
COMP 551 – Applied Machine Learning
Lecture 16: Deep Learning

Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca)

Slides mostly by: Joelle Pineau

Class web page: www.cs.mcgill.ca/~hvanho2/comp551

Unless otherwise noted, all material posted for this course are copyright of the

instructor, and cannot be reused or reposted without the instructor’s written permission.

Joelle Pineau2

Announcements

• Project 4 released! Due on March 21st

• 3rd tutorial on Friday, 5-6pm, on PyTorch

COMP-551: Applied Machine Learning

Joelle Pineau3

What is deep learning?

• Processing of data through multiple layers of non-linear

functions to produce an output

• Not just neural networks!

– Includes neural networks, but also Boltzmann machines, deep

belief networks, CNNs, RNNs, etc.

• Main goal is to learn a representation of the data that is useful

for many different tasks

– Representation of data: function or transformation of the data into

a (usually smaller) form that is easier to use (to solve various tasks)

COMP-551: Applied Machine Learning

Joelle Pineau4

The deep learning objective

COMP-551: Applied Machine Learning

Joelle Pineau5COMP-551: Applied Machine Learning

Learning an autoencoder function

• Goal: Learn a compressed

representation of the input data.

• We have two functions:

– Encoder: h = fW(x) = sf (Wx)

– Decoder: x’ = gW’(h) = sg (W’h)

where s() is the activation function and W,

W’ are weight matrices.

x h x’

f g

Joelle Pineau6COMP-551: Applied Machine Learning

Learning an autoencoder function

• Goal: Learn a compressed

representation of the input data.

• We have two functions:

– Encoder: h = fW(x) = sf (Wx)

– Decoder: x’ = gW’(h) = sg (W’h)

where s() is the activation function and W,

W’ are weight matrices.

• To train, minimize reconstruction error:

Err(W,W’) = ∑i=1:n L [xi , gW’ (fW(xi))]

using squared-error loss (continuous inputs)

or cross-entropy (binary inputs).

x h x’

f g

Joelle Pineau7COMP-551: Applied Machine Learning

PCA vs autoencoders

In the case of a linear function:

fW(x) = Wx gŴ(h) = W’h ,

with squared-error loss:

Err(W,W’) = ∑i=1:n || xi – gW’ (fW(xi)) ||
2

we can show that the minimum error solution

W yields the same subspace as PCA.

x h x’

f g

Joelle Pineau8

Regularization of autoencoders

• Weight tying of the encoder and decoder weights (W=W’) to

explicitly constrain (regularize) the learned function.

• How can we generate sparse autoencoders? (And also, why?)

– Directly penalize the output of the hidden units (e.g. with L1 penalty) to

introduce sparsity in the weights.

– Helps ‘disentangle’ some of the factors of variation in the data

COMP-551: Applied Machine Learning

Joelle Pineau9

Denoising autoencoders

COMP-551: Applied Machine Learning

Image source: blog.sicara.com

Joelle Pineau10

Denoising autoencoders

• Idea: To force the hidden layer to discover

more robust features, train the autoencoder

with a corrupted version of the input.

COMP-551: Applied Machine Learning

Joelle Pineau11

Denoising autoencoders

• Idea: To force the hidden layer to discover

more robust features, train the autoencoder

with a corrupted version of the input.

• Corruption processes:

– Additive Gaussian noise

– Randomly set some input features to zero.

– More noise models in the literature.

COMP-551: Applied Machine Learning

Joelle Pineau12

Denoising autoencoders

• Idea: To force the hidden layer to discover

more robust features, train the autoencoder

with a corrupted version of the input.

• Corruption processes:

– Additive Gaussian noise

– Randomly set some input features to zero.

– More noise models in the literature.

• Training criterion:

Err(W,W’) = ∑i=1:n Eq(xi’|xi) L [xi , gW’ (fW(xi’))]

where x is the original input, x’ is the corrupted

input, and q() is the corruption process.

