
COMP 551 – Applied Machine Learning
Lecture 16: Deep Learning

Instructor:  Ryan Lowe (ryan.lowe@cs.mcgill.ca)

Slides mostly by: Joelle Pineau

Class web page: www.cs.mcgill.ca/~hvanho2/comp551

Unless otherwise noted, all material posted for this course are copyright of the 
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Announcements

• Project 4 released! Due on March 21st

• 3rd tutorial on Friday, 5-6pm, on PyTorch
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What is deep learning?

• Processing of data through multiple layers of non-linear 

functions to produce an output

• Not just neural networks!

– Includes neural networks, but also Boltzmann machines, deep 

belief networks, CNNs, RNNs, etc.

• Main goal is to learn a representation of the data that is useful 

for many different tasks

– Representation of data: function or transformation of the data into 

a (usually smaller) form that is easier to use (to solve various tasks)

COMP-551: Applied Machine Learning
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The deep learning objective
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Learning an autoencoder function

• Goal:   Learn a compressed 

representation of the input data.

• We have two functions:

– Encoder:  h = fW(x) = sf (Wx)

– Decoder:  x’ = gW’(h) = sg (W’h)

where s() is the activation function and W, 

W’ are weight matrices.

x h x’

f g
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Learning an autoencoder function

• Goal:   Learn a compressed 

representation of the input data.

• We have two functions:

– Encoder:  h = fW(x) = sf (Wx)

– Decoder:  x’ = gW’(h) = sg (W’h)

where s() is the activation function and W, 

W’ are weight matrices.

• To train, minimize reconstruction error:

Err(W,W’) = ∑i=1:n L [ xi , gW’ (fW(xi)) ]

using squared-error loss (continuous inputs) 

or cross-entropy (binary inputs).

x h x’

f g



Joelle Pineau7COMP-551: Applied Machine Learning

PCA vs autoencoders

In the case of a linear function:

fW(x) = Wx gŴ(h) = W’h ,

with squared-error loss:

Err(W,W’) = ∑i=1:n || xi – gW’ ( fW(xi ) ) || 
2

we can show that the minimum error solution 

W yields the same subspace as PCA.

x h x’

f g
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Regularization of autoencoders

• Weight tying of the encoder and decoder weights (W=W’) to 

explicitly constrain (regularize) the learned function.

• How can we generate sparse autoencoders?  (And also, why?)

– Directly penalize the output of the hidden units (e.g. with L1 penalty) to 

introduce sparsity in the weights.

– Helps ‘disentangle’ some of the factors of variation in the data

COMP-551: Applied Machine Learning
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Denoising autoencoders

COMP-551: Applied Machine Learning

Image source: blog.sicara.com
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Denoising autoencoders

• Idea:  To force the hidden layer to discover 

more robust features, train the autoencoder

with a corrupted version of the input.

COMP-551: Applied Machine Learning



Joelle Pineau11

Denoising autoencoders

• Idea:  To force the hidden layer to discover 

more robust features, train the autoencoder

with a corrupted version of the input.

• Corruption processes:

– Additive Gaussian noise

– Randomly set some input features to zero.

– More noise models in the literature.
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Denoising autoencoders

• Idea:  To force the hidden layer to discover 

more robust features, train the autoencoder

with a corrupted version of the input.

• Corruption processes:

– Additive Gaussian noise

– Randomly set some input features to zero.

– More noise models in the literature.

• Training criterion:

Err(W,W’) = ∑i=1:n Eq(xi’|xi) L [ xi , gW’ (fW(xi’)) ]

where x is the original input, x’ is the corrupted 

input, and q() is the corruption process.
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Denoising autoencoders
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Contractive autoencoders

• Goal:  Learn a representation that is robust to noise and 

perturbations of the input data, by regularizing the latent space

• Contractive autoencoder training criterion:

Err(W,W’) = ∑i=1:n L [ xi , gW’ (fW(xi’)) ] + λ||J(xi)||F
2

where J(xi)=∂fW(xi)/∂xi is a Jacobian matrix of the encoder evaluated at 

xi, F is the Frobenius norm, and λ controls the strength of regularization.

• Idea: penalize the model if a small change in input will result in a 

big change in representation (output of encoder)

Many more similar ideas in the literature…

COMP-551: Applied Machine Learning
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Unsupervised pretraining

• Autoencoders are a kind of ‘unsupervised learning’

• When do we want to use autoencoders?

1. Want to learn representations (features) of the data, but not 

sure for what task

2. Useful as a kind of ‘extra data’ for supervised tasks (e.g. 

pretraining)

3. Can be used for clustering or visualization  

COMP-551: Applied Machine Learning
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Variety of training protocols

• Purely supervised:

– Initialize parameters randomly.

– Train in supervised mode (gradient descent w/backprop.)

– Used in most practical systems for speech and language.

• Unsupervised pretraining + supervised classifier on top:

– Train an autoencoder to learn features of the data.

– Train a supervised classifier on top, keeping other layers fixed.

