COMP 551 — Applied Machine Learning
Lecture 16: Deep Learning

Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca)

Slides mostly by: Joelle Pineau

Class web page: www.cs.mcgill.ca/~hvanho2/comp551

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.




Announcements

* Project 4 released! Due on March 21st

« 3" tutorial on Friday, 5-6pm, on PyTorch
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What is deep learning?

* Processing of data through multiple layers of non-linear
functions to produce an output

* Not just neural networks!

— Includes neural networks, but also Boltzmann machines, deep
belief networks, CNNs, RNNSs, etc.

- Main goal is to learn a representation of the data that is useful

for many different tasks

— Representation of data: function or transformation of the data into
a (usually smaller) form that is easier to use (to solve various tasks)
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The deep learning objective

slightly higher level representation

very high level representation:
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Learning an autoencoder function

e Goal: Learn acompressed

representation of the input data.

* We have two functions:
— Encoder: h =f,(x) = s; (Wx)
— Decoder: x’=gy{h) = s, (Wh)

where s() is the activation function and W,
W’ are weight matrices.

COMP-551: Applied Machine Learning 5 Joelle Pineau



Learning an autoencoder function

Goal: Learn a compressed Inputs Outputs

representation of the input data.

We have two functions:
— Encoder: h =f,(x) = s; (Wx)
— Decoder: x’=gy{h) = s, (Wh)

where s() is the activation function and W,
W’ are weight matrices.

To train, minimize reconstruction error:

Err(W,W) = 2 ici.n L [ X, 9w (f(X) ]
using squared-error loss (continuous inputs)
or cross-entropy (binary inputs).
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PCA vs autoencoders

In the case of a linear function: (“Inputs
f(X) = WX guifh) = Wh,

with squared-error loss:

Err(W,W) = 3 icin [l Xi— 9w (T (X)) |1 2

we can show that the minimum error solution

W yields the same subspace as PCA.
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Regularization of autoencoders

«  Weight tying of the encoder and decoder weights (W=W) to

explicitly constrain (regularize) the learned function.

- How can we generate sparse autoencoders? (And also, why?)

— Directly penalize the output of the hidden units (e.g. with L1 penalty) to
introduce sparsity in the weights.

— Helps ‘disentangle’ some of the factors of variation in the data
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Denoising autoencoders

—| Encoder

Decoder — 2

Denoised image

Compressed
representation

|

The feature we want to
extract from the image

Noisiy input

Image source: blog.sicara.com
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Denoising autoencoders

- |dea: To force the hidden layer to discover
more robust features, train the autoencoder
with a corrupted version of the input.
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Denoising autoencoders

- |dea: To force the hidden layer to discover
more robust features, train the autoencoder

y
with a corrupted version of the input. [Q Q Q}

- Corruption processes: T

— Additive Gaussian noise

— Randomly set some input features to zero. [X@X@ @j

— More noise models in the literature. . T
X

(OO000O0)
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Denoising autoencoders

- |dea: To force the hidden layer to discover
more robust features, train the autoencoder

y
with a corrupted version of the input. [Q Q Q}

- Corruption processes: T

— Additive Gaussian noise

— Randomly set some input features to zero. [XOX@ Qj

— More noise models in the literature. . T
X

« Training criterion: [Q Q Q Q Qj

EI’I’(VV, W’) = Zizl:n Eq(xi’|x1) L [ Xj » gW’(fW(Xi ’))]
where X is the original input, x’is the corrupted
input, and q() is the corruption process.

COMP-551: Applied Machine Learning 12 Joelle Pineau



Denoising autoencoders

Corrupted input
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Contractive autoencoders

« Goal: Learn a representation that is robust to noise and

perturbations of the input data, by regularizing the latent space

« Contractive autoencoder training criterion:

Err(WW) =3 icin L IXi0 9w (fw (i) T+ AlIJOOE2
where J(x;)=0f,,(x;)/0x; is a Jacobian matrix of the encoder evaluated at

X;, F is the Frobenius norm, and A controls the strength of regularization.

