the ‘meaning’ of parameters helps tune them
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GP Regression: hyperparameters

Assumed noise (variance of likelihood) t ~ A (y, 371

Effective regularisation: 31!

3 3 3

2t : 2t - 2t -

1 1 1/‘;\/\/X\/

A R R

2 : 2t - 2t -

T s P s e T 5w
B~ =0 B~1=0.1 Bt =1

Mostly changes behaviour close to train points
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GP Regression: hyperparameters

X; — Xy
Kernel ]C(XZ', Xj) = 5° CXP :
2
20
Effective regularisation 31571
3 3 31 |
2 27 27 \\/
1 « 1 T
0 M 0 M 0
1t . -1 -1 ¢
2 2 2] /\
3 ' ' 3 = ' ' 8 ' '
0 5 10 0 5 10 0 5 10

s =10.1 s=1 s = 10

Mostly changes behaviour further away from training points
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GP Regression: hyperparameters

X; — X
2 v J
- Kernel k(x;,X;) = 5" exp

207
3 3 3
2| 2 | : 2|
1 1 1t o % ]
HHiE A ==
-1 A 1 A1t ’
2| 2 | 1 2
-3 -3 -3

o=0.1 o =1 o= 10

Changes what is considered ‘close’ or ‘far’
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GPs: Practical issues

Complexity pretty much similar to kernel regression

Except for calculating predictive variance

ily*] =y (K + 57) 7 k(x)

Covly*] = k(x*,x*) — k(x*) ' (K + 87'I)™

inverse, product O(NB)

prediction M O (NQ)

memory O (N)

1k(X>s<)

34
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GPs: Practical issues

For small dataset, GPR is a state-of-the-art method!

- Advantage: provides uncertainty, flexible yet can control overfitting

« Computational costs acceptable for small datasets (<10 000)

« Has been applied to robotics & control, hyperparameter

optimization, MRI data, weather prediction, ...
For large datasets, uncertainty not as important, GPs are expensive

Good approximations exist

Specifying the right prior (kernel!) is important!
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More resources on GPs

* Lectures by Nando de Freitas:

» https://www.youtube.com/watch?
v=4vGiHC35]9s&t=0s&index=8&list=PLEGVWdJ9IF R--
EdyJSIbFI8UuGjecvVWG6F6

« ‘Gaussian processes for dummies’

« http://katbailey.github.io/post/gaussian-processes-for-dummies/

« (Gaussian processes textbook

» http://www.gaussianprocess.org/gpml/ (free download)

36 Herke van Hoof


https://www.youtube.com/watch?v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
https://www.youtube.com/watch?v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
https://www.youtube.com/watch?v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
http://katbailey.github.io/post/gaussian-processes-for-dummies/
http://www.gaussianprocess.org/gpml/

Bayesian methods in practice

Time complexity varies compared to frequentist methods
Memory complexity can be higher

* e.g. need to store mean + uncertainty : quadratic, not linear
Lots of data everywhere: posterior close to point estimate

* (might as well use frequentist methods)

Little data everywhere

* Prior information helps bias/variance trade-off

Some areas with little data, some areas with lots of data

* Uncertainty helps to decide where predictions are reliable
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Inference in more complex models

We saw some examples with closed-form posterior

In many complex models, no closed-form representation

Variational inference (deterministic)

« Consider family of distributions we can represent (Gaussian)

« Use optimisation techniques to find best of these
Sampling (stochastic)

* Try to directly sample from the posterior

« Expectations can be approximated using the samples

Maximum a posterior (point estimate)

38
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What you should know

*  Previous lectures:

* What is the Bayesian view of probability?

*  Why can the Bayesian view be beneficial?

* Role of the following distributions:

* Likelihood, prior, posterior, posterior predictive

- Key idea of Bayesian regression and its properties
* This lecture:

« Key idea of kernel regression and its properties

« Main idea behind Gaussian process regression
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