– Good when very few labeled examples are available.

• Unsupervised pretraining + global supervised fine-tuning.

– Train an autoencoder to learn features of the data.

– Add a classifier layer, and retrain the whole thing supervised.

– Good when label set is poor.

• Unsupervised pretraining often uses regularized autoencoders. 

COMP-551: Applied Machine Learning

From: http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013
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Problem #1: feature co-adaptation 

• In neural networks, derivative received by each parameter tells it 

what to do, given what the other parameters are doing

• This could lead to some neurons ‘fixing’ the problems caused by 

other neurons -> co-adaptation

• While this is okay on the training set, these fixes often don’t 

generalize to the test set

• “Dropout: a simple way to prevent neural networks from overfitting,” Srivastava 

et al., 2014

COMP-551: Applied Machine Learning
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Dropout

• Independently set each hidden unit activity to zero with 

probability p (usually p=0.5 works best).

• Neurons are forced to work with random subset of neighbours

COMP-551: Applied Machine Learning
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Problem #2: internal covariate shift

• During training, each layer of a neural network gets ‘used to’ the 

distribution of its inputs from the lower layer

• But the distribution of outputs at each layer changes over time

as the network trains!

– Each layer has to keep re-adapting to the new distribution 

– This problem is called internal covariate shift

• This can slow down and destabilize learning

• “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” Ioffe & Szegedy, 2015.

COMP-551: Applied Machine Learning
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Batch normalization

• Idea:  Feature scaling makes gradient descent easier.

• We already apply this at the input layer; extend to other layers.

• Use empirical batch statistics to choose re-scaling parameters.

• For each mini-batch of data, at each layer k of the network:

– Compute empirical mean and var independently for each dimension

– Normalize each input:

– Output has tunable parameters (𝛾,𝛽) for each layer:  

• Effect:  More stable gradient estimates, especially for deep networks.

COMP-551: Applied Machine Learning
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Batch normalization

• Many other kinds of normalization: e.g. weight normalization, 

layer normalization, batch re-normalization, etc.

• Dropout and batch normalization empirically act as regularizers

– Usually don’t need to use an L2 penalty on the weights

• Can use both, but batch normalization alone works extremely 

well

COMP-551: Applied Machine Learning
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Do we really need deep architectures?

• We can approximate any function with a one-hidden-layer 

neural network. Why go deeper?

• Deep networks are more efficient for representing certain 

classes of functions, with certain types of structure.

– Natural signals (images, speech) typically have such structure.

• Deep architectures can represent more complex functions with 

fewer parameters. 

• So far, very little theoretical analysis of deep learning.

COMP-551: Applied Machine Learning
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Do we really need deep architectures?

COMP-551: Applied Machine Learning
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Major paradigms for deep learning

• Deep neural networks

– Supervised training:  Feed-forward neural networks.

– Unsupervised pre-training: Autoencoders.

• Special architectures for different problem domains.

– Computer vision => Convolutional neural nets.

– Text and speech => Recurrent neural nets. (Next class.)

COMP-551: Applied Machine Learning
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ImageNet dataset

COMP-551: Applied Machine Learning

http://www.image-net.org
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Neural networks for computer vision

• Design neural networks that are specifically adapted to:

– Deal with very high-dimensional inputs

• E.g. 150x150 pixels = 22,500 inputs, or 3x22,500 if RGB

– Exploit 2D topology of pixels (or 3D for video)

– Built-in invariance to certain variations we can expect

• Translations, illumination, etc.

COMP-551: Applied Machine Learning
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Why not feed-forward networks?

• Don’t take into account the structure of the data!

• Since input neurons have no ordering, an image looks the

same as a shuffled image

COMP-551: Applied Machine Learning

These look the 

same to a feed-

forward network! 

(so long as the 

same shuffling is 

applied to all of the 

data)
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Convolutional Neural Networks

COMP-551: Applied Machine Learning

Feedforward network Convolutional neural network (CNN)

From: http://cs231n.github.io/convolutional-networks/

• CNN characteristics:

– Input is a 3D tensor:  2D image x 3 colours (or 2D if grayscale)

– Each layer transforms an input 3D tensor to an output 3D tensor 

using a differentiable function.
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Convolutional Neural Networks

COMP-551: Applied Machine Learning

Feedforward network Convolutional neural network (CNN)

From: http://cs231n.github.io/convolutional-networks/

• Convolutional neural networks leverage several ideas.

1. Local connectivity.

2. Parameter sharing.

3. Pooling hidden units.
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Convolutional Neural Networks

• A few key ideas:

1. Features have local receptive fields.

• Each hidden unit is connected to a patch of the input image.

• Units are connected to all 3 colour channels.

COMP-551: Applied Machine Learning

depth = # filters

(a hyperparameter)

depth
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Convolutional Neural Networks

• A few key ideas:

1. Features have local receptive fields.

2. Share matrix of parameters across units. 

• Constrain units within a depth slice (at all positions) to have same weights.

• Feature map can be computed via discrete convolution with a kernel matrix.

