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Relativistic Quantum 
Information Theory

Does this make sense?

If we are going to use quantum 
communication on a large scale, relativistic 
effects are essential.

Relativistic effects in classical information 
theory had already been investigated as 
early as 1981.
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Early Work

Jarrett and Cover 1981:  Relativistic classical 
information theory.  

Relativistic effects on transmission rates and 
energy requirements.

Closely related to time dilation: special 
relativity.
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Our direct inspiration

Alsing and Milburn 2002 : Entanglement and 
Lorentz invariance.  How does the 
entanglement of maximally entangled states 
transform under Lorentz transformation?

Entanglement fidelity is preserved even 
though the finite dimensional Lorentz 
transformations are not unitary.

Remarks on the effect of Unruh or Hawking 
radiation.
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“It is tantalizing to contemplate whether Unruh
and/or Hawking radiation might be derived
from an information theoretic point of view.”
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“It is tantalizing to contemplate whether Unruh
and/or Hawking radiation might be derived
from an information theoretic point of view.”

We decided to investigate the information-
theoretic properties of the Unruh effect.

Alsing and Milburn

Teleportation with a uniformly accelerated
partner : PRL Alsing and Milburn
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Outline

Review of quantum field theory: a biased 
view.

QFT in curved spacetimes: the Unruh effect.

Private capacity and quantum private 
capacity. 

Private information via the Unruh effect.
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Geometrical Classical Mechanics

Basic arena: phase space. Each point represents a position and momentum.
This is the real “state space” of classical physics. [Cotangent bundle over con-
figuration space]

{A,B} :=
∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q

dA

dt
= {A,H}

Poisson brackets = symplectic form

Dynamics
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Quantum Mechanics 
Recap

1. States are rays in a Hilbert space

2. Measurements are described by hermitian operators...

3. Evolution is given by a particular unitary operator exp(−iHt)

4. The algebra of observables is non-commutative and is given by Dirac’s
rule

{P,Q} −→ [P,Q]
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 Wave Equations

What is the precise dynamical law?

Figure out H (and get Nobel prize) then time evolution is given by:

i!∂Ψ
∂t

= HΨ
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2mω2x2.
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Harmonic Oscillator

The Hamiltonian is H = p2

2m + 1
2mω2x2.

The energy levels are equally spaced: En = !ω(n + 1
2 )

a = C(x + iC ′p), a† = C(x− iC ′p)

Some marvellous operators
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Harmonic Oscillator

The Hamiltonian is H = p2

2m + 1
2mω2x2.

The energy levels are equally spaced: En = !ω(n + 1
2 )

a = C(x + iC ′p), a† = C(x− iC ′p)

Some marvellous operators

a|n〉 =
√

n|n− 1〉, a†|n〉 =
√

n + 1|n + 1〉

[a, a†] = 1, H = !ω(a†a +
1
2
)
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Relativistic QM

Possible relativistic wave equations arise from the representation theory of the
Lorentz group. Dirac guessed the right equation for the electron from physical
intuition and formal arguments.

Problem: the energy spectrum was not bounded below. What stops an elec-
tron from falling into the negative energy states and radiating away an infinite
amount of energy?

Dirac’s hack: Fill the negative energy states. The ”vacuum” is a sea of negative
energy electrons and Pauli’s exclusion principle will keep ordinary electrons from
falling into the sea.

A negative energy electron may be kicked upstairs and become an ordinary
electron leaving a “hole”. The hole will behave just like a positively charged
electron: a positron.
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Quantum Field Theory

Hole theory was replaced by quantum field theory created by too many people
to name them all but a few should be mentioned: Wigner, Weisskopf, Jordan,
Heisenberg, Fermi and Dirac.

The main ideas: particles are no longer “conserved”, they can be created and
destroyed. The state space is the symmetric tensor algebra or the Grassman
algebra over the old Hilbert space. This is called Fock space.

The old “wave functions” become operator fields. They act on Fock space and
create or annihilate particles: second quantization.

The mathematical complexity rises a whole level beyond that of ordinary quan-
tum mechanics.
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Classical Field Theory: Klein-Gordon field

Let V be the real vector space of classical solutions;
it is the analogue of phase space.

The symplectic form is:

Ω(φ1,φ2) =
∫

Σ
(φ1

"∇φ2 − φ2
"∇φ1) · d"σ
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+
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Traditional Quantum Field Theory
Start with !φ−m2φ Put it in a “box” to avoid hassles.

φ("x, t) =
∑

!k

φ!k(t)ei!k·!x; "k = 2π(nx, ny, nz).

