COMP 551 — Applied Machine Learning
Lecture 20: Gaussian processes

Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca)
Slides mostly by: Herke van Hoof (herke.vanhoof@mcgill.ca)

Class web page: www.cs.mcqill.ca/~hvanho2/compb51

Unless otherwise noted, all material posted for this course are copyright of the
Instructor, and cannot be reused or reposted without the instructor’s written permission.

Announcements

« Change in office hours next week: Wednesday from 11am-12pm,

MC 232

* Project 4 Kaggle submission due today!
* Written report due tomorrow

* No hard-copy needs to be submitted! Just submit on

MyCourses

« # Kaggle submissions increased to 4/day

2 Herke van Hoof

Announcements

Public Leaderboard

This leaderboerd is calculated with approximately 30% of the tzst data.

Private Leaderboard

The final results will be based on the other 70%, so the final standings may be different.

~J

10

Alw

new

al

a5

v 3

new

v4

new

new

Team Name
Gucci Gang
Sigma Mu
Axolotl

Al geeks
MENG

KCM

Team Biceps
ASDFSWAG
FreeSmoke

asdas

Kernel

Team Members

R
S0

A

R
R
RIS
LR R
R

R

R

& Raw Data £ Refresh

Score ©

0.99299

0.98399

0.98066

0.97666

0.97366

0.97333

0.97299

0.97199

0.97166

0.97166

Fntries

20

11

25

~J

13

| ast

d

21h

2h

21m

1d

2d

Herke van Hoof

Beyond linear regression

» Relying on features can be problematic

* We tried to avoid using features before...

» Lecture 8, instance based learning. Use distances!

* Lecture 12, support vector machines. Use kernels!

« This class: extend regression to nonparametric models

* (Gaussian processes!

4 Herke van Hoof

Recall: Kernels

A kernel is a function of two arguments which corresponds to a

dot product in some feature space

k(xi,%xj) = ¢(Xz’)T¢(Xj)

Advantage of using kernels:
« Sometimes evaluating k() is cheaper than evaluating features
i _ T d
and taking the dot product k(Xi,Xj) — (Xz' Xj)
« Sometimes k() corresponds to an inner product in a feature

space with infinite dimensions k(Xi, Xj) — exp — HXz — X, ||2

5 Herke van Hoof

Recall: Kernels

» Kernelize algorithm:

* Try to formulate algorithm so feature vectors only ever occur in

Inner products

* Replace inner products by kernel evaluations (kernel trick)

6 Herke van Hoof

Recall: kernel regression

Given dataset, how do we

calculate y value for new input?

Regression: learn weighted at- Lt
function of features y = w/T x qs " T
Kernel regression: don’t learn 2 |- i
any parameters! A _ﬁ.. 5]
Instead, use y’s of neighbouring °| | | «,) -
data points!! 1 ” p ” - .

Image source: http://mccormickml.com/

7 Herke van Hoof

Recall: kernel regression

What y should we predict for x=607

Could e.g. take an average of > I] |

surrounding y values 4t .

w
|
|

In_ general: calculate a weight for

how much each data point 2 y=? i
contributes, take weighted average : .~ -\ .

The kernel is just a weighting

-

&
|
&
-2
3
|

funCtion B J 20 10 €0 30 1C0

IR Xy I
y —_

oK (xr, x;)

Image source: http://mccormickml.com/

8 Herke van Hoof

Recall: kernel regression

_ _ _(xj—x*)?
- Common kernel is Gaussian: K(x*,x;) =e 202
» Points nearby contribute more, points further away contribute less
« Variance controls how many neighbouring points are used

« Higher sigma -> smoother function

Image source: http://mccormickml.com/

9 Herke van Hoof

Recall: Kernel regression

Kernel regression is non-parametric: no parameters are explicitly

learned, just use nearby datapoint to make predictions

Kernel can be thought of as a ‘distance measure’, defining which

points are considered ‘nearby’ for each input

We kernelized linear regression — can we kernelize Bayesian

linear regression?

e Start with just the mean

10 Herke van Hoof

Kernelizing the mean function

Inspect solution mean from Bayesian linear regression
p(y™|D) = N(@_ZX*TSNXTQ 0% + xS nx)
Sy = (el 4+ 02X X)7!

