COMP 551 — Applied Machine Learning
Lecture 14: Neural Networks

Instructor: Ryan Lowe (ryan.lowe@mail.mcgill.ca)

Slides mostly by: Joelle Pineau

Class web page: www.cs.mcgill.ca/~hvanho2/comp551

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.




Annnouncements

« Assignment 3 deadline postponed

* New deadline: Monday, Feb 26, noon EST

* Questions about assignment 1 grading? See grading TAs during

office hours

* My office hours (for now): Monday, 12pm-1pm, MC 232
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Recall: the perceptron
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« \We can take a linear combination and threshold it:

+1 ifx-w>0
hw(x) =sgn(x -w) =
—1 otherwise

« The output is taken as the predicted class.
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Decision surface of a perceptron
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« Can represent many functions.

« To represent non-linearly separable functions (e.g. XOR), we could use
a network of perceptron-like elements.

« If we connect perceptrons into networks, the error surface for the
network is not differentiable (because of the hard threshold).

COMP-551: Applied Machine Learning 4 Joelle Pineau



Example: A network representing XOR
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Recall the sigmoid function
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Sigmoid provide “soft threshold”, whereas perceptron provides “hard threshold”

- o is the sigmoid function: S(Z):1 —

+e

* It has the following nice property: [dS(Z) :S(Z)(l—s(z))]
dz
We can derive a gradient descent rule to train:

— One sigmoid unit; Multi-layer networks of sigmoid units.
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Feed forward neural networks

A collection of neurons with non-linear activation functions, arranged in layers.

Layer O is the input layer, its units just copy the input.

Last layer (layer K) is the output layer, its units provide the output.

Layers 1, .., K-1 are hidden layers, cannot be detected outside of network.
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Why this name?

* Infeed-forward networks the output of units in layer k become input

to the units in layers k+17, k+2, ..., K.

* No cross-connection between units in the same layer.

* No backward (“recurrent”) connections from layers downstream.

« Typically, units in layer k provide input to units in layer k+1 only.

* Infully-connected networks, all units in layer k provide input to all

units in layer k+1.
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Feed-forward neural networks

Notation: Hidden Layer

* w; denotes weight on connection

from unit i to unit |.

Input 1
. . _H
* By convention, x, =1, V|
— Also called bias, b
* Output of unit |, denoted o; is
I“p“.'_“.w

computed using a sigmoid:

0; = o(wj" X))

where w; is vector of weights entering unit |

X; Is vector of inputs to unit |
* By definition, x; = 0;.

Given an input, how do we compute the output? How do we train the weights?
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Computing the output of the network

« Suppose we want network to make prediction about instance <x,y=7>.

Run a forward pass through the network.

érlayerkzl...K \

1. Compute the output of all neurons in layer k:

0; = o(w;-xj),Vj € Layer k

2. Copy this output as the input to the next layer:
rii = 0,71 € Layer k,Vj € Layer k + 1

Qe output of the last layer is the predicted output y. /
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Learning in feed-forward neural networks

« Assume the network structure (units + connections) is given.

* The learning problem is finding a good set of weights to

minimize the error at the output of the network.

* Approach: gradient descent, because the form of the

hypothesis formed by the network, h,, Is:

— Differentiable! Because of the choice of sigmoid units.

— Very complex! Hence direct computation of the optimal weights is
not possible.
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Gradient-descent preliminaries for NN

- Assume we have a fully connected network:
— N input units (indexed 7, ..., N)
— H hidden units in a single layer (indexed N+7, ..., N+H)
— one output unit (indexed N+H+1)

« Suppose you want to compute the weight update after seeing

iInstance <x, y>.

 Leto,i=1, ..., H-N+1 be the outputs of all units in the network

for the given input x.

« For regression: the sum-squared error function is:

1 2 1 2

J(w) = E(y — hw(x))” = 5(3} — ON+4H+1)

COMP-551: Applied Machine Learning 12 Joelle Pineau



Gradient-descent update for output node

* Derivative with respects to the weights wy,,;,;; entering oy, ,+:
— Use the chain rule: aoJ(w)/ow = (oJ(w)/00) - (do/ow)

e o

Note: j here is AIW)BT = (y-opu) P Tye
any node in the
hidden layer d‘;@ - 0(2)(1- 0(2))
2
aJ

— —(y—ﬂ*n.,r_|_H_|_1 )Dj‘i.,.r_|_H-|-1 (1_DN—I—H-I—1 )IN#—H-F]-J
aIL-‘N+H+1,j
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Gradient-descent update for output node

* Derivative with respects to the weights wy,,;,;; entering oy, ,+:
— Use the chain rule: aoJ(w)/ow = (oJ(w)/00) - (do/ow)

0.J

OWN 4+ H+1,

— —Ey—ﬂﬁr+ﬂ+1)ﬂﬁr+ﬂ+l (1—DN+H+1ﬂIN—I—H+1J

0.J

OWN+H 41,

e Hence, we can write: — [‘5N+H+1}IN+H+1,:&

where:
OnyH+1 = (Y —onyH+1)oNtH+1 (1 —ONtH11)
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Gradient-descent update for hidden node

The derivative wrt the other weights, Wi wherej =1, ..., N and
[ =N+1, ..., N+H can be computed using chain rule:

d.J
; = —(y—o~nyHt1)ontH41(1 —ONtH1)
dwy
) _ —
. Y {WJH.,I.'_|_H+1 . }{‘n.,r+H+1:] Note: NOW | IS
L any node in the
9 -
= —53~.r+H+1'w3~.r+H+1,a ; IN+H+1,1 !nput Iayer, _and |
dwy is any node in
» Recall that x,,;,,, = 0. Hence we have: the hidden layer
o
: ryyH41,0 = 0(1 —op)x
r}w;:j
« Putting these together and using similar notation as before:
aJ .
. = —oi(l —01)ONFHF1WNFLHF1,12,; = =0T
dwy,
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Gradient-descent update for hidden node

Back propagation of weights

Op — op(l —op ) WNLH41 RONLHA1

>
=

-

E .
~

N

Ont+H+1 — o(l —o)(y — o)

N X

" R Z:) Note: now h is

$_/ any node in the
hidden layer

Image from: http://openi.nIm.nih.gov/detailedresult.php?img:2716495_bcr2257-1&req:4.
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Stochastic gradient descent (SGD)

« Initialize all weights to small random numbers. > Initialization

« Repeat until convergence:

— Pick a training example.
Forward
— Feed example through network to compute output 0 = Oy41/” pass

— For the output unit, compute the correction:

On+H+1 — o(l —o)(y — o)

S

Backpro-
— For each hidden unit h, compute its share of the correction: pagation
Op — op(l — op)WNLH 1 RONLH 1
— Update each network weight:
Gradient
W i +— Wh i + Qp i OnTh descent
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Flavours of gradient descent

« Stochastic gradient descent: Compute error on a single

example at a time (as in previous slide).

- Batch gradient descent. Compute error on all examples.

— Loop through the training data, accumulating weight changes.

— Update all weights and repeat.

* Mini-batch gradient descent: Compute error on small subset.

— Randomly select a “mini-batch” (i.e. subset of training examples).

— Calculate error on mini-batch, apply to update weights, and repeat.
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Expressiveness of feed-forward NN

A single sigmoid neuron?

« Same representational power as a perceptron: Boolean AND, OR,
NOT, but not XOR.

A neural network with a single hidden layer?
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Expressiveness of feed-forward NN

range determined
o7 9() ‘

(non-linearity)

bias b only
changes the
position of
the riff

Image from: Hugo Larochelle’s & Pascal Vincent's slides
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Expressiveness of feed-forward NN

Image from: Hugo Larochelle’s & Pascal Vincent's slides
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Expressiveness of feed-forward NN

X Xy

Image from: Hugo Larochelle’s & Pascal Vincent's slides
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Expressiveness of feed-forward NN

A single sigmoid neuron?

« Same representational power as a perceptron: Boolean AND, OR,
NOT, but not XOR.

A neural network with a single hidden layer?

» Universal approximation theorem (Hornik, 1991):

— “Every bounded continuous function can be approximated with
arbitrary precision by a single-layer neural network”

« But might require a number of hidden units that is exponential in
the number of inputs.

« Also, this doesn’t mean that we can easily learn the parameter
values!
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Expressiveness of feed-forward NN

A single sigmoid neuron?

« Same representational power as a perceptron: Boolean AND, OR,
NOT, but not XOR.

A neural network with a single hidden layer?

» Universal approximation theorem (Hornik, 1991)

« But might require a number of hidden units that is exponential in
the number of inputs.

- Also, this doesn’t mean that we can easily learn the parameter
values!

A neural network with two hidden layers?

« Any function can be approximated to arbitrary accuracy by a
network with two hidden layers.
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Final notes

«  What you should know:

— Definition / components of neural networks.
— Training by backpropagation

— Stochastic gradient descent and its variants

 Additional information about neural networks:

Video & slides from the Montreal Deep Learning Summer School:

http://videolectures.net/deeplearning2017_larochelle _neural networks/
https://drive.google.com/file/d/OByUKRdICDK7-c2s2RjBiSms2UzA/view?usp=drive_web
https://drive.google.com/file/d/OByUKRdICDK7-UXB1R1ZpX082MEk/view?usp=drive_web

Manifold perspective on neural nets with cool visualizations:
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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