COMP-551: Applied Machine Learning
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Convolutional Neural Networks

• A few key ideas:

1. Features have local receptive fields.

2. Share matrix of parameters across units.

3. Pooling/subsampling of hidden units in same neighbourhood.

COMP-551: Applied Machine Learning

Example:

From: http://cs231n.github.io/convolutional-networks/
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Convolutional Neural Networks

• Local receptive fields

– Intuition: there are some data features (e.g. edges, corners) that 

only depend on a small region of the image

• Parameter sharing

– Intuition: processing these local features should be done the 

same way regardless of where the feature is in the image

– Much more efficient to train

• Pooling/ subsampling

– Intuition: usually doesn’t matter where exactly a feature occurs, 

only that it occurs somewhere

– As we go deeper in the network, want to consider features that 

cover more area (i.e. more global features)

COMP-551: Applied Machine Learning
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Convolution

• What is a convolution?

• Formula: 𝑥 ∗ 𝑤 𝑡 = σ𝑎 𝑥 𝑎 𝑤(𝑡 − 𝑎)

• x is the input data, w is the kernel

• The kernel is a function of learned parameters repeatedly 

applied to various parts of the input

COMP-551: Applied Machine Learning

Image: wikipedia.org
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Convolution

• w, x, y, z are learned 

parameters

• Can have multiple 

kernels in a layer  

COMP-551: Applied Machine Learning

Image: deeplearningbook.org
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Convolution

Input Kernel Output (feature map)

COMP-551: Applied Machine Learning
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Convolution

• Averaging in a 3x3 

box blurs the image

• Can be used for 

edge detection

COMP-551: Applied Machine Learning

Image: Gimp documentation
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Convolutional neural nets (CNNs)

• Alternate between convolutional, pooling, and fully connected layers.

– Fully connected layer typically only at the end. 

• Train full network using backpropagation.

COMP-551: Applied Machine Learning

CONVOLUTIONAL NETWORK

22

Topics: convolutional network

• Convolutional neural network alternates between the 
convolutional and pooling layers

Réseau de neurones à convolution: 

réseau complet 

!"#$%&' $ ( ) *+$, - .+/01221$ ' &$

(image from Yann Lecun)

{

Fully
connected
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Convolutional neural nets (CNNs)

COMP-551: Applied Machine Learning

From: http://cs231n.github.io/convolutional-networks/
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Example: ImageNet

• SuperVision (a.k.a. AlexNet, 2012):

COMP-551: Applied Machine Learning

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Example: ImageNet

• SuperVision (a.k.a. AlexNet, 2012):

COMP-551: Applied Machine Learning

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Training results: ImageNet

• 96 learned low-level filters

COMP-551: Applied Machine Learning

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Image classification

• 95% accuracy (on top 5 predictions) among 1,000 

categories.  Better than average human.

© 2016 DIA, Inc. All rights reserved.

  

Validation classification
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Empirical results (2012)

COMP-551: Applied Machine Learning
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Empirical results for image retrieval

• Query items in leftmost column: 

COMP-551: Applied Machine Learning

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Empirical results (2015)

COMP-551: Applied Machine Learning

http://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/
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CNNs vs traditional computer vision

COMP-551: Applied Machine Learning

From: Razavian et al. CVPR workshop paper. 2014.
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Picture tagging (From clarifai.com)

© 2016 DIA, Inc. All rights reserved.
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Scene parsing

© 2016 DIA, Inc. All rights reserved.

(Farabet et al., 2013)
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YOLO: Real-time object detection
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Practical tips for CNNs

• Many hyper-parameters to choose!

• Architecture:  filters (start small, e.g. 3x3, 5x5), pooling, number 

of layers (start small, add more). 

• Training:  learning rate, regularization, dropout rate (=0.5), initial 

weight size, batch size, batch norm.

• Read papers, copy their method, then do local search.

COMP-551: Applied Machine Learning
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What you should know

• Types of deep learning architectures:

– Autoencoders

– Convolutional neural networks

– Tricks to get neural networks to work

• Typical training approaches (unsupervised / supervised).

• Examples of successful applications.

COMP-551: Applied Machine Learning
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More resources

• Deep learning textbook

– In-depth treatment of all deep learning fundamentals

– Available online for free: http://www.deeplearningbook.org/

• All articles on colah.github.io (highly recommended)

– Well-explained articles on various neural network topics

– Two posts on ConvNets: http://colah.github.io/posts/2014-07-Conv-

Nets-Modular/, http://colah.github.io/posts/2014-07-Understanding-

Convolutions/

• Convolution arithmetic

– https://arxiv.org/pdf/1603.07285.pdf

COMP-551: Applied Machine Learning

http://www.deeplearningbook.org/
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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More resources 

• Notes and images in today’s slides taken from:

• http://cs231n.github.io/convolutional-networks/

• http://www.cs.toronto.edu/~hinton/csc2535

• http://deeplearning.net/tutorial/

• http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013

• http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

• http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf


