
COMP 551 – Applied Machine Learning 
Lecture 20: Gaussian processes

Instructor:  Ryan Lowe (ryan.lowe@cs.mcgill.ca) 

Slides mostly by: Herke van Hoof (herke.vanhoof@mcgill.ca) 

Class web page: www.cs.mcgill.ca/~hvanho2/comp551

Unless otherwise noted, all material posted for this course are copyright of the  
instructor, and cannot be reused or reposted without the instructor’s written permission. 



Herke van Hoof2

Announcements

• Change in office hours next week: Wednesday from 11am-12pm, 

MC 232 

• Project 4 Kaggle submission due today! 

• Written report due tomorrow 

• No hard-copy needs to be submitted! Just submit on 

MyCourses 

• # Kaggle submissions increased to 4/day
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Announcements
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Beyond linear regression

• Relying on features can be problematic 

• We tried to avoid using features before…  

• Lecture 8, instance based learning. Use distances! 

• Lecture 12, support vector machines. Use kernels! 

• This class: extend regression to nonparametric models 

• Gaussian processes!
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Recall: Kernels

• A kernel is a function of two arguments which corresponds to a 

dot product in some feature space 

• Advantage of using kernels: 

• Sometimes evaluating k() is cheaper than evaluating features 

and taking the dot product 

• Sometimes k() corresponds to an inner product in a feature 

space with infinite dimensions 

k(xi,xj) = �(xi)
T�(xj)

k(xi,xj) = (xT
i xj)

d

k(xi,xj) = exp�kxi � xjk2
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Recall: Kernels

• Kernelize algorithm: 

• Try to formulate algorithm so feature vectors only ever occur in 

inner products 

• Replace inner products by kernel evaluations (kernel trick)
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Recall: kernel regression

• Given dataset, how do we 

calculate y value for new input? 

• Regression: learn weighted 

function of features y = w^T x 

• Kernel regression: don’t learn 

any parameters! 

• Instead, use y’s of neighbouring 

data points!!

Image source: http://mccormickml.com/
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Recall: kernel regression

• What y should we predict for x=60? 

• Could e.g. take an average of 

surrounding y values 

• In general: calculate a weight for 

how much each data point 

contributes, take weighted average 

• The kernel is just a weighting 

function

y=?

Image source: http://mccormickml.com/
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Recall: kernel regression

• Common kernel is Gaussian:  

• Points nearby contribute more, points further away contribute less 

• Variance controls how many neighbouring points are used 

• Higher sigma -> smoother function

Image source: http://mccormickml.com/
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Recall: Kernel regression

• Kernel regression is non-parametric: no parameters are explicitly 

learned, just use nearby datapoint to make predictions 

• Kernel can be thought of as a ‘distance measure’, defining which 

points are considered ‘nearby’ for each input 

• We kernelized linear regression — can we kernelize Bayesian 

linear regression? 

• Start with just the mean
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Kernelizing the mean function

• Inspect solution mean from Bayesian linear regression 

• Vector      concatenates training outputs 

• Matrix  X   has one column for each feature (length N) 

                        one row for each datapoint (length M) 

• Mean prediction is mean of the Gaussian: 

y

(2)

(1)

SN = (↵I+ ��2XTX)�1

p(y⇤|D) = N (��2
x

⇤T
SNX

T
y,�2 + x

T
SNx)

y⇤ = ��2
x

⇤T (↵I+ ��2
X

T
X)�1

X

T
y

(from last class)
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element i of this vector is 

12

Kernelizing the mean function

• Step 2: Reformulate to only have inner products of features 

element i,j of this matrix is �(xi)
T�(xj)

�(xi)
T�(x⇤)

k(x⇤)T

y⇤ = ��2
x

⇤T (↵I+ ��2
X

T
X)�1

X

T
y

y⇤ = ��2
x

⇤T
X

T (↵I+ ��2
XX

T )�1
y

K
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element i of this vector is 

13

Kernelizing the mean function

• Step 2: Reformulate to only have inner products of features 

element i,j of this matrix is �(xi)
T�(xj)

�(xi)
T�(x⇤)

Kk(x⇤)T

# features x #features

# datapoints x #datapoints

y⇤ = ��2
x

⇤T
X

T (↵I+ ��2
XX

T )�1
y

y⇤ = ��2
x

⇤T (↵I+ ��2
X

T
X)�1

X

T
y
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Kernelizing the mean function

• Step 3: Replace inner products by kernel evaluations 

• Remember: Mean function is same as ridge regression 

• This is kernel ridge regression

element i,j of this matrix is 

element i of this vector is k(xi,x
⇤)

k(xi,xj)

y⇤ = k(x⇤)T (↵I+K)�1
y
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• Difference between the two? Bayesian linear regression learns a 

distribution over parameters  

• So kernelized mean prediction with Bayesian linear regression  
<=> kernel ridge regression,

Recall: Ridge regression
max log p(w|y)

max���2

2

NX

n=1

(yn �w

T
xn)

2 � ↵

2

w

T
w + const.

min

NX

n=1

(yn �w

T
xn)

2
+ �wT

w

Bayesian linear regression:

Ridge regression:

� = ↵�2
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Kernel ridge regression

• Choosing a kernel: 
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Kernel ridge regression

• Setting parameters: sigma controls what data points are ‘close’

� = 1� = 10 � = 0.1
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Kernel ridge regression

• Setting parameters: alpha controls ‘smoothness’
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Why add the ‘ridge’?

• As before, kernel regression can easily overfit:  regularisation is 

critical!
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Kernel regression: Practical issues

• Compare ridge regression:  

 

inverse               matrix-vector product 
prediction  

memory  

• Kernel ridge regression:   

 

inverse, product 
prediction 

memory

O(d3) O(d2N)

O(N3)

O(d)

O(d)

O(N)

O(N)

y⇤ = k(x⇤)T (↵I+K)�1
y

w = (�I+XTX)�1XTy

d = feature dimension 
N = # datapoints
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Kernel regression: Practical issues

• If we have a small set of good features it’s faster to do 

regression in feature space 

• However, if no good features are available (or we need a very big 

set of features), kernel regression might yield better results 

• Often, it is easier to pick a kernel than to choose a good set of 

features
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Kernelizing Bayesian linear regression

• We have now kernelized ridge regression 

• Can we kernelize Bayesian linear regression, too? 

• i.e. can we kernelize the covariance / uncertainty? 

linear 
regression

ridge  
regression

bayesian linear 
regression

(kernel  
regression)

kernel ridge 
regression ?
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Kernelizing Bayesian linear regression

• We have now kernelized ridge regression 

• Can we kernelize Bayesian linear regression, too? 

• i.e. can we kernelize the covariance / uncertainty? 

• Yes, and this is called Gaussian process regression (GPR) 

linear 
regression

ridge  
regression

bayesian linear 
regression

(kernel  
regression)

kernel ridge 
regression

Gaussian 
process
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Gaussian processes: high level

• GPs are defined by a mean function, and a covariance function 

• Mean function derived in the same way as kernel ridge regression 

(based on surrounding data points) 

• Covariance defined by the kernel: Cov(f(x), f(x’)) = k(x,x’)  

• Bayesian method — need to specify prior distribution 
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Gaussian processes

• Mean function derived already, variance can be similarly derived 

• Formal definition: a function f is a GP if any finite set of values  

f(x_1), …, f(x_n) follows a multivariate Gaussian distribution

Copyright C.M. Bishop, PRML

0.9 ?

Assumption: outputs are correlated
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Deriving GP equations

• Model:  

• We are interested in the function values                   , at a set of 

points                    . We observe target values t for the training 

set, but we assume these are noisy 

• Prior:  
With y a vector of function values  

and K the kernel matrix 

• Likelihood (Gaussian noise on output): 

y1, y2, . . .

x1,x2, . . .

tn = yn + ✏

y ⇠ N (0,K)

Copyright C.M. Bishop, PRML

t ⇠ N (y,��1I) red: y_n 
green: t_n
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Examples from the prior

y ⇠ N (0,K)

k(x, y) = exp�(x� y)

2
k(x, y) = exp�|x� y|

Copyright C.M. Bishop, PRML
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GP Regression

• Prior and likelihood are Gaussian 

• Again obtain a closed form solution  

• Prediction of new observations 

• Easy to implement!

kernel ridge regression

prior 
variance

reduction in variance due to 
close training points

add noise 
term

Cov[t⇤] = k(x⇤,x⇤
)� k(x

⇤
)

T
(K+ ��1

I)

�1
k(x

⇤
) + ��1

Cov[y⇤] = k(x⇤,x⇤
)� k(x

⇤
)

T
(K+ ��1

I)

�1
k(x

⇤
)

E[y⇤] = y

T (K+ ��1
I)�1

k(x⇤)



Herke van Hoof29

GP Regression

• Results of GP regression
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GP Regression: hyperparameters
• Hyperparameters 

• Assumed noise (variance of likelihood) 

• Any parameters of the kernel 

• Typical kernel:  

• s: scale (standard deviation prior to seeing data) 

•    : bandwidth (which datapoint are considered close) 

• Effective regularisation:  

• Knowing the ‘meaning’ of parameters helps tune them

t ⇠ N (y,��1I)

k(xi,xj) = s2 exp�kxi � xjk2

2�2

�

��1s�1
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GP Regression: hyperparameters

• Assumed noise (variance of likelihood) 

• Effective regularisation:  

• Mostly changes behaviour close to train points

t ⇠ N (y,��1I)

��1s�1
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GP Regression: hyperparameters

• Kernel 

• Effective regularisation 

• Mostly changes behaviour further away from training points

k(xi,xj) = s2 exp�kxi � xjk2
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GP Regression: hyperparameters

• Kernel 

• Changes what is considered ‘close’ or ‘far’

k(xi,xj) = s2 exp�kxi � xjk2

2�2
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GPs: Practical issues

• Complexity pretty much similar to kernel regression 

• Except for calculating predictive variance 

• inverse, product 

• prediction 

• memory

O(N3)

O(N)

O(N)

O(N2)

Cov[y⇤] = k(x⇤,x⇤
)� k(x

⇤
)

T
(K+ ��1

I)

�1
k(x

⇤
)

E[y⇤] = y

T (K+ ��1
I)�1

k(x⇤)
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GPs: Practical issues

• For small dataset, GPR is a state-of-the-art method! 

• Advantage: provides uncertainty, flexible yet can control overfitting 

• Computational costs acceptable for small datasets (<10 000) 

• Has been applied to robotics & control, hyperparameter 

optimization, MRI data, weather prediction, … 

• For large datasets, uncertainty not as important, GPs are expensive 

• Good approximations exist 

• Specifying the right prior (kernel!) is important!
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More resources on GPs

• Lectures by Nando de Freitas: 

• https://www.youtube.com/watch?

v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--

EdyJ5lbFl8UuGjecvVw66F6  

• ‘Gaussian processes for dummies’ 

• http://katbailey.github.io/post/gaussian-processes-for-dummies/  

• Gaussian processes textbook 

• http://www.gaussianprocess.org/gpml/ (free download) 

https://www.youtube.com/watch?v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
https://www.youtube.com/watch?v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
https://www.youtube.com/watch?v=4vGiHC35j9s&t=0s&index=8&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
http://katbailey.github.io/post/gaussian-processes-for-dummies/
http://www.gaussianprocess.org/gpml/


Herke van Hoof37

Bayesian methods in practice

• Time complexity varies compared to frequentist methods 

• Memory complexity can be higher 

• e.g. need to store mean + uncertainty : quadratic, not linear 

• Lots of data everywhere: posterior close to point estimate 

• (might as well use frequentist methods) 

• Little data everywhere 

• Prior information helps bias/variance trade-off 

• Some areas with little data, some areas with lots of data 

• Uncertainty helps to decide where predictions are reliable
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Inference in more complex models

• We saw some examples with closed-form posterior 

• In many complex models, no closed-form representation 

• Variational inference (deterministic) 

• Consider family of distributions we can represent (Gaussian) 

• Use optimisation techniques to find best of these 

• Sampling (stochastic) 

• Try to directly sample from the posterior 

• Expectations can be approximated using the samples 

• Maximum a posterior (point estimate)
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What you should know

• Previous lectures: 

• What is the Bayesian view of probability? 

• Why can the Bayesian view be beneficial? 

• Role of the following distributions: 

• Likelihood, prior, posterior, posterior predictive 

• Key idea of Bayesian regression and its properties 

• This lecture: 

• Key idea of kernel regression and its properties 

• Main idea behind Gaussian process regression


