### COMP 551 – Applied Machine Learning Lecture 16: Deep Learning

**Instructor**: Ryan Lowe (*ryan.lowe@cs.mcgill.ca*)

#### Slides mostly by: Joelle Pineau

#### Class web page: www.cs.mcgill.ca/~hvanho2/comp551

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.

#### Announcements

Project 4 released! Due on March 21<sup>st</sup>



• 3<sup>rd</sup> tutorial on Friday, 5-6pm, on PyTorch

# What is deep learning?

- Processing of data through multiple layers of non-linear functions to produce an output
- Not just neural networks!
  - Includes neural networks, but also Boltzmann machines, deep belief networks, CNNs, RNNs, etc.
- Main goal is to learn a representation of the data that is useful for many different tasks
  - <u>Representation of data</u>: function or transformation of the data into a (usually smaller) form that is easier to use (to solve various tasks)

# The deep learning objective



COMP-551: Applied Machine Learning

#### Learning an autoencoder function

- **Goal**: Learn a compressed representation of the input data.
- We have two functions:
  - Encoder:  $h = f_W(x) = s_f(Wx)$
  - **Decoder**:  $x' = g_{W'}(h) = s_g(W'h)$

where s() is the activation function and W, W' are weight matrices.



### Learning an autoencoder function

- **Goal**: Learn a compressed representation of the input data.
- We have two functions:
  - **Encoder**:  $h = f_W(x) = s_f(Wx)$
  - **Decoder**:  $x' = g_{W'}(h) = s_g(W'h)$

where s() is the activation function and W, W' are weight matrices.

• To train, minimize reconstruction error:

 $Err(W, W') = \sum_{i=1:n} L[x_i, g_{W'}(f_W(x_i))]$ 

using squared-error loss (continuous inputs) or cross-entropy (binary inputs).



#### PCA vs autoencoders

In the case of a linear function:

 $f_{\mathcal{W}}(x) = Wx \qquad g_{\hat{\mathcal{W}}}(h) = W'h ,$ 

with squared-error loss:

 $Err(W, W') = \sum_{i=1:n} ||x_i - g_{W'}(f_W(x_i))||^2$ 

we can show that the minimum error solution W yields the same subspace as PCA.



# Regularization of autoencoders

- Weight tying of the encoder and decoder weights (W=W') to explicitly constrain (regularize) the learned function.
- How can we generate **sparse** autoencoders? (And also, why?)
  - Directly penalize the output of the hidden units (e.g. with L1 penalty) to introduce sparsity in the weights.
  - Helps 'disentangle' some of the factors of variation in the data



Image source: blog.sicara.com

 Idea: To force the hidden layer to discover more robust features, train the autoencoder with a corrupted version of the input.



 $\mathbf{X}$ 

COMP-551: Applied Machine Learning

- Idea: To force the hidden layer to discover more robust features, train the autoencoder with a corrupted version of the input.
- Corruption processes:
  - Additive Gaussian noise
  - Randomly set some input features to zero.
  - More noise models in the literature.



- Idea: To force the hidden layer to discover more robust features, train the autoencoder with a corrupted version of the input.
- Corruption processes:
  - Additive Gaussian noise
  - Randomly set some input features to zero.
  - More noise models in the literature.
- Training criterion:

 $Err(W, W') = \sum_{i=1:n} E_{q(xi'|xi)} L[x_i, g_{W'}(f_W(x_i'))]$ 

where x is the original input, x' is the corrupted input, and q() is the corruption process.



 $\mathbf{X}$ 



#### Contractive autoencoders

- Goal: Learn a representation that is robust to noise and perturbations of the input data, by regularizing the latent space
- Contractive autoencoder training criterion:

 $Err(W,W') = \sum_{i=1:n} L[x_i, g_{W'}(f_W(x_i'))] + \lambda ||J(x_i)||_F^2$ 

where  $J(x_i) = \partial f_W(x_i) / \partial x_i$  is a Jacobian matrix of the encoder evaluated at

 $x_i$ , F is the Frobenius norm, and  $\lambda$  controls the strength of regularization.

 Idea: penalize the model if a small change in input will result in a big change in representation (output of encoder)

Many more similar ideas in the literature...

# Unsupervised pretraining

- Autoencoders are a kind of 'unsupervised learning'
- When do we want to use autoencoders?

- Want to learn representations (features) of the data, but not sure for what task
- Useful as a kind of 'extra data' for supervised tasks (e.g. pretraining)
- 3. Can be used for clustering or visualization

# Variety of training protocols

- Purely supervised:
  - Initialize parameters randomly.
  - Train in supervised mode (gradient descent w/backprop.)
  - Used in most practical systems for speech and language.
- Unsupervised pretraining + supervised classifier on top:
  - Train an autoencoder to learn features of the data.
  - Train a supervised classifier on top, keeping other layers fixed.
  - Good when very few labeled examples are available.
- Unsupervised pretraining + global supervised fine-tuning.
  - Train an autoencoder to learn features of the data.
  - Add a classifier layer, and retrain the whole thing supervised.
  - Good when label set is poor.
- Unsupervised pretraining often uses regularized autoencoders.