Now the Hamiltonian is
∑

!k

{1
2
|φ̇!k|

2 +
1
2
ω2

!k
|φ!k|

2} where ω2
!k

= "k2 + m2.

This looks like a collection of harmonic oscillators.

Fermi

Saturday, March 13, 2010



Saturday, March 13, 2010



The a, a† operators now destroy and create
quanta of different modes:
particles have emerged from the field!
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The a, a† operators now destroy and create
quanta of different modes:
particles have emerged from the field!

The innocent harmonic oscillator
plays a foundational role in QFT.

The a and a† come from the positive
and negative frequencies of the field.

The vacuum is the state killed by all
the a operators.
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and what is negative frequency?
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The Fourier transform tells us:

Operators are in bold face.

Φ(!x, t) =
∑

k

fk(!x, t)ak + fk(!x, t)a†
k

The fk are classical positive energy solutions:

fk = (··) exp(i!k · !x− iωt)
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How do we know what is positive frequency
and what is negative frequency?

The Fourier transform tells us:

Operators are in bold face.

Φ(!x, t) =
∑

k

fk(!x, t)ak + fk(!x, t)a†
k

The fk are classical positive energy solutions:

fk = (··) exp(i!k · !x− iωt)

One needs the canonical Fourier
transform that one has in a flat spacetime.
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Fock Space
A Hilbert space that accomodates multiple particles.
Suppose that H is the ordinary (1 particle)
Hilbert space.
F(H) = C⊕H⊕ (H⊗S H)⊕ (H⊗S H⊗S H) . . .

with a given Hilbert space H — what we shall call the symmetric Fock space
and the anti-symmetric Fock space. If H represents the one-particle states of
a Boson field, the appropriate space of many-particle states is the symmetric
Fock space based on H . Similarly, fermions are described by the anti-symmetric
Fock space. We shall define the Fock spaces associated with a Hilbert space H
and a few of the operators on these spaces.

Let H be a Hilbert space. The (symmetric) Fock space based on H is the
Hilbert space

C ⊕ Hα ⊕ (H(α ⊗ Hβ)) ⊕ (H(α ⊗ Hβ ⊗ Hγ)) ⊕ · · · (97)

where Hα, Hβ , etc. are all copies of H (Sect. 9), and where the round brackets
surrounding the indices of the tensor products mean that the Hilbert space of
symmetric tensors is to be used. More explicitly, an element of the symmetric
Fock space consists of a string

Ψ = (ξ, ξα, ξαβ , ξαβγ , . . .) (98)

where ξ is a complex number, ξα is an element of H , ξαβ is a symmetric (ξαβ =
ξ(αβ)) second-rank tensor over H , ξαβγ is a symmetric third-rank tensor over
H , etc., for which the sum

‖Ψ‖2 = ξξ̄ + ξαξ̄α + ξαβ ξ̄αβ + ξαβγ ξ̄αβγ + · · · , (99)

which defines the norm of Ψ, converges. Physically, ξα1···αn represents the “n-
particle contribution” to Ψ. That the tensors are required to be symmetric
is a reflection of the idea that “Ψ is invariant under interchange of identical
particles”.

We next introduce the creation and annihilation operators. Let σ ∈ H . We
associate with this σ an operator C(σ) on Fock space, this operator defined by
its action on a typical element (98):

C(σ)Ψ = (0, σαξ,
√

2σ(αξβ),
√

3σ(αξβγ), . . .) (100)

Similarly, with each τ̄ ∈ H̄ we associate an operator A(τ̄), defined by

A(τ̄)Ψ = (ξµτ̄µ,
√

2ξµατ̄µ,
√

3ξµαβ τ̄µ, . . .) (101)

This C(σ) is called the creation operator (associated with σ); A(τ̄) the anni-
hilation operator (associated with τ̄). Note that the creation and annihilation
operators are only defined on a dense subset of Fock space, for, in general, the
sum on the right in (99) will not converge for the right sides of (100) and (101).
It is an easy exercise in tensor calculus to work out the commutators of these
operators:

[C(σ), C(σ′)] = 0

[A(τ̄ ), A(τ̄ ′)] = 0

[A(τ̄), C(σ)] = (σµ τ̄µ)I
(102)

29
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and a few of the operators on these spaces.

Let H be a Hilbert space. The (symmetric) Fock space based on H is the
Hilbert space

C ⊕ Hα ⊕ (H(α ⊗ Hβ)) ⊕ (H(α ⊗ Hβ ⊗ Hγ)) ⊕ · · · (97)

where Hα, Hβ , etc. are all copies of H (Sect. 9), and where the round brackets
surrounding the indices of the tensor products mean that the Hilbert space of
symmetric tensors is to be used. More explicitly, an element of the symmetric
Fock space consists of a string

Ψ = (ξ, ξα, ξαβ , ξαβγ , . . .) (98)

where ξ is a complex number, ξα is an element of H , ξαβ is a symmetric (ξαβ =
ξ(αβ)) second-rank tensor over H , ξαβγ is a symmetric third-rank tensor over
H , etc., for which the sum

‖Ψ‖2 = ξξ̄ + ξαξ̄α + ξαβ ξ̄αβ + ξαβγ ξ̄αβγ + · · · , (99)

which defines the norm of Ψ, converges. Physically, ξα1···αn represents the “n-
particle contribution” to Ψ. That the tensors are required to be symmetric
is a reflection of the idea that “Ψ is invariant under interchange of identical
particles”.

We next introduce the creation and annihilation operators. Let σ ∈ H . We
associate with this σ an operator C(σ) on Fock space, this operator defined by
its action on a typical element (98):

C(σ)Ψ = (0, σαξ,
√

2σ(αξβ),
√

3σ(αξβγ), . . .) (100)

Similarly, with each τ̄ ∈ H̄ we associate an operator A(τ̄), defined by

A(τ̄)Ψ = (ξµτ̄µ,
√

2ξµατ̄µ,
√

3ξµαβ τ̄µ, . . .) (101)

This C(σ) is called the creation operator (associated with σ); A(τ̄) the anni-
hilation operator (associated with τ̄). Note that the creation and annihilation
operators are only defined on a dense subset of Fock space, for, in general, the
sum on the right in (99) will not converge for the right sides of (100) and (101).
It is an easy exercise in tensor calculus to work out the commutators of these
operators:

[C(σ), C(σ′)] = 0

[A(τ̄ ), A(τ̄ ′)] = 0

[A(τ̄), C(σ)] = (σµ τ̄µ)I
(102)
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The “harmonic oscillators” give the creation and annihilation
operators of QFT.
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A critique

These concepts are wrong -- or, at least, 
misleading -- for QFT in curved spacetimes.

The notion of “particle” is not absolute.  

Particles may appear out of the vacuum: 
Leonard Parker, Stephen Hawking and Bill 
Unruh.

Particles are a useful abstraction when 
talking about detectors coupled to quantum 
fields. 
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Algebraic Quantum Field Theory

We need to construct:
(a) A *-algebra of observables
(b) A Hilbert space carrying a *-representation
(c) A rule for the dynamics.

We will use the classical data to
guide the construction of the QFT.
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What is a ∗-algebra?
A complex vector space A

with a product defined on A.
,

The product is associative and bi-linear.
Finally an involution, written ∗, satisfying:

(A + αB)∗ = A∗ + αB∗

A∗∗ = A

(AB)∗ = B∗A∗

∗ is an abstraction of †.
An abstract ∗-algebra can be represented as a concrete collection
of operators on a Hilbert space: ∗-representation.
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A ∗-algebra is a vector space with a
multiplication and an involution (∗).
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The ∗-Algebra of Observables

Start with the real vector space V of
classical solutions to the KG equation.

A ∗-algebra is a vector space with a
multiplication and an involution (∗).

Take the free ∗-algebra generated by V .
Write F [φ] for the element of the algebra
corresponding to φ ∈ V .
Impose the Dirac condition:

[F [φ], F [ψ]] := F [φ]F [ψ]− F [ψ]F [φ] = Ω(φ,ψ)
Saturday, March 13, 2010



How should the the abstract ∗-algebra be realized
as as operators on a Hilbert space?

We should have a Fock space built out
of V , the classical solutions.

How can we make the real vector space V into
a complex vector space?

Look for a complex structure: J : V → V

J2 = −I

But what physical idea will motivate
the choice of J?
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Polarizations and Complex Structures

φ = φ(+) + φ(−)

φ(±) live in VC := V ⊕ iV

VC = V (+) ⊕ V (−)

(a + ib)(u, v) = (au− bv, bu + av)

P (±) : VC → V (±)
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Polarizations and Complex Structures

φ = φ(+) + φ(−)

φ(±) live in VC := V ⊕ iV

VC = V (+) ⊕ V (−)

(a + ib)(u, v) = (au− bv, bu + av)

P (±) : VC → V (±)

φ(+) = φ(−)
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Complex Structure ≡ Polarization

Jφ = iφ(+) − iφ(−)

P (+)φ = − i

2
[Jφ + iφ]

P (−)φ =
i

2
[Jφ− iφ]
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Complex Structure ≡ Polarization

Choosing a decomposition into positive and
negative frequencies is equivalent to choosing
a complex structure.

Jφ = iφ(+) − iφ(−)

P (+)φ = − i

2
[Jφ + iφ]

P (−)φ =
i

2
[Jφ− iφ]
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In curved spacetime we have have no canonical
choice of complex structure.

Hence no canonical choice of positive and
negative frequencies.

Hence, one observer’s vacuum may not be
another observer’s vacuum.

Thus there is a transformation from one observer’s
Fock space to another’s.
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III

III

IV

Horizon

Horizon

1

Rindler spacetime.
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will disagree about the vacuum.
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The change of annihilation and creation operators
is called a Bogolioubov transformation
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The accelerating observer and the inertial observer
will disagree about the vacuum.

The transformation is given by

ak !→ αkãk + βkã†k
where ã is the accelerating observer’s annihilation operator.

There will be modes corresponding to the inaccessible region,

so the accelerating observer’s density matrix will involve a partial trace
over the modes of the inaccessible region.

The change of annihilation and creation operators
is called a Bogolioubov transformation
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The inertial observer’s vacuum will look like a bath
of thermal radiation to the accelerating observer.

Unruh Effect

The notion of “particle” is not absoute:

it only refers to the effects of a detector
interacting with a field.
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Channels

Message
Encoder

Channel

p(y|x)
Decoder

Xn Y n

Estimate of
the message.

A typical channel.
How well can we estimate the intended
message if the channel is noisy?
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Channel Capacity

The basic measure of information 
transmission.

Shannon’s coding theorem: All transmission 
rates below the capacity are achievable with 
asymptotically zero probability of error.
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What is a quantum channel?

Must take density matrices to density matrices:

ρ !→ E(ρ)

Most general form for E

E(ρ) =
∑

i AiρA†
i

where the Ai are linear maps
and

∑
i A†

iAi = I

Saturday, March 13, 2010



von Neumann Entropy

Saturday, March 13, 2010
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H(ρ) = −tr(ρ log2 ρ) = −
∑

i λi log2 λi
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von Neumann Entropy

H(ρ) = −tr(ρ log2 ρ) = −
∑

i λi log2 λi

If ρ =
∑

i piρi then define

χ(ρ) = H(ρ)−
∑

i

piH(ρi)

Holevo χ quantity
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von Neumann Entropy

H(ρ) = −tr(ρ log2 ρ) = −
∑

i λi log2 λi

If ρ =
∑

i piρi then define

χ(ρ) = H(ρ)−
∑

i

piH(ρi)

Holevo χ quantity

Holevo bound: χ is an upper bound
on accessible information in ρ.
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represent classical data and encode classical 
data in a quantum state.  Bob has to extract 
the classical data from the quantum state.
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Quantum Channels 1

We want to send quantum data from Alice to 
Bob.

Sending classical data: choose a basis to 
represent classical data and encode classical 
data in a quantum state.  Bob has to extract 
the classical data from the quantum state.

Sending quantum data: Alice wants to send 
the whole quantum state.
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Quantum Channels 2

New possibility: If Alice uses multiple copies 
of the channel she could entangle the 
quantum states across multiple uses of the 
channel.

We do not know how to compute the capacity 
in this case!
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Saturday, March 13, 2010



Quantum Channels 3
Restriction: Alice can only prepare product states:

ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn

Saturday, March 13, 2010



Quantum Channels 3
Restriction: Alice can only prepare product states:

ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn

One for each use of the channel

Saturday, March 13, 2010



Quantum Channels 3
Restriction: Alice can only prepare product states:

ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn

One for each use of the channel

C(1)(E)

Saturday, March 13, 2010



Quantum Channels 3
Restriction: Alice can only prepare product states:

ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn

One for each use of the channel

C(1)(E) the one-shot capacity
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Quantum Channels 3
Restriction: Alice can only prepare product states:

ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn

One for each use of the channel

In this case we have the Holevo-Schumacher-Westmoreland
theorem, which gives us a ”formula” for the capacity.

C(1)(E) the one-shot capacity
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The Holevo-Schumacher-Westmoreland Theorem

C(1)(E) = max
(pj ,ρj)

[H(E(
∑

j

pjρj)−
∑

j

pjH(E(ρj))]
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The Holevo-Schumacher-Westmoreland Theorem

C(1)(E) = max
(pj ,ρj)

[H(E(
∑

j

pjρj)−
∑

j

pjH(E(ρj))]

ρj are the possible input states.

Pure state ensembles suffice.

I will spare you hideous formulas in what follows!
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Private Capacity

Quantum communication can be used
for establishing secret correlations. [BB84]

What is the capacity for sending private data?
Purely classical: Maurer (1994) and Ahlswede & Csiszar (1993)

What is the private capacity of a quantum channel for
communicating classical data? [Devetak 2005]

What is the private capacity of a quantum channel for
communicating quantum data? [Hayden et al. in progress]
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and Eve is very unlikely to be able to decode it.
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· !! E

Quantum state is a density matrix on B ⊗ E
Alice wants to send a message to Bob
so that with high probability Bob can decode it
and Eve is very unlikely to be able to decode it.
An (n, ε) private channel code
of rate R allows Alice to send one of 2nR

messages,Bob can decode with error less than ε
and Eve cannot find out more than ε bits.
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Private Quantum Communication

A
|ψ〉 !! N !! D

|φ〉 !! B

Noisy channel Decoder
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Private Quantum Communication

A
|ψ〉 !! N !! D

|φ〉 !! B

Noisy channel Decoder

A
|ψ〉 !! UN !!
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! D
|φ〉 !! B
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Private Quantum Communication

A
|ψ〉 !! N !! D

|φ〉 !! B

Noisy channel Decoder

A
|ψ〉 !! UN !!

""!
!!

!!
!!

! D
|φ〉 !! B

· !! Eve
Eve cannot get a copy of φ: automatic privacy.
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Quantum communication: Alice sending 
quantum data to Bob, and Eve intercepts.

However, Eve is accelerating so gets Unruh 
noise.

What is the private capacity for Alice to Bob?  
Can we use the Unruh noise?

Our Setting Today
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Alice !! · !! · !!

Eve
""!!!!!!!!
· !! Bob

·

""!!!!!!!!

·

Alice !! · !! · !!

Eve
""

· !! Bob

·

##

Eve intercepts.

Eve intercepts while accelerating.
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Eve is not a “part” of the environment [Eve !⊆ Env]
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Alice −→ N −→ Bob

Alice −→ E −→ Eve
Eve is not a “part” of the environment [Eve !⊆ Env]

Does the Unruh effect give a channel
from Alice to Bob with nonzero
quantum and classical private capacity?
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|φ〉 −→

Alice Bob
Γ

Encoding

N

N

•
•

n copies
•
•
•

N

D

Decoding

1
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Encoding
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Decoding
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|φ〉 −→ −→ |φ̃〉
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Regularization

Quantum informatic quantities are usually computed by:

allowing n uses of the channel and computing

lim
n→∞

1
n

Q(n)

where Q is the quantity of interest.

1. Easier to compute

2. Essentially using the law of large numbers
to get better behaviour
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Private classical capacity
of a quantum channel.

Alice sends to Bob on id a noiseless channel

Eve receives on a noisy channel NC

We allow n uses of the channel and measure the optimal rate,
in bits per channel use, that Alice can send to Bob in such
a way that Eve cannot read the messages,

C(1)
p (id⊗n,NC⊗n) = max

Q
[χ(Q)− χ(NC⊗n(Q))].

where Q in an ensemble of pure states on n copies of the channel.

Cp(id,NC) = lim
n→∞

1
n

C(1)
p (id⊗n,NC⊗n)
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Formalizing Private Quantum Capacity

Given N1 from Alice to Bob
Given N2 from Alice to Eve.

An (n, k, δ, ε) private code is an encoding channel Γ
taking k qubits to the input of N⊗n

1

and a decoding channel D taking Bob’s output back
to k qubits, such that:

||(id⊗D ◦N⊗n
1 ◦ Γ)(Φ)− Φ||1 ≤ δ

|| . . . ||1 ≤ ε

Φ is the maximally entangled state

Uses N2 and compares the output with the maximally mixed state.
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FIG. 1: (a) 1
nC(1)

p (id⊗n
2 ,N⊗n) for n = 1, 2. Each curve gives

a lower bound on the private classical capacity Cp(id2,N ).
The n = 2 curve strictly dominates the n = 1 curve, illustrat-
ing that the maximal output entropy is not additive. This
contrasts sharply with the minimal output entropy, which is
widely believed to be additive, a conjecture that has been the
focus of significant effort [12]. (b) H(N (|ψ1〉〈ψ1|)), the en-
tropy of the output state for a pure input or, equivalently,
the entanglement between Eve’s output and Eve’s environ-
ment. This corresponds to the second term in Eq. (5) and
was also studied in [5], where it was approximated by diag-
onalizing the k = 0, 1 blocks of Eq. (2). Using our methods,
it can be shown that the exact value of the entanglement is
−3 [z ln z/(1 − z) + ln (1 − z)]+(1−z)2 ∂

∂z
∂
∂sLi (s, z) |s=0 nats.

channel. Moreover, this upper bound is attainable: given
any multicopy input state |ψn〉, the bound of Eq. (5) cor-
responds to taking the ensemble over states of the form
U⊗n |ψn〉 with U distributed according to the Haar mea-
sure.

Evaluating the formula by optimizing over pure states
|ψn〉 on n copies then gives successive lower bounds on
the true classical private capacity. For example, the op-
timization for n = 1 is trivial due to the covariance of N
and gives that Cp(id2,N ) is bounded above by

C(1)
p (id2,N ) = (1− z)2

∂

∂z

[
∂

∂s
Li (s, z) |s=0

]

− (1− z)3

2
∂2

∂z2

[
z

∂

∂s
Li (s, z) |s=0

]
. (7)

where Li (s, z) is the polylogarithm function. We plot
these bounds for n = 1, 2 in Fig. 1.

PRIVATE QUANTUM CAPACITY

General case

The definition of the private quantum capacity is done
by analogy with the private classical capacity except that
Alice sends Bob qubits instead of classical bits. We will
take that to mean that Alice would like to transmit halves
of entangled pairs to Bob. Privacy in this context means
that there should be no correlation between the output of
Eve’s channel and the entanglement kept in Alice’s labo-

ratory. Since the private quantum capacity has not been
studied elsewhere, we begin by providing some formal
definitions and studying the general case.

Given are a quantum channel N1 from Alice to Bob
and another N2 from Alice to Eve. Let Φ2k rep-
resent the density operator of k maximally entangled
pairs of qubits and τ2k the maximally mixed state on
k qubits. An (n, k, δ, ε) private entanglement trans-
mission code from Alice to Bob consists of an en-
coding channel E taking k qubits into the input of
N⊗n

1 and a decoding channel D taking the output
of Bob’s channel N⊗n

1 back to k qubits satisfying
1. Transmission:∥∥(id⊗D ◦N⊗n

1 ◦ E)(Φ2k)− Φ2k

∥∥
1
≤ δ.

2. Privacy:∥∥(id⊗N⊗n
2 ◦ E)(Φ2k)− τ2k ⊗ (N⊗n

2 ◦ E)(τ2k)
∥∥

1
≤ ε.

A rate Q is an achievable rate for private entanglement
transmission if for all δ, ε > 0 and sufficiently large n
there exist (n, &nQ', δ, ε) private entanglement transmis-
sion codes. The private quantum capacity is the supre-
mum of the achievable rates.

Achievable rates: Given any pure state |ϕ〉AA′
, the

rate min(I(A〉B)ρ,H(A|E)σ) is achievable, where ρ =
(id⊗N1)(ϕ), σ = (id⊗N2)(ϕ), I(A〉B)ρ = H(B)ρ −
H(AB)ρ is the coherent information and H(A|E)σ =
H(AE)σ −H(E)σ the conditional entropy.

Designing the necessary codes is simply a matter of
adapting the results of [13]. Write N c

2 for the channel to
the environment Ec of Eve’s channel, that is, the com-
plement of Eve’s channel with respect its Stinespring di-
lation. The privacy condition applied to N2 is equiva-
lent to entanglement transmission to N c

2 via Uhlmann’s
theorem [10]. The encodings analyzed in [13] do not de-
pend on the channels, however, just the dummy input
ϕ. Thus, the same encoding can be used to achieve en-
tanglement transmission from Alice to Bob and from Al-
ice to Eve’s complement provided the code’s rate sat-
isfies both Q ≤ I(A〉B)ρ and Q ≤ I(A〉Ec)ω, where
ω = (id⊗N c

2 )(ϕ). But since σ and ω are restrictions
of a common pure state on AEEc, H(Ec)ω = H(AE)σ

and H(AEc)ω = H(E)σ, so I(A〉Ec)ω = H(A|E)σ.

If we write Q(1)
p (N1,N2) for the supremum of this

achievable rate over all input states, then it is possible
to express the private quantum capacity in terms of this
one-shot achievable rate.

“Trivial” converse: The private quantum capacity is
equal to limn→∞

1
nQ(1)

p (N⊗n
1 ,N⊗n

2 ).

This follows from the equivalence of entanglement
transmission with privacy to the complement [7, 13] and
the asymptotic optimality of the optimized coherent in-
formation for entanglement transmission [14].
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widely believed to be additive, a conjecture that has been the
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ment. This corresponds to the second term in Eq. (5) and
was also studied in [5], where it was approximated by diag-
onalizing the k = 0, 1 blocks of Eq. (2). Using our methods,
it can be shown that the exact value of the entanglement is
−3 [z ln z/(1 − z) + ln (1 − z)]+(1−z)2 ∂
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∂
∂sLi (s, z) |s=0 nats.

channel. Moreover, this upper bound is attainable: given
any multicopy input state |ψn〉, the bound of Eq. (5) cor-
responds to taking the ensemble over states of the form
U⊗n |ψn〉 with U distributed according to the Haar mea-
sure.

Evaluating the formula by optimizing over pure states
|ψn〉 on n copies then gives successive lower bounds on
the true classical private capacity. For example, the op-
timization for n = 1 is trivial due to the covariance of N
and gives that Cp(id2,N ) is bounded above by

C(1)
p (id2,N ) = (1− z)2

∂

∂z
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∂
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where Li (s, z) is the polylogarithm function. We plot
these bounds for n = 1, 2 in Fig. 1.

PRIVATE QUANTUM CAPACITY

General case

The definition of the private quantum capacity is done
by analogy with the private classical capacity except that
Alice sends Bob qubits instead of classical bits. We will
take that to mean that Alice would like to transmit halves
of entangled pairs to Bob. Privacy in this context means
that there should be no correlation between the output of
Eve’s channel and the entanglement kept in Alice’s labo-

ratory. Since the private quantum capacity has not been
studied elsewhere, we begin by providing some formal
definitions and studying the general case.

Given are a quantum channel N1 from Alice to Bob
and another N2 from Alice to Eve. Let Φ2k rep-
resent the density operator of k maximally entangled
pairs of qubits and τ2k the maximally mixed state on
k qubits. An (n, k, δ, ε) private entanglement trans-
mission code from Alice to Bob consists of an en-
coding channel E taking k qubits into the input of
N⊗n

1 and a decoding channel D taking the output
of Bob’s channel N⊗n

1 back to k qubits satisfying
1. Transmission:∥∥(id⊗D ◦N⊗n

1 ◦ E)(Φ2k)− Φ2k

∥∥
1
≤ δ.

2. Privacy:∥∥(id⊗N⊗n
2 ◦ E)(Φ2k)− τ2k ⊗ (N⊗n

2 ◦ E)(τ2k)
∥∥

1
≤ ε.

A rate Q is an achievable rate for private entanglement
transmission if for all δ, ε > 0 and sufficiently large n
there exist (n, &nQ', δ, ε) private entanglement transmis-
sion codes. The private quantum capacity is the supre-
mum of the achievable rates.

Achievable rates: Given any pure state |ϕ〉AA′
, the

rate min(I(A〉B)ρ,H(A|E)σ) is achievable, where ρ =
(id⊗N1)(ϕ), σ = (id⊗N2)(ϕ), I(A〉B)ρ = H(B)ρ −
H(AB)ρ is the coherent information and H(A|E)σ =
H(AE)σ −H(E)σ the conditional entropy.

Designing the necessary codes is simply a matter of
adapting the results of [13]. Write N c

2 for the channel to
the environment Ec of Eve’s channel, that is, the com-
plement of Eve’s channel with respect its Stinespring di-
lation. The privacy condition applied to N2 is equiva-
lent to entanglement transmission to N c

2 via Uhlmann’s
theorem [10]. The encodings analyzed in [13] do not de-
pend on the channels, however, just the dummy input
ϕ. Thus, the same encoding can be used to achieve en-
tanglement transmission from Alice to Bob and from Al-
ice to Eve’s complement provided the code’s rate sat-
isfies both Q ≤ I(A〉B)ρ and Q ≤ I(A〉Ec)ω, where
ω = (id⊗N c

2 )(ϕ). But since σ and ω are restrictions
of a common pure state on AEEc, H(Ec)ω = H(AE)σ

and H(AEc)ω = H(E)σ, so I(A〉Ec)ω = H(A|E)σ.

If we write Q(1)
p (N1,N2) for the supremum of this

achievable rate over all input states, then it is possible
to express the private quantum capacity in terms of this
one-shot achievable rate.

“Trivial” converse: The private quantum capacity is
equal to limn→∞

1
nQ(1)

p (N⊗n
1 ,N⊗n

2 ).

This follows from the equivalence of entanglement
transmission with privacy to the complement [7, 13] and
the asymptotic optimality of the optimized coherent in-
formation for entanglement transmission [14].

So calculating the private capacity involves
computing conditional entropies and then minimzing.
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Let the annihilation operators for the two modes be a and b.

A Bogolioubov transformation will change the modes to Eve’s Fock space.