- |dea: penalize the model if a small change in input will resultin a

big change in representation (output of encoder)

Many more similar ideas in the literature...
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Unsupervised pretraining

« Autoencoders are a kind of ‘unsupervised learning’

« When do we want to use autoencoders?

1. Want to learn representations (features) of the data, but not

sure for what task

2. Useful as a kind of ‘extra data’ for supervised tasks (e.g.

pretraining)

3. Can be used for clustering or visualization
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Variety of training protocols

Purely supervised:

— Initialize parameters randomly.
— Train in supervised mode (gradient descent w/backprop.)
— Used in most practical systems for speech and language.

Unsupervised pretraining + supervised classifier on top:

— Train an autoencoder to learn features of the data.
— Train a supervised classifier on top, keeping other layers fixed.
— Good when very few labeled examples are available.

Unsupervised pretraining + global supervised fine-tuning.

— Train an autoencoder to learn features of the data.
— Add a classifier layer, and retrain the whole thing supervised.
— Good when label set is poor.

Unsupervised pretraining often uses regularized autoencoders.
From: http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013
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Problem #1: feature co-adaptation

* In neural networks, derivative received by each parameter tells it

what to do, given what the other parameters are doing

« This could lead to some neurons ‘fixing’ the problems caused by

other neurons -> co-adaptation

«  While this is okay on the training set, these fixes often don’t

generalize to the test set

“Dropout: a simple way to prevent neural networks from overfitting,” Srivastava

etal.,, 2014
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Dropout

* Independently set each hidden unit activity to zero with

probability p (usually p=0.5 works best).

* Neurons are forced to work with random subset of neighbours

(a) Standard Neural Net (b) After applying dropout.
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Problem #2: internal covariate shift

 During training, each layer of a neural network gets ‘used to’ the

distribution of its inputs from the lower layer

« But the distribution of outputs at each layer changes over time

as the network trains!

— Each layer has to keep re-adapting to the new distribution

— This problem is called internal covariate shift

« This can slow down and destabilize learning

“Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” loffe & Szegedy, 2015.
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Batch normalization

« |dea: Feature scaling makes gradient descent easier.

« We already apply this at the input layer; extend to other layers.
« Use empirical batch statistics to choose re-scaling parameters.

- For each mini-batch of data, at each layer k of the network:

— Compute empirical mean and var independently for each dimension

— Normalize each input: ) _ x"—E]

- \/ VAR[x'M]

— Output has tunable parameters (y,8) for each layer: y¢ = y*. 3 4 gF

» Effect: More stable gradient estimates, especially for deep networks.
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Batch normalization

- Many other kinds of normalization: e.g. weight normalization,
layer normalization, batch re-normalization, etc.
- Dropout and batch normalization empirically act as regularizers
— Usually don’t need to use an L2 penalty on the weights
« Can use both, but batch normalization alone works extremely

well

COMP-551: Applied Machine Learning 21 Joelle Pineau



Do we really need deep architectures?

« We can approximate any function with a one-hidden-layer

neural network. Why go deeper?

« Deep networks are more efficient for representing certain

classes of functions, with certain types of structure.

— Natural signals (images, speech) typically have such structure.

- Deep architectures can represent more complex functions with

fewer parameters.

« So far, very little theoretical analysis of deep learning.
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Do we really need deep architectures?

Deep neural
networks learn
hierarchical feature
representations

4 )

output layer

)
- & 4
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Major paradigms for deep learning

« Deep neural networks

— Supervised training: Feed-forward neural networks.

— Unsupervised pre-training: Autoencoders.

« Special architectures for different problem domains.

— Computer vision => Convolutional neural nets.

— Text and speech => Recurrent neural nets. (Next class.)
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ImageNet dataset
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Neural networks for computer vision

* Design neural networks that are specifically adapted to:

— Deal with very high-dimensional inputs
« E.g. 150x150 pixels = 22,500 inputs, or 3x22,500 if RGB

— Exploit 2D topology of pixels (or 3D for video)

— Built-in invariance to certain variations we can expect

* Translations, illumination, etc.
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Why not feed-forward networks?