From: http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013

COMP-551: Applied Machine Learning

### Problem #1: feature co-adaptation

- In neural networks, derivative received by each parameter tells it what to do, *given what the other parameters are doing*
- This could lead to some neurons 'fixing' the problems caused by other neurons -> co-adaptation
- While this is okay on the training set, these fixes often don't generalize to the test set

• *"Dropout: a simple way to prevent neural networks from overfitting," Srivastava et al., 2014* 

COMP-551: Applied Machine Learning

### Dropout

- Independently set each hidden unit activity to zero with probability p (usually p=0.5 works best).
- Neurons are forced to work with random subset of neighbours





(b) After applying dropout.

#### COMP-551: Applied Machine Learning

### Problem #2: internal covariate shift

- During training, each layer of a neural network gets 'used to' the distribution of its inputs from the lower layer
- But the *distribution of outputs at each layer changes over time* as the network trains!
  - Each layer has to keep re-adapting to the new distribution
  - This problem is called *internal covariate shift*
- This can slow down and destabilize learning

• *"Batch normalization: Accelerating deep network training by reducing internal covariate shift," loffe & Szegedy, 2015.* 

# Batch normalization

- Idea: Feature scaling makes gradient descent easier.
  - We already apply this at the input layer; extend to other layers.
  - Use empirical batch statistics to choose re-scaling parameters.
- For each mini-batch of data, at each layer *k* of the network:
  - Compute empirical mean and var independently for each dimension

- Normalize each input: 
$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{VAR[x^{(k)}]}}$$

- Output has tunable parameters ( $\gamma$ , $\beta$ ) for each layer:  $y^k = \gamma^k$ .  $\hat{x}^{(k)} + \beta^k$
- Effect: More stable gradient estimates, especially for deep networks.

# **Batch normalization**

- Many other kinds of normalization: *e.g. weight normalization, layer normalization, batch re-normalization, etc.*
- Dropout and batch normalization empirically act as *regularizers* 
  - Usually don't need to use an L2 penalty on the weights
- Can use both, but *batch normalization alone works extremely well*

### Do we really need deep architectures?

- We can approximate any function with a one-hidden-layer neural network. Why go deeper?
- Deep networks are more efficient for representing certain classes of functions, with certain types of structure.
  - Natural signals (images, speech) typically have such structure.
- Deep architectures can represent more complex functions with *fewer parameters*.
- So far, very little theoretical analysis of deep learning.

### Do we really need deep architectures?



# Major paradigms for deep learning

#### • Deep neural networks

- Supervised training: Feed-forward neural networks.
- Unsupervised pre-training: Autoencoders.

- Special architectures for different problem domains.
  - Computer vision => Convolutional neural nets.
  - Text and speech => Recurrent neural nets. (Next class.)

#### ImageNet dataset



#### http://www.image-net.org

#### COMP-551: Applied Machine Learning

### Neural networks for computer vision

• Design neural networks that are specifically adapted to:

- Deal with very high-dimensional inputs
  - E.g. 150x150 pixels = 22,500 inputs, or 3x22,500 if RGB
- Exploit 2D topology of pixels (or 3D for video)
- Built-in invariance to certain variations we can expect
  - Translations, illumination, etc.

## Why not feed-forward networks?

- Don't take into account the structure of the data!
- Since input neurons have no ordering, an image looks the same as a shuffled image



These look the same to a feed-forward network!

(so long as the same shuffling is applied to all of the data)

#### COMP-551: Applied Machine Learning



- CNN characteristics:
  - Input is a 3D tensor: 2D image x 3 colours (or 2D if grayscale)
  - Each layer transforms an input 3D tensor to an output 3D tensor using a differentiable function.

From: http://cs231n.github.io/convolutional-networks/



- Convolutional neural networks leverage several ideas. ullet
  - 1. Local connectivity.
  - 2. Parameter sharing.
  - 3. Pooling hidden units.

From: http://cs231n.github.io/convolutional-networks/

height

- A few key ideas:
  - 1. Features have local receptive fields.
    - Each hidden unit is connected to a patch of the input image.
    - Units are connected to all 3 colour channels.



COMP-551: Applied Machine Learning

- A few key ideas:
  - 1. Features have local receptive fields.
  - 2. Share matrix of parameters across units.
    - Constrain units within a depth slice (at all positions) to have **same** weights.
    - Feature map can be computed via discrete convolution with a kernel matrix.



- A few key ideas:
  - 1. Features have local receptive fields.
  - 2. Share matrix of parameters across units.
  - 3. Pooling/subsampling of hidden units in same neighbourhood.



