Announcements

- Project 4 released! Due on **March 21st**

- 3rd tutorial on Friday, 5-6pm, on PyTorch
What is deep learning?

• Processing of data through multiple layers of non-linear functions to produce an output

• Not just neural networks!
 – Includes neural networks, but also Boltzmann machines, deep belief networks, CNNs, RNNs, etc.

• Main goal is to learn a representation of the data that is useful for many different tasks
 – Representation of data: function or transformation of the data into a (usually smaller) form that is easier to use (to solve various tasks)
The deep learning objective

very high level representation:

\[\begin{array}{c}
\text{MAN} \\
\text{SITTING} \\
\cdots
\end{array} \]

\[\cdots \text{etc} \cdots \]

slightly higher level representation

raw input vector representation:

\[
\mathbf{\mathcal{X}} = \begin{bmatrix}
23 & 19 & 20 \\
\mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \mathbf{x}_n
\end{bmatrix}
\]
Learning an autoencoder function

- **Goal:** Learn a compressed representation of the input data.

- We have two functions:
 - **Encoder:** \(h = f_W(x) = s_f(Wx) \)
 - **Decoder:** \(x' = g_W(h) = s_g(W'h) \)

where \(s() \) is the activation function and \(W, W' \) are weight matrices.
Learning an autoencoder function

- **Goal**: Learn a compressed representation of the input data.

- **We have two functions**:
 - **Encoder**: \(h = f_W(x) = s_f(Wx) \)
 - **Decoder**: \(x' = g_W(h) = s_g(W'h) \)

where \(s() \) is the activation function and \(W, W' \) are weight matrices.

- **To train**, minimize reconstruction error:

\[
Err(W, W') = \sum_{i=1:n} L \left[x_i, g_W(f_W(x_i)) \right]
\]

using squared-error loss (continuous inputs) or cross-entropy (binary inputs).
PCA vs autoencoders

In the case of a linear function:

\[
f_W(x) = Wx \quad g_{\hat{W}}(h) = W'h
\]

with squared-error loss:

\[
Err(W, W') = \sum_{i=1:n} \| x_i - g_{\hat{W}}(f_W(x_i)) \|^2
\]

we can show that the minimum error solution \(W \) yields the same subspace as PCA.
Regularization of autoencoders

- **Weight tying** of the encoder and decoder weights \(W = W' \) to explicitly constrain (regularize) the learned function.

- How can we generate **sparse autoencoders**? (And also, why?)
 - Directly penalize the output of the hidden units (e.g. with L1 penalty) to introduce sparsity in the weights.
 - Helps ‘disentangle’ some of the factors of variation in the data.
Denoising autoencoders

Noisy input \rightarrow Encoder \rightarrow Decoder \rightarrow Denoised image

The feature we want to extract from the image

Image source: blog.sicara.com
Denoising autoencoders

- **Idea**: To force the hidden layer to discover more robust features, train the autoencoder with a corrupted version of the input.
Denoising autoencoders

- **Idea**: To force the hidden layer to discover more robust features, train the autoencoder with a corrupted version of the input.

- **Corruption processes**:
 - Additive Gaussian noise
 - Randomly set some input features to zero.
 - More noise models in the literature.
Denoising autoencoders

- **Idea**: To force the hidden layer to discover more robust features, train the autoencoder with a corrupted version of the input.

- **Corruption processes**:
 - Additive Gaussian noise
 - Randomly set some input features to zero.
 - More noise models in the literature.