 Don’t take into account the structure of the datal!

« Since input neurons have no ordering, an image looks the

same as a shuffled image

Original Image

10}

15¢

25

15-~ ..

These look the
same to a feed-
forward network!

(so long as the
same shuffling is
applied to all of the
data)

COMP-551: Applied Machine Learning

27

Joelle Pineau



Convolutional Neural Networks

Feedforward network Convolutional neural network (CNN)
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« CNN characteristics:

— Inputis a 3D tensor: 2D image x 3 colours (or 2D if grayscale)

— Each layer transforms an input 3D tensor to an output 3D tensor
using a differentiable function.

From: http://cs231n.github.io/convolutional-networks/
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Convolutional Neural Networks

Feedforward network Convolutional neural network (CNN)
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« Convolutional neural networks leverage several ideas.

1. Local connectivity.
2. Parameter sharing.

3. Pooling hidden units.

From: http://cs231n.github.io/convolutional-networks/
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Convolutional Neural Networks

« Afew key ideas:

1. Features have local receptive fields.
- Each hidden unit is connected to a patch of the input image.
« Units are connected to all 3 colour channels.
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depth

depth = # filters
(a hyperparameter)
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Convolutional Neural Networks

« A few key ideas:

1. Features have local receptive fields.

2. Share matrix of parameters across units.

«  Constrain units within a depth slice (at all positions) to have same weights.
« Feature map can be computed via discrete convolution with a kernel matrix.

feature map |: E feature map 2 : . feature map 3 :
“ *: — *r *;**"z;:"*""
I i |

\ }
same color

same matrix
of connections
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Convolutional Neural Networks

« Afew key ideas:

1. Features have local receptive fields.
2. Share matrix of parameters across units.

3. Pooling/subsampling of hidden units in same neighbourhood.

224x224x64

Example:
112x112x64
pool
I Single depth slice
1] 1]2]4
max pool with 2x2 filters
l ool 7 | 8 and stride 2 6
T 3 | 2 (NG ] 3
> . 112 1| 2
224 downsampling .
112 >
224 y

From: http://cs231n.github.io/convolutional-networks/
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Convolutional Neural Networks

* Local receptive fields

— Intuition: there are some data features (e.g. edges, corners) that
only depend on a small region of the image

- Parameter sharing

— Intuition: processing these local features should be done the
same way regardless of where the feature is in the image

— Much more efficient to train

* Pooling/ subsampling

— Intuition: usually doesn’t matter where exactly a feature occurs,

only that it occurs somewhere
— As we go deeper in the network, want to consider features that
cover more area (i.e. more global features)
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Convolution

« Whatis a convolution?

« Formula;

(x *w)(t) = Xgq x(@)w(t — a)

« Xistheinput data, w is the kernel

« The kernel is a function of learned parameters repeatedly

applied to various parts of the input
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Image: wikipedia.org

COMP-551: Applied Machine Learning

34

Joelle Pineau



Convolution

Luprul
IKernel
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* W, X,Y, zare learned sl
parameters k —
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Image: deeplearningbook.org
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Convolution

NN N N NN

N N N N

Input Kernel Output (feature map)
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Convolution

« Averaging in a 3x3
box blurs the image

1/9]1/9|1/9
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« Can be used for
edge detection
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Image: Gimp documentation
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Convolutional neural nets (CNNS)

« Alternate between convolutional, pooling, and fully connected layers.

— Fully connected layer typically only at the end.

« Train full network using backpropagation.

| (image from Yann Lecun) Layer 3

256@6x6 Layer 4

Layer 1 256@1x1

64x75x75 Layer 2
64@14x14

Output
101

input
83x83

0x9

9x9 10x10 pooling,  onvolution

convolution 5.5 subsampling (4096 kernels)

Fully
(64 kernels) 4x4 subsamp connected
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Convolutional neural nets (CNNSs)
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From: http://cs231n.github.io/convolutional-networks/
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Example: ImageNet

« SuperVision (a.k.a. AlexNet, 2012):

oo Deep: 7 hidden “weight” layers
« Learned: all feature extractors initialized at
white Gaussian noise and learned from the
data
« Entirely supervised
« More data = goold
Convolutional layer: convolves its input
O with a bank of 3D filters, then applies
- point-wise non-linearity
/ "'Image/" Fully-connected layer: applies linear
L/ filters to its input, then applies point-

wise non-linearity

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Example: ImageNet

« SuperVision (a.k.a. AlexNet, 2012):

=
Trained with stochastic gradient descent on
! two NVIDIA GPUs for about a week

650,000 neurons

60,000,000 parameters

630,000,000 connections

Final feature layer: 4096-dimensional

Convolutional layer: convolves its input
O with a bank of 3D filters, then applies
point-wise non-linearity

/ "'Image/" Fully-connected layer: applies linear
A filters to its input, then applies point-
wise non-linearity

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Training results: ImageNet

96 learned low-level filters

Convolutional layer: convolves its input
O with a bank of 3D filters, then applies
point-wise non-linearity

Fully-connected layer: applies linear
filters to its input, then applies point-
wise non-linearity

From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Image classification

95% accuracy (on top 5 predictions) among 1,000

categories. Better than average human.

q 0 0

lens cap
reflex camera abacus slug hen|
Polaroid camera| | typewriter keyboard zucchini cock
pencil sharpener space bar ground beetle cocker spaniel
switch| | computer keyboard common newt partridge
combination lock accordion water snake English setter
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Empirical results (2012)

. ImageNet |K competition, fall 2012
N Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton, 2012
30
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Empirical results for image retrieval

*  Query items in leftmost column:
o | UF® § -

o B e ki
4 A Dl
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From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Empirical results (2015)

ILSVRC top-5 error on ImageNet

22.5
15

7.5

2010 201 2012 2013 2014 Human  ArXiv 2015

http://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/
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CNNs vs traditional computer vision

GNN

Pt Str\nng Learn Extract Features
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From: Razavian et al. CVPR workshop paper. 2014.
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Picture tagglng (From clarifai.com)

Predicted Tags:
food (16.00%)
dinner (8.10%)
bbq (2.90%)
market (2.50%)
meal (1.40%)
turkey (1.40%)
grill (1.30%)
pizza (1.30%)
eat (1.10%)
holiday (1.00%)
Stats:

Size: 247.24 KB
Time: 110 ms

© 2016 DIA, Inc. All rights reserved.
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Scene parsing

z .
ﬂwm ,

(Farabet et al., 2013)

© 2016 DIA, Inc. All rights reserved.
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YOLO: Real-time object detection




Practical tips for CNNs

- Many hyper-parameters to choose!

« Architecture: filters (start small, e.g. 3x3, 5x5), pooling, number

of layers (start small, add more).

- Training: learning rate, regularization, dropout rate (=0.5), initial

weight size, batch size, batch norm.

 Read papers, copy their method, then do local search.
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What you should know

« Types of deep learning architectures:

— Autoencoders
— Convolutional neural networks

— Tricks to get neural networks to work

« Typical training approaches (unsupervised / supervised).

- Examples of successful applications.
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More resources

« Deep learning textbook
— In-depth treatment of all deep learning fundamentals
— Avalilable online for free:

« All articles on colah.github.io (highly recommended)

— Well-explained articles on various neural network topics

— Two posts on ConvNets:

 Convolution arithmetic

COMP-551: Applied Machine Learning 53 Joelle Pineau


http://www.deeplearningbook.org/
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
http://colah.github.io/posts/2014-07-Understanding-Convolutions/
https://arxiv.org/pdf/1603.07285.pdf

More resources

« Notes and images in today’s slides taken from:

* http://cs231n.github.io/convolutional-networks/

* http://lwww.cs.toronto.edu/~hinton/csc2535
 http://deeplearning.net/tutorial/

« http://lwww.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013

* http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
* http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf
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