COMP-551: Applied Machine Learning

Joelle Pineau13

Denoising autoencoders

COMP-551: Applied Machine Learning

Joelle Pineau14

Contractive autoencoders

• Goal: Learn a representation that is robust to noise and

perturbations of the input data, by regularizing the latent space

• Contractive autoencoder training criterion:

Err(W,W’) = ∑i=1:n L [xi , gW’ (fW(xi’))] + λ||J(xi)||F
2

where J(xi)=∂fW(xi)/∂xi is a Jacobian matrix of the encoder evaluated at

xi, F is the Frobenius norm, and λ controls the strength of regularization.

• Idea: penalize the model if a small change in input will result in a

big change in representation (output of encoder)

Many more similar ideas in the literature…

COMP-551: Applied Machine Learning

Joelle Pineau15

Unsupervised pretraining

• Autoencoders are a kind of ‘unsupervised learning’

• When do we want to use autoencoders?

1. Want to learn representations (features) of the data, but not

sure for what task

2. Useful as a kind of ‘extra data’ for supervised tasks (e.g.

pretraining)

3. Can be used for clustering or visualization

COMP-551: Applied Machine Learning

Joelle Pineau16

Variety of training protocols

• Purely supervised:

– Initialize parameters randomly.

– Train in supervised mode (gradient descent w/backprop.)

– Used in most practical systems for speech and language.

• Unsupervised pretraining + supervised classifier on top:

– Train an autoencoder to learn features of the data.

– Train a supervised classifier on top, keeping other layers fixed.

– Good when very few labeled examples are available.

• Unsupervised pretraining + global supervised fine-tuning.

– Train an autoencoder to learn features of the data.

– Add a classifier layer, and retrain the whole thing supervised.

– Good when label set is poor.

• Unsupervised pretraining often uses regularized autoencoders.

COMP-551: Applied Machine Learning

From: http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013

Joelle Pineau17

Problem #1: feature co-adaptation

• In neural networks, derivative received by each parameter tells it

what to do, given what the other parameters are doing

• This could lead to some neurons ‘fixing’ the problems caused by

other neurons -> co-adaptation

• While this is okay on the training set, these fixes often don’t

generalize to the test set

• “Dropout: a simple way to prevent neural networks from overfitting,” Srivastava

et al., 2014

COMP-551: Applied Machine Learning

Joelle Pineau18

Dropout

• Independently set each hidden unit activity to zero with

probability p (usually p=0.5 works best).

• Neurons are forced to work with random subset of neighbours

COMP-551: Applied Machine Learning

Joelle Pineau19

Problem #2: internal covariate shift

• During training, each layer of a neural network gets ‘used to’ the

distribution of its inputs from the lower layer

• But the distribution of outputs at each layer changes over time

as the network trains!

– Each layer has to keep re-adapting to the new distribution

– This problem is called internal covariate shift

• This can slow down and destabilize learning

• “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” Ioffe & Szegedy, 2015.

COMP-551: Applied Machine Learning

Joelle Pineau20

Batch normalization

• Idea: Feature scaling makes gradient descent easier.

• We already apply this at the input layer; extend to other layers.

• Use empirical batch statistics to choose re-scaling parameters.

• For each mini-batch of data, at each layer k of the network:

– Compute empirical mean and var independently for each dimension

– Normalize each input:

– Output has tunable parameters (𝛾,𝛽) for each layer:

• Effect: More stable gradient estimates, especially for deep networks.

COMP-551: Applied Machine Learning

Joelle Pineau21

Batch normalization

• Many other kinds of normalization: e.g. weight normalization,

layer normalization, batch re-normalization, etc.

• Dropout and batch normalization empirically act as regularizers

– Usually don’t need to use an L2 penalty on the weights

• Can use both, but batch normalization alone works extremely

well

COMP-551: Applied Machine Learning

Joelle Pineau22

Do we really need deep architectures?

• We can approximate any function with a one-hidden-layer

neural network. Why go deeper?

• Deep networks are more efficient for representing certain

classes of functions, with certain types of structure.

– Natural signals (images, speech) typically have such structure.

• Deep architectures can represent more complex functions with

fewer parameters.

• So far, very little theoretical analysis of deep learning.

COMP-551: Applied Machine Learning

Joelle Pineau23

Do we really need deep architectures?

COMP-551: Applied Machine Learning

Joelle Pineau24

Major paradigms for deep learning

• Deep neural networks

– Supervised training: Feed-forward neural networks.

– Unsupervised pre-training: Autoencoders.

• Special architectures for different problem domains.

– Computer vision => Convolutional neural nets.

– Text and speech => Recurrent neural nets. (Next class.)

COMP-551: Applied Machine Learning

Joelle Pineau25

ImageNet dataset

COMP-551: Applied Machine Learning

http://www.image-net.org

Joelle Pineau26

Neural networks for computer vision

• Design neural networks that are specifically adapted to:

– Deal with very high-dimensional inputs

• E.g. 150x150 pixels = 22,500 inputs, or 3x22,500 if RGB

– Exploit 2D topology of pixels (or 3D for video)

– Built-in invariance to certain variations we can expect

• Translations, illumination, etc.

COMP-551: Applied Machine Learning

Joelle Pineau27

Why not feed-forward networks?

• Don’t take into account the structure of the data!

• Since input neurons have no ordering, an image looks the

same as a shuffled image

COMP-551: Applied Machine Learning

These look the

same to a feed-

forward network!

(so long as the

same shuffling is

applied to all of the

data)

Joelle Pineau28

Convolutional Neural Networks

COMP-551: Applied Machine Learning

Feedforward network Convolutional neural network (CNN)

From: http://cs231n.github.io/convolutional-networks/

• CNN characteristics:

– Input is a 3D tensor: 2D image x 3 colours (or 2D if grayscale)

– Each layer transforms an input 3D tensor to an output 3D tensor

using a differentiable function.

Joelle Pineau29

Convolutional Neural Networks

COMP-551: Applied Machine Learning

Feedforward network Convolutional neural network (CNN)

From: http://cs231n.github.io/convolutional-networks/

• Convolutional neural networks leverage several ideas.

1. Local connectivity.

2. Parameter sharing.

3. Pooling hidden units.

Joelle Pineau30

Convolutional Neural Networks

• A few key ideas:

1. Features have local receptive fields.

• Each hidden unit is connected to a patch of the input image.

• Units are connected to all 3 colour channels.

COMP-551: Applied Machine Learning

depth = # filters

(a hyperparameter)

depth

Joelle Pineau31

Convolutional Neural Networks

• A few key ideas:

1. Features have local receptive fields.

2. Share matrix of parameters across units.

• Constrain units within a depth slice (at all positions) to have same weights.

• Feature map can be computed via discrete convolution with a kernel matrix.

COMP-551: Applied Machine Learning

Joelle Pineau32

Convolutional Neural Networks

• A few key ideas:

1. Features have local receptive fields.

2. Share matrix of parameters across units.

3. Pooling/subsampling of hidden units in same neighbourhood.

COMP-551: Applied Machine Learning

Example:

From: http://cs231n.github.io/convolutional-networks/

Joelle Pineau33

Convolutional Neural Networks

• Local receptive fields

– Intuition: there are some data features (e.g. edges, corners) that

only depend on a small region of the image

• Parameter sharing

– Intuition: processing these local features should be done the

same way regardless of where the feature is in the image

– Much more efficient to train

• Pooling/ subsampling

– Intuition: usually doesn’t matter where exactly a feature occurs,

only that it occurs somewhere

– As we go deeper in the network, want to consider features that

cover more area (i.e. more global features)

COMP-551: Applied Machine Learning

Joelle Pineau34

Convolution

• What is a convolution?

• Formula: 𝑥 ∗ 𝑤 𝑡 = σ𝑎 𝑥 𝑎 𝑤(𝑡 − 𝑎)

• x is the input data, w is the kernel

• The kernel is a function of learned parameters repeatedly

applied to various parts of the input

COMP-551: Applied Machine Learning

Image: wikipedia.org

Joelle Pineau35

Convolution

• w, x, y, z are learned

parameters

• Can have multiple

kernels in a layer

COMP-551: Applied Machine Learning

Image: deeplearningbook.org

Joelle Pineau36

Convolution

Input Kernel Output (feature map)

COMP-551: Applied Machine Learning

Joelle Pineau37

Convolution

• Averaging in a 3x3

box blurs the image

• Can be used for

edge detection

COMP-551: Applied Machine Learning

Image: Gimp documentation

Joelle Pineau38

Convolutional neural nets (CNNs)

• Alternate between convolutional, pooling, and fully connected layers.

– Fully connected layer typically only at the end.

• Train full network using backpropagation.

COMP-551: Applied Machine Learning

CONVOLUTIONAL NETWORK

22

Topics: convolutional network

• Convolutional neural network alternates between the
convolutional and pooling layers

Réseau de neurones à convolution:

réseau complet

!"#$%&' $ () *+$, - .+/01221$ ' &$

(image from Yann Lecun)

{

Fully
connected

22

Joelle Pineau39

Convolutional neural nets (CNNs)

COMP-551: Applied Machine Learning

From: http://cs231n.github.io/convolutional-networks/

Joelle Pineau40

Example: ImageNet

• SuperVision (a.k.a. AlexNet, 2012):

COMP-551: Applied Machine Learning

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

Joelle Pineau41

Example: ImageNet

• SuperVision (a.k.a. AlexNet, 2012):

COMP-551: Applied Machine Learning

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

Joelle Pineau42

Training results: ImageNet

• 96 learned low-level filters

COMP-551: Applied Machine Learning

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

Joelle Pineau43

Image classification

• 95% accuracy (on top 5 predictions) among 1,000

categories. Better than average human.

© 2016 DIA, Inc. All rights reserved.

Validation classification

Joelle Pineau44

Empirical results (2012)

COMP-551: Applied Machine Learning

Joelle Pineau45

Empirical results for image retrieval

• Query items in leftmost column:

COMP-551: Applied Machine Learning

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

Joelle Pineau46

Empirical results (2015)

COMP-551: Applied Machine Learning

http://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/

Joelle Pineau47

CNNs vs traditional computer vision

COMP-551: Applied Machine Learning

From: Razavian et al. CVPR workshop paper. 2014.

Joelle Pineau48

Picture tagging (From clarifai.com)

© 2016 DIA, Inc. All rights reserved.

Joelle Pineau49

Scene parsing

© 2016 DIA, Inc. All rights reserved.

(Farabet et al., 2013)

Joelle Pineau50

YOLO: Real-time object detection

Joelle Pineau51

Practical tips for CNNs

• Many hyper-parameters to choose!

• Architecture: filters (start small, e.g. 3x3, 5x5), pooling, number

of layers (start small, add more).

• Training: learning rate, regularization, dropout rate (=0.5), initial

weight size, batch size, batch norm.

• Read papers, copy their method, then do local search.

COMP-551: Applied Machine Learning

Joelle Pineau52

What you should know

• Types of deep learning architectures:

– Autoencoders

– Convolutional neural networks

– Tricks to get neural networks to work

• Typical training approaches (unsupervised / supervised).

• Examples of successful applications.

COMP-551: Applied Machine Learning

Joelle Pineau53

More resources

• Deep learning textbook

– In-depth treatment of all deep learning fundamentals

– Available online for free: http://www.deeplearningbook.org/

• All articles on colah.github.io (highly recommended)

– Well-explained articles on various neural network topics

– Two posts on ConvNets: http://colah.github.io/posts/2014-07-Conv-

Nets-Modular/, http://colah.github.io/posts/2014-07-Understanding-

Convolutions/

• Convolution arithmetic

– https://arxiv.org/pdf/1603.07285.pdf

COMP-551: Applied Machine Learning

http://www.deeplearningbook.org/
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
http://colah.github.io/posts/2014-07-Understanding-Convolutions/
https://arxiv.org/pdf/1603.07285.pdf

Joelle Pineau54COMP-551: Applied Machine Learning

More resources

• Notes and images in today’s slides taken from:

• http://cs231n.github.io/convolutional-networks/

• http://www.cs.toronto.edu/~hinton/csc2535

• http://deeplearning.net/tutorial/

• http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013

• http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

• http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf

