Instructor: Ryan Lowe (ryan.lowe@mail.mcgill.ca)

Slides mostly by: Herke van Hoof

Class web page: www.cs.mcgill.ca/~hvanho2/comp551
Announcements

• Assignment 2 grades should be available in the next week or so

• For Kaggle project: try using square bounding boxes
 • If you use regular bounding boxes, some digits that correspond to the correct label (e.g. ‘1’) will have a smaller bounding box by area
Bayesian probabilities

- An example from regression
- Given few noisy data points, multiple parameter values possible
- Can we quantify uncertainty over our parameters using probabilities?
- i.e. given a dataset:
 \[\mathcal{D} = \{ (x_1, y_1), \ldots, (x_N, y_N) \} \]
and some model with weights \(\mathbf{w} \), can we find:
 \[p(\mathbf{w} | \mathcal{D}) \]
Bayesian probabilities

• Yes we can!!

• **Bayesian view:** probability represents *uncertainty about some value or variable*

• We use Bayesian probabilities to represent uncertainty about the *parameters of our model*
Bayesian probabilities

- To calculate uncertainty, need to specify a model. Two ingredients:
 1. **Prior** over model parameters: \(p(w) \)
 2. **Likelihood** term: \(p(D|w) \)

- We are given a dataset:

\[
D = \{(x_1, y_1), \ldots, (x_N, y_N)\}
\]

- Want to do inference using Bayes’ theorem:

\[
p(w|D) = \frac{p(D|w)p(w)}{p(D)}
\]
Bayesian terminology

\[p(w|D) = \frac{p(D|w)p(w)}{p(D)} \]

- **Likelihood** \(p(D|w) \): our model of the data. Given our weights, how do we assign probabilities to dataset examples?
- **Prior** \(p(w) \): before we see any data, what do we think about our parameters?
- **Posterior** \(p(w|D) \): our distribution over weights, given the data we’ve observed and our prior
- **Marginal likelihood** \(p(D) \): also called the normalization constant. Does not depend on \(w \), so not usually calculated explicitly
Bayesian probabilities

• How do we make predictions if we have a distribution over parameters?

\[
p(y^* | x^*, \mathcal{D}) = \int_{\mathbb{R}} p(y^*, w | x^*, \mathcal{D}) dw
\]

\[
p(y^* | x^*, \mathcal{D}) = \int_{\mathbb{R}^N} p(w | \mathcal{D}) p(y^* | x^*, w) dw
\]

• Rather than using a fixed value for parameters, integrate over all possible parameter values!

• (Integration is annoying, we will try to avoid this when possible)
Why Bayesian probabilities?

- Maximum likelihood estimates can have **large variance**
- We might desire or need an estimate of uncertainty
- Have **small dataset**, unreliable data, or small batches of data
- Use prior knowledge in a principled fashion
Why do we need uncertainty?

- Regression with (extremely) small and noisy dataset
- Many functions are compatible with data
Why do we need uncertainty?

- Quantify the uncertainty using probabilities
 (e.g. Gaussian mean and variance for every input x)

Copyright C.M. Bishop, PRML
Why do we need uncertainty?

- Knowing uncertainty of output *helpful in decision making*
- Consider inspecting task.
 - \(x \): some measurement
 - \(y \): predicted breaking strength
- **Parts which are too weak (breaking strength < t) are rejected**
 - Falsely rejecting a part incurs a small cost (\(c=1 \))
 - Falsely accepting a part can cause more damage down the line (expected cost \(c=100 \))
Decision making under uncertainty

should we accept this part?

how about this one?

Copyright C.M. Bishop, PRML
Algorithms for Bayesian inference

• Given a dataset \mathcal{D}, how do we make predictions for a new input?
 \[\mathcal{D} = \{ (x_1, y_1), \ldots, (x_N, y_N) \} \]

• **Step 1**: Define a model that represents your data (the **likelihood**): $p(\mathcal{D}|w)$

• **Step 2**: Define a **prior** over model parameters: $p(w)$

• **Step 3**: Calculate **posterior** using Bayes’ rule: $p(w|\mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$

• **Step 4**: Make **prediction** by integrating over model parameters:
 \[p(y^*|x^*, \mathcal{D}) = \int_{\mathbb{R}^N} p(w|\mathcal{D})p(y^*|x^*, w)dw \]

• **When can we do step 4) in closed form?**
Conjugate priors

- Posterior for some dataset:

\[p(w|D) = \frac{p(D|w)p(w)}{p(D)} \]

- Posterior for old data can act like a prior for new data:

\[p(w|D_1, D_2) = \frac{p(D_2|w)p(w|D_1)}{p(D_2)} \]

- Desirable that posterior and prior have same family!
 - Otherwise posterior would get more complex with each step
 - Such priors are called **conjugate priors** to a likelihood function
Conjugate priors

• Prediction

\[p(y^* | x^*, \mathcal{D}) = \int_{\mathbb{R}^N} p(w | \mathcal{D}) p(y^* | x^*, w) dw \]

same family as prior

• Argument of the integral is unnormalised distribution over \(w \)

• Integral calculates the normalisation constant

• For many common distributions, constant is known

 • Let’s make the prior conjugate to a simple likelihood function, for which the constant is known
Algorithms for Bayesian inference

- Not all likelihood functions have conjugate priors
- However, so-called **exponential family** distributions do
 - Normal
 - Exponential
 - Beta
 - Bernoulli
 - Categorical
 - …
Examples

• We will look into supervised learning problems later

• Start with a simple problem, learning a single parameter with no inputs (i.e. no x): a coin toss

• Dataset consists of outcomes:

$$D = \{\text{heads, heads, tails, heads, tails, ... }\}$$
Simple example: coin toss

- Flip (possibly unfair) coin N times — get h heads and t tails
- Probability of ‘heads’ unknown value r
- How do we calculate the probability of the next flip being ‘heads’ (i.e. value of r) in a Bayesian way?
Simple example: coin toss

- **Step 1**: define model (distribution for likelihood)

- Likelihood for a single flip: $\text{Bern}(y|r) = r^y(1-r)^{1-y}$
 - y is one (‘heads’) or zero (‘tails’)
 - r is unknown parameter, between 0 and 1

- Likelihood for N flips proportional to Binomial:
 \[p(h|r, N) = r^h(1-r)^{N-h} \propto \text{Bin}(h|r, N) \]
Simple example: coin toss

- **Step 2**: Define (conjugate) prior $p(r)$:

$$\text{Beta}(r|a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} r^{a-1}(1 - r)^{b-1}$$

Copyright C.M. Bishop, PRML
Simple example: coin toss

- **Conjugate prior:** $\text{Beta}(r|a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} r^{a-1} (1 - r)^{b-1}$

- Prior denotes *a priori* belief over the value r
- r is a value between 0 and 1 (denotes prob. of heads or tails)
- a, b are ‘hyperparameters’

Copyright C.M. Bishop, PRML

coin probably more likely to give ‘tails’

no idea about the fairness
Simple example: coin toss

- **Side note:** why is the Beta distribution the conjugate prior for a
 Binomial likelihood? \((N = \text{#flips}, h = \text{#heads})\)

Step 3: Calculate posterior!

\[
p(r|D) = p(r|N, h) = p(h|r, N) \cdot p(r) = \text{Bin}(h|r, N) \cdot \text{Beta}(r|a, b)
\]

\[
= r^h (1 - r)^{N-h} \cdot \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} r^{a-1}(1 - r)^{b-1}
\]

\[
= z^{-1} r^{h+a-1}(1 - r)^{N-h+b-1} = \text{Beta}(r|h + a, N - h + b)
\]

\[
z^{-1} = \frac{\Gamma(h + a)\Gamma(N - h + b)}{\Gamma(a + b + N)}
\]

Same distribution family (Beta) as prior!!!
Simple example: coin toss

- **Posterior:**
 \[p(r|D) = z^{-1}r^h(1-r)^b \]

- We observe more ‘heads’ -> suspect more strongly coin is biased
- Note that \(a, b \) get added to the actual outcome:
 ‘pseudo-observations’
Simple example: coin toss

- **Model:**
 - **Likelihood:** \(\text{Bern}(y|r) = r^y(1 - r)^{1-y} \)
 - **Conjugate prior:**
 \[
 \text{Beta}(r|a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} r^{a-1}(1 - r)^{b-1}
 \]
 - **Posterior:**
 \[
 \text{Beta}(r|h + a, N - h + b) = \frac{\Gamma(a + b + N)}{\Gamma(a + h)\Gamma(b + N - h)} r^{h+a-1}(1 - r)^{N-h+b-1}
 \]
 \[
 = z^{-1} r^{h+a-1}(1 - r)^{N-h+b-1}
 \]
- **Step 4:** Make prediction!
Simple example: coin toss

• **Step 4:** Make prediction!

\[
p(x = 1|\mathcal{D}) = \int_0^1 p(x = 1|r)p(r|\mathcal{D})dr
\]

\[
= \int_0^1 r \cdot \text{Beta}(r|h + a, N - h + b)dr
\]

\[
= \mathbb{E}[\text{Beta}(r|h + a, N - h + b)]
\]

\[
= \frac{h + a}{N + a + b} = \frac{\#\text{heads} + a}{\#\text{heads} + \#\text{tails} + a + b}
\]

• Instead of taking one parameter value, average over all of them

• \(a, b\), again interpretable as effective # observations

• **Consider the difference if** \(a=b=1, \#\text{heads}=1, \#\text{tails}=0\)
Simple example: coin toss

• **Step 4:** Make prediction!

\[p(x = 1|\mathcal{D}) = \int_0^1 p(x = 1|r)p(r|\mathcal{D})dr \]

\[= \int_0^1 r \cdot \text{Beta}(r|h + a, N - h + b)dr \]

\[= \mathbb{E}[\text{Beta}(r|h + a, N - h + b)] \]

\[= \frac{h + a}{N + a + b} = \frac{\#\text{heads} + a}{\#\text{heads} + \#\text{tails} + a + b} \]

• Instead of taking one parameter value, average over all of them

• \(a, b\), again interpretable as effective # observations

• **Note that as #flips increases, prior starts to matter less**
Takeaways

• Instead of predicting using one parameter value, average over all of them
 • True for all Bayesian models

• Hyperparameters interpretable as effective # observations
 • True for many Bayesian models
 (depends on parametrization)

• As amount of data increases, prior starts to matter less
 • True for all Bayesian models
Example 2: mean of a 1d Gaussian

- Try to learn the mean μ of a Gaussian distribution that generated some real number. e.g. $D = \{0.3427\}$

- Note: still no x, only y

- Model:
 - **Step 1:** Likelihood $p(y) = \mathcal{N}(\mu, \sigma^2)$
 - **Step 2:** Conjugate prior $p(\mu) = \mathcal{N}(0, \alpha^{-1})$

- Assume **variances of the distributions are known** (σ, α)
- Prior: we know the mean is close to zero but not its exact value
Example 2: inference for Gaussian

- Calculation is slightly easier to carry out in log space
 - log likelihood:

 \[
 \text{const} - \frac{1}{2} \frac{(y - \mu)^2}{\sigma^2}
 \]

 - log conjugate prior:

 \[
 \text{const} - \frac{1}{2} \mu^2 \alpha
 \]

- Step 3: calculate posterior distribution (in log space)
 \[
 \log p(\mu|D)
 \]
Inference for Gaussian

\[
\log p(\mu | \mathcal{D}) = \log p(\mu) + \log p(\mathcal{D}|\mu) + \text{const}
\]

\[
\text{const} - \frac{1}{2} \left(\frac{(y - \mu)^2}{\sigma^2} + \mu^2 \alpha \right)
\]

\[
\frac{(y - \mu)^2}{\sigma^2} + \mu^2 \alpha = -2 \frac{y \mu}{\sigma^2} + \frac{\mu^2}{\sigma^2} + \mu^2 \alpha + \text{const}
\]

\[
= -2 \frac{y \mu}{\sigma^2} + (\alpha + \sigma^{-2}) \mu^2 + \text{const}
\]

\[
= -2 \frac{\alpha + \sigma^{-2}}{\alpha + \sigma^{-2}} \frac{1}{\sigma^2} y \mu + (\alpha + \sigma^{-2}) \mu^2 + \text{const}
\]

\[
= -\left(\frac{\sigma^{-2}}{\alpha + \sigma^{-2}} y - \mu \right)^2 + \text{const}
\]

Step 3: calculate \(\log p(\mu | \mathcal{D}) \)

Mean of posterior distribution of \(\mu \): between MLE (\(y \)) and prior (0)

Covariance of posterior: smaller than either covariance of likelihood or prior
Inference for Gaussian
Prediction for Gaussian

- **Step 4:** make prediction

\[
p(y^*|\mathcal{D}) = \int_{-\infty}^{\infty} p(y^*, \mu|\mathcal{D}) d\mu
\]

\[
= \int_{-\infty}^{\infty} p(y^*|\mu)p(\mu|\mathcal{D}) d\mu
\]

\[
= \int_{-\infty}^{\infty} \mathcal{N}(y^*|\mu, \sigma^2) \mathcal{N}\left(\mu \left| \frac{\sigma^{-2}}{\alpha + \sigma^{-2}} y_{\text{train}}, \frac{1}{\alpha + \sigma^{-2}} \right. \right) d\mu
\]

- Convolution of Gaussians, can be solved in closed form

\[
p(y^*|\mathcal{D}) = \mathcal{N}\left(y^* \left| \frac{\sigma^{-2}}{\alpha + \sigma^{-2}} y_{\text{train}}, \sigma^2 + \frac{1}{\alpha + \sigma^{-2}} \right. \right)
\]

noise + parameter uncertainty
Bayesian vs. frequentist

• Can we quantify uncertainty over models using probabilities?

• **Classical / frequentist statistics:** no
 - Probability represents *frequency* of repeatable event
 - There is only one true model
 - Do not consider ‘prior knowledge’
Bayesian probabilities

- Note: that Bayes’ theorem is used does not mean a method uses a Bayesian view on probabilities!
- Bayes’ theorem is a consequence of the sum and product rules of probability
- Many frequentist methods refer to Bayes’ theorem (naive Bayes, Bayesian networks)
 - Bayesian view on probability: Can represent uncertainty (in parameters) using probability
Bayesian probabilities

DID THE SUN JUST EXPLODE?

(ITAL'S NIGHT, SO WE'RE NOT SURE)

THIS NEUTRINO DETECTOR MEASURES WHETHER THE SUN HAS GONE NOVA.

THEN, IT ROLLS TWO DICE. IF THEY BOTH COME UP SIX, IT LIES TO US. OTHERWISE, IT TELLS THE TRUTH.

LET'S TRY.

DETECTOR! HAS THE SUN GONE NOVA?

ROLL

YES.

Frequentist Statistician:

THE PROBABILITY OF THIS RESULT HAPPENING BY CHANCE IS \(\frac{1}{36} = 0.027 \).

SINCE \(p < 0.05 \), I CONCLUDE THAT THE SUN HAS EXPLODED.

Bayesian Statistician:

BET YOU $50 IT HASN'T.

Randall Munroe / xkcd.com
Inference vs. Learning

• Different (overlapping!) communities use different terminology, can be confusing

• In traditional machine learning:
 • **Learning:** adjusting the parameters of your model to fit the data (by optimization of some cost function)
 • **Inference:** given your model + parameters and some data, make some prediction (e.g. the class of an input image)

• In Bayesian statistics, inference is to say something about the process that generated some data (**includes parameter estimation**)

• **Take-away:** in an ML problem, we can find a good value of params by optimization (**learning**) or calculate a distribution over params (**inference**)
Why Bayesian probabilities?

• Maximum likelihood estimates can have large variance
 • Overfitting in e.g. linear regression models
 • MLE of coin flip probabilities with three sequential ‘heads’
Why Bayesian probabilities?

- Maximum likelihood estimates can have large variance
- **We might desire or need an estimate of uncertainty**
 - Use uncertainty in decision making
 Knowing uncertainty important for many loss functions
 - Use uncertainty to decide which data to acquire
 (active learning, experimental design)
Why Bayesian probabilities?

• Maximum likelihood estimates can have large variance
• We might desire or need an estimate of uncertainty
• **Have small dataset, unreliable data, or small batches of data**
 • Account for reliability of different pieces of evidence
 • Possible to update posterior incrementally with new data
 • Variance problem especially bad with small data sets
Why Bayesian probabilities?

- Maximum likelihood estimates can have large variance
- We might desire or need an estimate of uncertainty
- Have small dataset, unreliable data, or small batches of data
- Use prior knowledge in a principled fashion
Why Bayesian probabilities?

- Maximum likelihood estimates can have large variance
- We might desire or need an estimate of uncertainty
- Have small dataset, unreliable data, or small batches of data
- Use prior knowledge in a principled fashion
- In practice, using prior knowledge and uncertainty particularly makes difference with small data sets
Why not Bayesian probabilities?

- Prior induces bias
- Misspecified priors: if prior is wrong, posterior can be far off
- Prior often chosen for mathematical convenience, not actually knowledge of the problem
- In contrast to frequentist probability, uncertainty is subjective, different between different people / agents
What you should know

• What is the Bayesian view of probability?
• Why can the Bayesian view be beneficial?
• What are the general inference and prediction steps?
• Role of the following distributions:
 • Likelihood, prior, posterior, posterior predictive
• How can posterior and posterior predictive distribution be used?