Vector y concatenates training outputs

Matrix X has one column for each feature (length N)

one row for each datapoint (length M)

Mean prediction is mean of the Gaussian:

y* _ U_QX*T(OKI—I—U_QXTX)_lXTy

(from last class)

(1)
(2)

11

Herke van Hoof

Kernelizing the mean function

Step 2: Reformulate to only have inner products of features
y* _ O'_2X*T(O{I 4+ O'_2XTX)_1XTy

If P. R are positive definite, then

(P'+B'R'B)"'B'R' =PB’/(BPB? +R)!

y" = O'_QX*TXT(O(I + J_QXXT)_ly

k(X*)T I{

element i,j of this matrix is ¢(Xz')T¢(Xj)

element i of this vector is ¢(x;)" ¢ (x*)

12 Herke van Hoof

Kernelizing the mean function

Step 2: Reformulate to only have inner products of features
y =0 *x" (ol + 0_2XT\X)_1XTy

features x #features

datapoints x #datapoints

y" = U_ZX*TXT(&I + J_QXXT)_ly

k(x*)! K\

element i,j of this matrix is ¢(Xz’)T¢(Xj)

element i of this vector is ¢(x;)" ¢ (x*)

13 Herke van Hoof

Kernelizing the mean function

« Step 3: Replace inner products by kernel evaluations

y* =k(x") (eI +K) 'y

\

element i,j of this matrix is k(x;,x,)

element i of this vector is £(x;,x™)

Remember: Mean function is same as ridge regression

* This is kernel ridge regression

14 Herke van Hoof

Recall: Ridge regression

Bayesian linear reqression: N
—2

max 02 Z(yn —wix,)? — %WTW + const.

n=1

> (yn

n=1

Ridge regression:

- Difference between the two? Bayesian linear regression /earns a

distribution over parameters

* So kernelized mean prediction with Bayesian linear regression

<=> kernel ridge regression, \ = a0

15 Herke van Hoof

Kernel ridge regression

« Choosing a kernel:

2 - 2 - -
1 x X X 1 x X X 1 x X X
X X X X
0 0 oD% x_
X X
1 x -1 - 1 x
0 5 10 0 5 10 0 5 10
s — ;]
(s, ;) = exp— (i, 25) =z,

k(xi,z;) = exp —|x; — ;|

16 Herke van Hoof

0.5

-0.5 |

Kernel ridge regression

Setting parameters: sigma controls what data points are ‘close’

|

|

X X X X X
I 05} 0.5 |
X\s/x</ 0 1
| * | ol Sk x
X
0.5 0.5 V
X X X
| p | p |
0 S 10 0 3 10 0 3
o= 10 o=1 oc=20.1
|z — 553'H2
k(z;,x;) = exp 5

17

Herke van Hoof

10

Kernel ridge regression

« Setting parameters: alpha controls ‘smoothness’

X X X X
0.5 | 1 05 0.5 |]
X X
X
X X
0 0 0 /\ﬂ
X
0.5 | 1 -05¢ 0.5 |
X X X
-1 - -1 - -1 -
0 5 10 0 5 10 0 5 10
Small alpha Medium alpha Large alpha

y* =k(x") (eI +K) 'y

18 Herke van Hoof

Why add the ‘ridge’?

» As before, kernel regression can easily overfit: regularisation is

critical!

0 2 Z 6 8 10

alpha=0 (@aka kernel regression)

19 Herke van Hoof

Kernel regression: Practical issues

Compare ridge regression: w — ()\I + XTX)_ley

inverse O(d3) matrix-vector product O(d2 N)
prediction O(d)
memory O(d)

Kernel ridge regression: y* _ k(X*)T(OéI 4 K)—ly

inverse, product O (N?)

prediction
O(N) d = feature dimension
memory O(N) N = # datapoints

20 Herke van Hoof

Kernel regression: Practical issues

If we have a small set of good features it's faster to do

regression in feature space

However, if no good features are available (or we need a very big

set of features), kernel regression might yield better results

Often, it is easier to pick a kernel than to choose a good set of

features

21 Herke van Hoof

Kernelizing Bayesian linear regression

* We have now kernelized ridge regression
- Can we kernelize Bayesian linear regression, too?

* i.e. can we kernelize the covariance / uncertainty?

linear ridge bayesian linear
regression regression regression
(kernel kernel ridge o
regression) regression -

22 Herke van Hoof

Kernelizing Bayesian linear regression

* We have now kernelized ridge regression
« Can we kernelize Bayesian linear regression, too?
* i.e. can we kernelize the covariance / uncertainty?

* Yes, and this is called Gaussian process regression (GPR)

linear ridge bayesian linear
regression regression regression
(kernel kernel ridge Gaussian
regression) regression process

23 Herke van Hoof

Gaussian processes: high level

GPs are defined by a mean function, and a covariance function

Mean function derived in the same way as kernel ridge regression

(based on surrounding data points)
Covariance defined by the kernel: Cov(f(x), f(x’)) = k(x,x’)

Bayesian method — need to specify prior distribution

24 Herke van Hoof

(Gaussian processes

* Mean function derived already, variance can be similarly derived

- Formal definition: a function fis a GP if any finite set of values

f(x_1), ..., f(x_n) follows a multivariate Gaussian distribution

0.9

Assumption: outputs are correlated

0

1 QO 1

Copyright C.M. Bishop, PRML

Herke van Hoof

Deriving GP equations

 Model:

* We are interested in the function values Y1, Y2, ., at a set of

points X1, X9, We observe target values t for the training
set, but we assume these are noisy tn = Yp, + €
.« Prior: 'y ~N(0,K) P |
With y a vector of function values : Q
and K the kernel matrix 1 OT—T S |
« Likelihood (Gaussian noise on output): O &~"°
t~ Ny, 570) s
3

-1)

J e 1
Copyright C.M. Bishop, PRML

26 Herke van Hoof

Examples from the prior

y ~ N(0,K)

“ “
3 - : : 3

1.5

0

-1.5}

—3 : . :
-1 0.5 0 0.5 1

2

k(z,y) =exp—|z —y

k(z,y) = exp —(z — y)

Copyright C.M. Bishop, PRML

27 Herke van Hoof

GP Regression

Prior and likelihood are Gaussian

Again obtain a closed form solution

ly*] = yT (K4 871I)"tk(x*) | kernel ridge regression

Covly™] = k(x",x") —k(x")" (K + 87 'I) " "k(x")

prior reduction in variance due to
variance close training points

Prediction of new observations

Cov[t"] = k(x",x") —k(x")" (K+ 7' D) 'k(x") + 87°

Easy to implement! add noise
term

28 Herke van Hoof

GP Regression

* Results of GP regression

3
2 |

'3 [y* [t] + /Cov[y*|t]
0 L]y” [t]

s ily*[t] — /Covy*|t]
o | Calculated for many
: possible y*

t: set of observed points

29 Herke van Hoof

GP Regression: hyperparameters

* Hyperparameters
* Assumed noise (variance of likelihood) ¢ ~ Ny, 5—11)
* Any parameters of the kernel
» Typical kernel:
Ixi — x|
2072

» s: scale (standard deviation prior to seeing data)

k(x;,X;) = s° exp

« 0 : bandwidth (which datapoint are considered close)

« Effective regularisation: 5_18_1

« Knowing the ‘meaning’ of parameters helps tune them

30 Herke van Hoof

GP Regression: hyperparameters

Assumed noise (variance of likelihood) t ~ A (y, 371

Effective regularisation: 31!

3 3 3

2t : 2t - 2t -

1 1 1/‘;\/\/X\/

A R R

2 : 2t - 2t -

T s P s e T 5w
B~ =0 B~1=0.1 Bt =1

Mostly changes behaviour close to train points

31 Herke van Hoof

GP Regression: hyperparameters

X; — Xy
Kernel]C(XZ', Xj) = 5° CXP :
2
20
Effective regularisation 31571
3 3 31 |
2 27 27 \\/
1 « 1 T
0 M 0 M 0
1t . -1 -1 ¢
2 2 2] /\
3 ' ' 3 = ' ' 8 ' '
0 5 10 0 5 10 0 5 10

s =10.1 s=1 s = 10

Mostly changes behaviour further away from training points

32 Herke van Hoof

GP Regression: hyperparameters

X; — X
2 v J
- Kernel k(x;,X;) = 5" exp

207
3 3 3
2| 2 | : 2|
1 1 1t o %]
HHiE A ==
-1 A 1 A1t ’
2| 2 | 1 2
-3 -3 -3

o=0.1 o =1 o= 10

Changes what is considered ‘close’ or ‘far’

33 Herke van Hoof

GPs: Practical issues

Complexity pretty much similar to kernel regression

Except for calculating predictive variance

ily*] =y (K + 57) 7 k(x)

Covly*] = k(x*,x*) — k(x*) ' (K + 87'I)™

inverse, product O(NB)

prediction M O (NQ)

memory O (N)

1k(X>s<)

34

Herke van Hoof

GPs: Practical issues

For small dataset, GPR is a state-of-the-art method!

- Advantage: provides uncertainty, flexible yet can control overfitting

« Computational costs acceptable for small datasets (<10 000)

« Has been applied to robotics & control, hyperparameter

optimization, MRI data, weather prediction, ...
For large datasets, uncertainty not as important, GPs are expensive

Good approximations exist

Specifying the right prior (kernel!) is important!

35 Herke van Hoof

More resources on GPs

* Lectures by Nando de Freitas:

» https://www.youtube.com/watch?
v=4vGiHC35]9s&t=0s&index=8&list=PLEGVWdJ9IF R--
EdyJSIbFI8UuGjecvVWG6F6

« ‘Gaussian processes for dummies’

« http://katbailey.github.io/post/gaussian-processes-for-dummies/

« (Gaussian processes textbook

» http://www.gaussianprocess.org/gpml/ (free download)

36 Herke van Hoof

https://www.youtube.com/watch?v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
https://www.youtube.com/watch?v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
https://www.youtube.com/watch?v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
http://katbailey.github.io/post/gaussian-processes-for-dummies/
http://www.gaussianprocess.org/gpml/

Bayesian methods in practice

Time complexity varies compared to frequentist methods
Memory complexity can be higher

* e.g. need to store mean + uncertainty : quadratic, not linear
Lots of data everywhere: posterior close to point estimate

* (might as well use frequentist methods)

Little data everywhere

* Prior information helps bias/variance trade-off

Some areas with little data, some areas with lots of data

* Uncertainty helps to decide where predictions are reliable

37 Herke van Hoof

Inference in more complex models

We saw some examples with closed-form posterior

In many complex models, no closed-form representation

Variational inference (deterministic)

« Consider family of distributions we can represent (Gaussian)

« Use optimisation techniques to find best of these
Sampling (stochastic)

* Try to directly sample from the posterior

« Expectations can be approximated using the samples

Maximum a posterior (point estimate)

38

Herke van Hoof

What you should know

* Previous lectures:

* What is the Bayesian view of probability?

* Why can the Bayesian view be beneficial?

* Role of the following distributions:

* Likelihood, prior, posterior, posterior predictive

- Key idea of Bayesian regression and its properties
* This lecture:

« Key idea of kernel regression and its properties

« Main idea behind Gaussian process regression

39 Herke van Hoof