From: http://cs231n.github.io/convolutional-networks/

#### COMP-551: Applied Machine Learning

- Local receptive fields
  - <u>Intuition</u>: there are some data features (e.g. edges, corners) that only depend on a small region of the image
- Parameter sharing
  - Intuition: processing these local features should be done the same way regardless of where the feature is in the image
  - Much more efficient to train
- Pooling/ subsampling
  - <u>Intuition</u>: usually doesn't matter where *exactly* a feature occurs, only that it occurs somewhere
  - As we go deeper in the network, want to consider features that cover more area (i.e. *more global features*)

- What is a convolution?
- Formula:  $(x * w)(t) = \sum_{a} x(a)w(t a)$
- x is the *input data*, w is the *kernel*
- The kernel is a function of learned parameters repeatedly applied to various parts of the input



34

COMP-551: Applied Machine Learning



Image: deeplearningbook.org

35

COMP-551: Applied Machine Learning



 Averaging in a 3x3 box blurs the image

| 0 | 0   | 0   | 0   | 0 |
|---|-----|-----|-----|---|
| 0 | 1/9 | 1/9 | 1/9 | 0 |
| 0 | 1/9 | 1/9 | 1/9 | 0 |
| 0 | 1/9 | 1/9 | 1/9 | 0 |
| 0 | 0   | 0   | 0   | 0 |

Can be used for edge detection



Image: Gimp documentation

00

0

COMP-551: Applied Machine Learning

37

# Convolutional neural nets (CNNs)

- Alternate between **convolutional**, **pooling**, **and fully connected** layers.
  - Fully connected layer typically only at the end.
- Train full network using **backpropagation**.



# Convolutional neural nets (CNNs)



From: http://cs231n.github.io/convolutional-networks/

#### COMP-551: Applied Machine Learning

# Example: ImageNet

• SuperVision (a.k.a. AlexNet, 2012):



- Deep: 7 hidden "weight" layers
- Learned: all feature extractors initialized at white Gaussian noise and learned from the data
- Entirely supervised
- More data = good

**Convolutional layer:** convolves its input with a bank of 3D filters, then applies point-wise non-linearity

**Fully-connected layer:** applies linear filters to its input, then applies pointwise non-linearity

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

# Example: ImageNet

• SuperVision (a.k.a. AlexNet, 2012):



From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

# Training results: ImageNet

• 96 learned low-level filters



From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

## Image classification

• 95% accuracy (on top 5 predictions) among 1,000

categories. Better than average human.

| lens cap         | abacus              | slug          | hen            |
|------------------|---------------------|---------------|----------------|
| reflex camera    | abacus              | slug          | hen            |
| Polaroid camera  | typewriter keyboard | zucchini      | cock           |
| pencil sharpener | space bar           | ground beetle | cocker spaniel |
| switch           | computer keyboard   | common newt   | partridge      |
| combination lock | accordion           | water snake   | English setter |

© 2016 DIA, Inc. All rights reserved.

# Empirical results (2012)



COMP-551: Applied Machine Learning

# Empirical results for image retrieval

• Query items in leftmost column:



From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

**Empirical results (2015)** 

#### ILSVRC top-5 error on ImageNet



http://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/

COMP-551: Applied Machine Learning

# CNNs vs traditional computer vision



From: Razavian et al. CVPR workshop paper. 2014.

#### COMP-551: Applied Machine Learning

# Picture tagging (From clarifai.com)



#### Predicted Tags:

| food    | (16.00%) |
|---------|----------|
| dinner  | (3.10%)  |
| bbq     | (2.90%)  |
| market  | (2.50%)  |
| meal    | (1.40%)  |
| turkey  | (1.40%)  |
| grill   | (1.30%)  |
| pizza   | (1.30%)  |
| eat     | (1.10%)  |
| holiday | (1.00%)  |

#### Stats:

Size: 247.24 KB Time: 110 ms

# Scene parsing



© 2016 DIA, Inc. All rights reserved.

# YOLO: Real-time object detection



# Practical tips for CNNs

- Many hyper-parameters to choose!
- Architecture: filters (start small, e.g. 3x3, 5x5), pooling, number of layers (start small, add more).
- Training: learning rate, regularization, dropout rate (=0.5), initial weight size, batch size, batch norm.

• Read papers, copy their method, then do local search.

COMP-551: Applied Machine Learning

# What you should know

- Types of deep learning architectures:
  - Autoencoders
  - Convolutional neural networks
  - Tricks to get neural networks to work
- Typical training approaches (unsupervised / supervised).

• Examples of successful applications.

#### More resources

- Deep learning textbook
  - In-depth treatment of all deep learning fundamentals
  - Available online for free: <u>http://www.deeplearningbook.org/</u>
- All articles on colah.github.io (highly recommended)
  - Well-explained articles on various neural network topics
  - Two posts on ConvNets: <a href="http://colah.github.io/posts/2014-07-Conv-Nets-Modular/">http://colah.github.io/posts/2014-07-Conv-Nets-Modular/</a>, <a href="http://colah.github.io/posts/2014-07-Understanding-Convolutions/">http://colah.github.io/posts/2014-07-Understanding-Convolutions/</a>
- Convolution arithmetic
  - <u>https://arxiv.org/pdf/1603.07285.pdf</u>

#### More resources

- Notes and images in today's slides taken from:
  - http://cs231n.github.io/convolutional-networks/
  - http://www.cs.toronto.edu/~hinton/csc2535
  - http://deeplearning.net/tutorial/
  - http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013
  - http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
  - http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf