
COMP 551 – Applied Machine Learning 
Lecture 20: Gaussian processes

Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca)

Slides mostly by: Herke van Hoof (herke.vanhoof@mcgill.ca)

Class web page: www.cs.mcgill.ca/~hvanho2/comp551

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.

Herke van Hoof2

Announcements

• Change in office hours next week: Wednesday from 11am-12pm,

MC 232

• Project 4 Kaggle submission due today!

• Written report due tomorrow

• No hard-copy needs to be submitted! Just submit on

MyCourses

• # Kaggle submissions increased to 4/day

Herke van Hoof3

Announcements

Herke van Hoof4

Beyond linear regression

• Relying on features can be problematic

• We tried to avoid using features before…

• Lecture 8, instance based learning. Use distances!

• Lecture 12, support vector machines. Use kernels!

• This class: extend regression to nonparametric models

• Gaussian processes!

Herke van Hoof5

Recall: Kernels

• A kernel is a function of two arguments which corresponds to a

dot product in some feature space

• Advantage of using kernels:

• Sometimes evaluating k() is cheaper than evaluating features

and taking the dot product

• Sometimes k() corresponds to an inner product in a feature

space with infinite dimensions

k(xi,xj) = �(xi)
T�(xj)

k(xi,xj) = (xT
i xj)

d

k(xi,xj) = exp�kxi � xjk2

Herke van Hoof6

Recall: Kernels

• Kernelize algorithm:

• Try to formulate algorithm so feature vectors only ever occur in

inner products

• Replace inner products by kernel evaluations (kernel trick)

Herke van Hoof7

Recall: kernel regression

• Given dataset, how do we

calculate y value for new input?

• Regression: learn weighted

function of features y = w^T x

• Kernel regression: don’t learn

any parameters!

• Instead, use y’s of neighbouring

data points!!

Image source: http://mccormickml.com/

Herke van Hoof8

Recall: kernel regression

• What y should we predict for x=60?

• Could e.g. take an average of

surrounding y values

• In general: calculate a weight for

how much each data point

contributes, take weighted average

• The kernel is just a weighting

function

y=?

Image source: http://mccormickml.com/

Herke van Hoof9

Recall: kernel regression

• Common kernel is Gaussian:

• Points nearby contribute more, points further away contribute less

• Variance controls how many neighbouring points are used 

• Higher sigma -> smoother function

Image source: http://mccormickml.com/

Herke van Hoof10

Recall: Kernel regression

• Kernel regression is non-parametric: no parameters are explicitly

learned, just use nearby datapoint to make predictions

• Kernel can be thought of as a ‘distance measure’, defining which

points are considered ‘nearby’ for each input

• We kernelized linear regression — can we kernelize Bayesian

linear regression?

• Start with just the mean

Herke van Hoof11

Kernelizing the mean function

• Inspect solution mean from Bayesian linear regression

• Vector concatenates training outputs

• Matrix X has one column for each feature (length N) 

 one row for each datapoint (length M)

• Mean prediction is mean of the Gaussian:

y

(2)

(1)

SN = (↵I+ ��2XTX)�1

p(y⇤|D) = N (��2
x

⇤T
SNX

T
y,�2 + x

T
SNx)

y⇤ = ��2
x

⇤T (↵I+ ��2
X

T
X)�1

X

T
y

(from last class)

Herke van Hoof

element i of this vector is

12

Kernelizing the mean function

• Step 2: Reformulate to only have inner products of features

element i,j of this matrix is �(xi)
T�(xj)

�(xi)
T�(x⇤)

k(x⇤)T

y⇤ = ��2
x

⇤T (↵I+ ��2
X

T
X)�1

X

T
y

y⇤ = ��2
x

⇤T
X

T (↵I+ ��2
XX

T)�1
y

K

Herke van Hoof

element i of this vector is

13

Kernelizing the mean function

• Step 2: Reformulate to only have inner products of features

element i,j of this matrix is �(xi)
T�(xj)

�(xi)
T�(x⇤)

Kk(x⇤)T

features x #features

datapoints x #datapoints

y⇤ = ��2
x

⇤T
X

T (↵I+ ��2
XX

T)�1
y

y⇤ = ��2
x

⇤T (↵I+ ��2
X

T
X)�1

X

T
y

Herke van Hoof14

Kernelizing the mean function

• Step 3: Replace inner products by kernel evaluations

• Remember: Mean function is same as ridge regression

• This is kernel ridge regression

element i,j of this matrix is

element i of this vector is k(xi,x
⇤)

k(xi,xj)

y⇤ = k(x⇤)T (↵I+K)�1
y

Herke van Hoof15

• Difference between the two? Bayesian linear regression learns a

distribution over parameters

• So kernelized mean prediction with Bayesian linear regression  
<=> kernel ridge regression,

Recall: Ridge regression
max log p(w|y)

max���2

2

NX

n=1

(yn �w

T
xn)

2 � ↵

2

w

T
w + const.

min

NX

n=1

(yn �w

T
xn)

2
+ �wT

w

Bayesian linear regression:

Ridge regression:

� = ↵�2

Herke van Hoof16

Kernel ridge regression

• Choosing a kernel:

0 5 10

-1

0

1

2

0 5 10

-1

0

1

2

0 5 10

-1

0

1

2

k(xi, xj) = exp�kxi � xjk2

2�

2

k(xi, xj) = exp�|xi � xj |

k(xi, xj) = xixj

Herke van Hoof17

Kernel ridge regression

• Setting parameters: sigma controls what data points are ‘close’

� = 1� = 10 � = 0.1

0 5 10

-1

-0.5

0

0.5

1

0 5 10

-1

-0.5

0

0.5

1

0 5 10

-1

-0.5

0

0.5

1

k(xi, xj) = exp�kxi � xjk2

2�

2

Herke van Hoof18

Kernel ridge regression

• Setting parameters: alpha controls ‘smoothness’

0 5 10

-1

-0.5

0

0.5

1

0 5 10

-1

-0.5

0

0.5

1

0 5 10

-1

-0.5

0

0.5

1

y⇤ = k(x⇤)T (↵I+K)�1
y

Small alpha Medium alpha Large alpha

Herke van Hoof19

Why add the ‘ridge’?

• As before, kernel regression can easily overfit: regularisation is

critical!

0 2 4 6 8 10

-3

-2

-1

0

1

2

3

(aka kernel regression)alpha=0

Herke van Hoof20

Kernel regression: Practical issues

• Compare ridge regression:  

 

inverse matrix-vector product 
prediction  

memory

• Kernel ridge regression:  

 

inverse, product 
prediction 

memory

O(d3) O(d2N)

O(N3)

O(d)

O(d)

O(N)

O(N)

y⇤ = k(x⇤)T (↵I+K)�1
y

w = (�I+XTX)�1XTy

d = feature dimension 
N = # datapoints

Herke van Hoof21

Kernel regression: Practical issues

• If we have a small set of good features it’s faster to do

regression in feature space

• However, if no good features are available (or we need a very big

set of features), kernel regression might yield better results

• Often, it is easier to pick a kernel than to choose a good set of

features

Herke van Hoof22

Kernelizing Bayesian linear regression

• We have now kernelized ridge regression

• Can we kernelize Bayesian linear regression, too?

• i.e. can we kernelize the covariance / uncertainty?

linear 
regression

ridge  
regression

bayesian linear 
regression

(kernel  
regression)

kernel ridge 
regression ?

Herke van Hoof23

Kernelizing Bayesian linear regression

• We have now kernelized ridge regression

• Can we kernelize Bayesian linear regression, too?

• i.e. can we kernelize the covariance / uncertainty?

• Yes, and this is called Gaussian process regression (GPR)

linear 
regression

ridge  
regression

bayesian linear 
regression

(kernel  
regression)

kernel ridge 
regression

Gaussian
process

Herke van Hoof24

Gaussian processes: high level

• GPs are defined by a mean function, and a covariance function

• Mean function derived in the same way as kernel ridge regression

(based on surrounding data points)

• Covariance defined by the kernel: Cov(f(x), f(x’)) = k(x,x’)

• Bayesian method — need to specify prior distribution

Herke van Hoof25

Gaussian processes

• Mean function derived already, variance can be similarly derived

• Formal definition: a function f is a GP if any finite set of values  

f(x_1), …, f(x_n) follows a multivariate Gaussian distribution

Copyright C.M. Bishop, PRML

0.9 ?

Assumption: outputs are correlated

Herke van Hoof26

Deriving GP equations

• Model:

• We are interested in the function values , at a set of

points . We observe target values t for the training

set, but we assume these are noisy

• Prior:  
With y a vector of function values  

and K the kernel matrix

• Likelihood (Gaussian noise on output):

y1, y2, . . .

x1,x2, . . .

tn = yn + ✏

y ⇠ N (0,K)

Copyright C.M. Bishop, PRML

t ⇠ N (y,��1I) red: y_n 
green: t_n

Herke van Hoof27

Examples from the prior

y ⇠ N (0,K)

k(x, y) = exp�(x� y)

2
k(x, y) = exp�|x� y|

Copyright C.M. Bishop, PRML

Herke van Hoof28

GP Regression

• Prior and likelihood are Gaussian

• Again obtain a closed form solution

• Prediction of new observations

• Easy to implement!

kernel ridge regression

prior
variance

reduction in variance due to
close training points

add noise
term

Cov[t⇤] = k(x⇤,x⇤
)� k(x

⇤
)

T
(K+ ��1

I)

�1
k(x

⇤
) + ��1

Cov[y⇤] = k(x⇤,x⇤
)� k(x

⇤
)

T
(K+ ��1

I)

�1
k(x

⇤
)

E[y⇤] = y

T (K+ ��1
I)�1

k(x⇤)

Herke van Hoof29

GP Regression

• Results of GP regression

0 5 10

-3

-2

-1

0

1

2

3

0 5 10

-3

-2

-1

0

1

2

3

0 5 10

-3

-2

-1

0

1

2

3

Calculated for many
possible y⇤

E[y⇤|t]

E[y⇤|t] +
p
Cov[y⇤|t]

E[y⇤|t]�
p
Cov[y⇤|t]

t: set of observed points

Herke van Hoof30

GP Regression: hyperparameters
• Hyperparameters

• Assumed noise (variance of likelihood)

• Any parameters of the kernel

• Typical kernel:

• s: scale (standard deviation prior to seeing data)

• : bandwidth (which datapoint are considered close)

• Effective regularisation:

• Knowing the ‘meaning’ of parameters helps tune them

t ⇠ N (y,��1I)

k(xi,xj) = s2 exp�kxi � xjk2

2�2

�

��1s�1

Herke van Hoof31

GP Regression: hyperparameters

• Assumed noise (variance of likelihood)

• Effective regularisation:

• Mostly changes behaviour close to train points

t ⇠ N (y,��1I)

��1s�1

0 5 10

-3

-2

-1

0

1

2

3

0 5 10

-3

-2

-1

0

1

2

3

0 5 10

-3

-2

-1

0

1

2

3

��1 = 0 ��1 = 0.1 ��1 = 1

Herke van Hoof32

GP Regression: hyperparameters

• Kernel

• Effective regularisation

• Mostly changes behaviour further away from training points

k(xi,xj) = s2 exp�kxi � xjk2

2�2

��1s�1

0 5 10

-3

-2

-1

0

1

2

3

0 5 10

-3

-2

-1

0

1

2

3

0 5 10

-3

-2

-1

0

1

2

3

s = 0.1 s = 1 s = 10

Herke van Hoof33

GP Regression: hyperparameters

• Kernel

• Changes what is considered ‘close’ or ‘far’

k(xi,xj) = s2 exp�kxi � xjk2

2�2

0 5 10

-3

-2

-1

0

1

2

3

0 5 10

-3

-2

-1

0

1

2

3

0 5 10

-3

-2

-1

0

1

2

3

� = 0.1 � = 1 � = 10

Herke van Hoof34

GPs: Practical issues

• Complexity pretty much similar to kernel regression

• Except for calculating predictive variance

• inverse, product

• prediction

• memory

O(N3)

O(N)

O(N)

O(N2)

Cov[y⇤] = k(x⇤,x⇤
)� k(x

⇤
)

T
(K+ ��1

I)

�1
k(x

⇤
)

E[y⇤] = y

T (K+ ��1
I)�1

k(x⇤)

Herke van Hoof35

GPs: Practical issues

• For small dataset, GPR is a state-of-the-art method!

• Advantage: provides uncertainty, flexible yet can control overfitting

• Computational costs acceptable for small datasets (<10 000)

• Has been applied to robotics & control, hyperparameter

optimization, MRI data, weather prediction, …

• For large datasets, uncertainty not as important, GPs are expensive

• Good approximations exist

• Specifying the right prior (kernel!) is important!

Herke van Hoof36

More resources on GPs

• Lectures by Nando de Freitas:

• https://www.youtube.com/watch?

v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--

EdyJ5lbFl8UuGjecvVw66F6

• ‘Gaussian processes for dummies’

• http://katbailey.github.io/post/gaussian-processes-for-dummies/

• Gaussian processes textbook

• http://www.gaussianprocess.org/gpml/ (free download) 

https://www.youtube.com/watch?v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
https://www.youtube.com/watch?v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
https://www.youtube.com/watch?v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
http://katbailey.github.io/post/gaussian-processes-for-dummies/
http://www.gaussianprocess.org/gpml/

Herke van Hoof37

Bayesian methods in practice

• Time complexity varies compared to frequentist methods

• Memory complexity can be higher

• e.g. need to store mean + uncertainty : quadratic, not linear

• Lots of data everywhere: posterior close to point estimate

• (might as well use frequentist methods)

• Little data everywhere

• Prior information helps bias/variance trade-off

• Some areas with little data, some areas with lots of data

• Uncertainty helps to decide where predictions are reliable

Herke van Hoof38

Inference in more complex models

• We saw some examples with closed-form posterior

• In many complex models, no closed-form representation

• Variational inference (deterministic)

• Consider family of distributions we can represent (Gaussian)

• Use optimisation techniques to find best of these

• Sampling (stochastic)

• Try to directly sample from the posterior

• Expectations can be approximated using the samples

• Maximum a posterior (point estimate)

Herke van Hoof39

What you should know

• Previous lectures:

• What is the Bayesian view of probability?

• Why can the Bayesian view be beneficial?

• Role of the following distributions:

• Likelihood, prior, posterior, posterior predictive

• Key idea of Bayesian regression and its properties

• This lecture:

• Key idea of kernel regression and its properties

• Main idea behind Gaussian process regression