- **Training criterion**:

 \[
 \text{Err}(W, W') = \sum_{i=1:n} E_{q(x'_i|x_i)} L \left[x_i, g_{W'}(f_W(x'_i)) \right]
 \]

 where \(x \) is the original input, \(x' \) is the corrupted input, and \(q() \) is the corruption process.
Denoising autoencoders

prior: examples concentrate near a lower dimensional “manifold”

original input

Corrupted input

Reconstruction function

Corrupted input
Contractive autoencoders

- **Goal**: Learn a representation that is robust to noise and perturbations of the input data, by regularizing the latent space

- **Contractive autoencoder training criterion**:

 \[
 \text{Err}(W, W') = \sum_{i=1}^{n} L \left[x_i, g_{W'}(f_W(x_i)) \right] + \lambda \| J(x_i) \|_F^2
 \]

 where \(J(x_i) = \frac{\partial f_W(x_i)}{\partial x_i} \) is a Jacobian matrix of the encoder evaluated at \(x_i \), \(F \) is the Frobenius norm, and \(\lambda \) controls the strength of regularization.

- **Idea**: Penalize the model if a small change in input will result in a big change in representation (output of encoder)

 Many more similar ideas in the literature…
Unsupervised pretraining

- Autoencoders are a kind of ‘unsupervised learning’
- When do we want to use autoencoders?

1. Want to learn representations (features) of the data, but not sure for what task
2. Useful as a kind of ‘extra data’ for supervised tasks (e.g. \textit{pretraining})
3. Can be used for clustering or visualization
Variety of training protocols

• **Purely supervised:**
 – Initialize parameters randomly.
 – Train in supervised mode (gradient descent w/backprop.)
 – Used in most practical systems for speech and language.

• **Unsupervised pretraining + supervised classifier on top:**
 – Train an autoencoder to learn features of the data.
 – Train a supervised classifier on top, keeping other layers fixed.
 – Good when very few labeled examples are available.

• **Unsupervised pretraining + global supervised fine-tuning.**
 – Train an autoencoder to learn features of the data.
 – Add a classifier layer, and retrain the whole thing supervised.
 – Good when label set is poor.

• **Unsupervised pretraining often uses regularized autoencoders.**

From: http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013
Problem #1: feature co-adaptation

- In neural networks, derivative received by each parameter tells it what to do, *given what the other parameters are doing*
- This could lead to some neurons ‘fixing’ the problems caused by other neurons -> *co-adaptation*
- While this is okay on the training set, these fixes often don’t generalize to the test set

- “*Dropout: a simple way to prevent neural networks from overfitting,*” Srivastava et al., 2014
Dropout

- Independently set each hidden unit activity to **zero** with probability p (usually $p=0.5$ works best).
- Neurons are forced to work with random subset of neighbours.
Problem #2: internal covariate shift

• During training, each layer of a neural network gets ‘used to’ the distribution of its inputs from the lower layer

• But the *distribution of outputs at each layer changes over time* as the network trains!
 – Each layer has to keep re-adapting to the new distribution
 – This problem is called *internal covariate shift*

• This can slow down and destabilize learning

Batch normalization

• Idea: Feature scaling makes gradient descent easier.
 • We already apply this at the input layer; extend to other layers.
 • Use empirical batch statistics to choose re-scaling parameters.

• For each mini-batch of data, at each layer k of the network:
 – Compute empirical mean and var independently for each dimension
 – Normalize each input:
 \[\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{VAR}[x^{(k)}]}} \]
 – Output has tunable parameters (γ, β) for each layer:
 \[y^k = \gamma^k \cdot \hat{x}^{(k)} + \beta^k \]

• Effect: More stable gradient estimates, especially for deep networks.
Batch normalization

- Many other kinds of normalization: *e.g.* *weight normalization*, *layer normalization*, *batch re-normalization*, etc.
- Dropout and batch normalization empirically act as *regularizers*
 - Usually don’t need to use an L2 penalty on the weights
- Can use both, but *batch normalization alone works extremely well*
Do we really need deep architectures?

• We can approximate any function with a one-hidden-layer neural network. Why go deeper?

• **Deep networks are more efficient for representing certain classes of functions, with certain types of structure.**
 – Natural signals (images, speech) typically have such structure.

• Deep architectures can represent more complex functions with **fewer parameters**.

• So far, very little theoretical analysis of deep learning.
Do we really need deep architectures?

Deep neural networks learn hierarchical feature representations.
Major paradigms for deep learning

• **Deep neural networks**
 – Unsupervised pre-training: Autoencoders.

• Special architectures for different problem domains.
 – Computer vision => Convolutional neural nets.
 – Text and speech => Recurrent neural nets. (*Next class.*)
ImageNet dataset

ImageNet 2011 Fall Release (32326)
- plant, flora, plant life (4486)
- geological formation, formation (1)
- natural object (1112)
- sport, athletics (176)
- artifact, artefact (10504)
- fungus (308)
- person, individual, someone, somel
- animal, animate being, beast, brute
- Misc (20400)
 - julienne, julienne vegetable (0)
 - raw vegetable, rabbit food (0)
 - pulse (0)
 - goa bean (0)
 - kidney bean (0)
 - navy bean, pea bean, white bean
 - pinto bean (0)
 - frijole (0)
 - black bean, turtle bean (0)
 - snap bean, snap (0)
 - string bean (0)
 - Kentucky wonder, Kentucky woe
 - scarlet runner, scarlet runner b
 - haricot vert, haricots verts, Fre
 - green bean (5)
 - wax bean, yellow bean (0)
 - Fordhook (0)
 - lima bean (1)
 - sieva bean, butter bean, butterl
 - fava bean, broad bean (0)
 - green sovbean (0)

http://www.image-net.org
Neural networks for computer vision

• Design neural networks that are specifically adapted to:

 – Deal with very high-dimensional inputs
 • E.g. 150x150 pixels = 22,500 inputs, or 3x22,500 if RGB

 – Exploit 2D topology of pixels (or 3D for video)

 – Built-in invariance to certain variations we can expect
 • Translations, illumination, etc.
Why not feed-forward networks?

- Don’t take into account the structure of the data!
- Since input neurons have no ordering, an **image looks the same as a shuffled image**

These look the same to a feed-forward network!

(so long as the same shuffling is applied to all of the data)
Convolutional Neural Networks

Feedforward network

Convolutional neural network (CNN)

- CNN characteristics:
 - Input is a 3D tensor: 2D image x 3 colours (or 2D if grayscale)
 - Each layer transforms an input 3D tensor to an output 3D tensor using a differentiable function.

From: http://cs231n.github.io/convolutional-networks/
• **Convolutional neural networks** leverage several ideas.
 1. Local connectivity.
 2. Parameter sharing.
 3. Pooling hidden units.

Convolutional Neural Networks

• A few key ideas:

 1. Features have **local receptive fields**.
 - Each hidden unit is connected to a patch of the input image.
 - Units are connected to all 3 colour channels.

\[\text{depth} = \# \text{ filters} \quad (a \text{ hyperparameter}) \]
Convolutional Neural Networks

• A few key ideas:

1. Features have **local receptive fields**.

2. **Share matrix of parameters** across units.
 - Constrain units within a depth slice (at all positions) to have **same** weights.
 - Feature map can be computed via discrete convolution with a kernel matrix.
Convolutional Neural Networks

- A few key ideas:
 1. Features have **local receptive fields**.
 2. **Share matrix of parameters** across units.
 3. **Pooling/subsampling** of hidden units in same neighbourhood.

Example:

```
Single depth slice
1 1 2 4
5 6 7 8
3 2 1 0
1 2 3 4
```

max pool with 2x2 filters and stride 2

Convolutional Neural Networks

• Local receptive fields
 – **Intuition:** there are some data features (e.g. edges, corners) that
 only depend on a small region of the image

• Parameter sharing
 – **Intuition:** processing these local features should be done *the*
 same way regardless of where the feature is in the image
 – *Much more efficient to train*

• Pooling/ subsampling
 – **Intuition:** usually doesn’t matter where *exactly* a feature occurs,
 only that it occurs somewhere
 – As we go deeper in the network, want to consider features that
 cover more area (i.e. *more global features*)
Convolutions

- What is a convolution?
- Formula: \((x * w)(t) = \sum_a x(a)w(t - a)\)
- \(x\) is the input data, \(w\) is the kernel
- The kernel is a function of learned parameters repeatedly applied to various parts of the input
Convolution

- w, x, y, z are **learned** parameters
- Can have multiple kernels in a layer
Convolution

Input

Kernel

Output (feature map)
Convolution

- Averaging in a 3x3 box blurs the image

- Can be used for edge detection
Convolutional neural nets (CNNs)

- Alternate between **convolutional**, **pooling**, and **fully connected** layers.
 - Fully connected layer typically only at the end.
- Train full network using **backpropagation**.

(image from Yann Lecun)
Convolutional neural nets (CNNs)

From: http://cs231n.github.io/convolutional-networks/
Example: ImageNet

- SuperVision (a.k.a. AlexNet, 2012):
 - **Deep**: 7 hidden “weight” layers
 - **Learned**: all feature extractors initialized at white Gaussian noise and learned from the data
 - Entirely supervised
 - **More data = good**

Example: ImageNet

- SuperVision (a.k.a. AlexNet, 2012):

 - Trained with stochastic gradient descent on two NVIDIA GPUs for about a week
 - 650,000 neurons
 - 60,000,000 parameters
 - 630,000,000 connections
 - Final feature layer: 4096-dimensional

Training results: ImageNet

- 96 learned low-level filters

Image classification

- 95% accuracy (on top 5 predictions) among 1,000 categories. Better than average human.
Empirical results (2012)

ImageNet 1K competition, fall 2012

Empirical results for image retrieval

- **Query items in leftmost column:**

Empirical results (2015)

ILSVRC top-5 error on ImageNet

CNNs vs traditional computer vision

From: Razavian et al. CVPR workshop paper. 2014.
Picture tagging (From clarifai.com)

<table>
<thead>
<tr>
<th>Predicted Tags</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>food</td>
<td>(16.00%)</td>
</tr>
<tr>
<td>dinner</td>
<td>(3.10%)</td>
</tr>
<tr>
<td>bbq</td>
<td>(2.90%)</td>
</tr>
<tr>
<td>market</td>
<td>(2.50%)</td>
</tr>
<tr>
<td>meal</td>
<td>(1.40%)</td>
</tr>
<tr>
<td>turkey</td>
<td>(1.40%)</td>
</tr>
<tr>
<td>grill</td>
<td>(1.30%)</td>
</tr>
<tr>
<td>pizza</td>
<td>(1.30%)</td>
</tr>
<tr>
<td>eat</td>
<td>(1.10%)</td>
</tr>
<tr>
<td>holiday</td>
<td>(1.00%)</td>
</tr>
</tbody>
</table>

Stats:
- Size: 247.24 KB
- Time: 110 ms
Scene parsing

(Farabet et al., 2013)
YOLO: Real-time object detection
Practical tips for CNNs

• Many hyper-parameters to choose!

• Architecture: filters (start small, e.g. 3x3, 5x5), pooling, number of layers (start small, add more).

• Training: learning rate, regularization, dropout rate (=0.5), initial weight size, batch size, batch norm.

• Read papers, copy their method, then do local search.
What you should know

• Types of deep learning architectures:
 – Autoencoders
 – Convolutional neural networks
 – Tricks to get neural networks to work

• Typical training approaches (unsupervised / supervised).

• Examples of successful applications.
More resources

• Deep learning textbook
 – In-depth treatment of all deep learning fundamentals
 – Available online for free: http://www.deeplearningbook.org/

• All articles on colah.github.io (highly recommended)
 – Well-explained articles on various neural network topics

• Convolution arithmetic
More resources

- Notes and images in today’s slides taken from:
 - http://www.cs.toronto.edu/~hinton/csc2535
 - http://deeplearning.net/tutorial/
 - http://www.slideshare.net/philipzh/a-tutorial-on-deep-learning-at-icml-2013