2

tors: this is called a Bogoliubov transformation [9]. We
emphasize that there is one Hilbert space of quantum
fields; only the Fock decomposition changes. A Bogoli-
ubov transformation acts independently in each mode, so
we can assume that we have detectors tuned to specific
modes and not worry about the transformation of all the
modes.

Consider a state |ψ〉 of the quantum field. The in-
ertial observers may see this as a many particle state:
Πia

†
i |vac〉. The Bogoliubov transformation changes each

ai to some combination αiã†+βiã where the ã and ã† are
the operators of the non-inertial observers’ Fock decom-
position. The Unruh channel N represents this change,
followed by tracing over the modes that are in the wedge
inaccessible to the accelerating observer, in the explicit
Fock space description of the field .

We will assume that Alice encodes information for Bob
by preparing quantum states of a bosonic, dual-rail qubit.
In other words, she has access to a two-dimensional sector
of her (and Bob’s) Fock space, with basis vectors given
by a single excitation of a massless scalar field in one of
two different modes, which we label by their associated
annihilation operators a and c [19]. Uac(r) is the unitary
operator transforming the sector of Alice’s Fock space to
the corresponding sector of Eve’s Fock space. In short,
the channel is Uac followed by the appropriate trace. The
parameter r is related to Eve’s proper acceleration τ and
the mode frequency ω by tanh r = exp (−πω/τ) [9].

In our dual-rail case, an arbitrary pure input state
|ψ〉 = (αb†+βa†) |vac〉 is transformed to Eve’s Fock space
according to

Uabcd(r) = Uac(r)⊗ Ubd(r) = er(a†c†+b†d†)−r(ac+bd)

= 1
cosh2 r etanh r(a†c†+b†d†)

× e− ln cosh r(a†a+b†b+c†c+d†d)e− tanh r(ac+bd). (1)

For all states in the dual-rail basis Eq. (1) reduces to
Uabcd(r) = 1/ cosh3 r exp [tanh r(a†c† + b†d†)]. This al-
lows us to write the state in Eve’s Fock space as |ψ〉 =
Uabcd(r)(αb† + βa†) |vac〉 = (αb† + βa†)Uabcd(r) |vac〉. If
we trace over degrees of freedom beyond Eve’s horizon
(cd), then σ = N (|ψ〉〈ψ|) = (1− z)3

⊕∞
k=0 zk σk is block

diagonal with blocks σk labeled by the total excitation
number k (z = tanh2 r):

σk ∝
k∑

n=0

[
|α|2(n + 1)|k − n, n + 1〉〈k − n, n + 1|

+ |β|2(k − n + 1)|k − n + 1, n〉〈k − n + 1, n|

+ αβ̄
√

(n + 1)(k − n + 1)|k − n, n + 1〉〈k − n + 1, n|

+ h.c.
]
. (2)

Each block σk can be expressed as a linear combination
of generators J (k+2)

x , J (k+2)
y and J (k+2)

z of the irreducible

(k + 2)−dimensional representation of SU(2). ( (J (2), for
example, consists of the Pauli matrices scaled by 1/2.) If
σ = N (ρ) with ρ = 11/2 + (n · (J (2) arbitrary, then

σk = 11(k + 1)/2 + nxJ (k+2)
x + nyJ (k+2)

y + nzJ
(k+2)
z . (3)

As a consequence, the channel N to Eve is covariant in
the sense that N (UρU†) = R(U)N (ρ)R(U†) where R is
the infinite dimensional representation of SU(2) given by
the direct sum over all its finite dimensional irreps. This
makes it easy to diagonalize σ: the eigenvalues of σk are
skm = 1/2[k + 1 + (k + 1− 2m)S] where S = ‖(n‖2 is the
length of ρ’s Bloch vector and m runs from 0 to k + 1.

PRIVATE CLASSICAL CAPACITY

Capacities are defined by allowing arbitrarily many
uses of a channel and asking that the various data trans-
mission or privacy requirements hold to any desired level
of approximation in the limit of many uses. The private
classical capacity Cp(id2,N ) is the optimal rate, mea-
sured in bits per channel use, at which Alice can send
classical data to Bob over the noiseless channel id2 in
such a way that Eve is incapable of distinguishing the
messages based on her view, the output of the channel
N . A more formal definition can be found in [7] along
with a general formula for the private classical capac-
ity. In this case, the formula reduces to Cp(id2,N ) =
limn→∞

1
nC(1)

p (id⊗n
2 ,N⊗n), where

C(1)
p (id⊗n

2 ,N⊗n) = max
E

[
χ(E)− χ(N⊗n(E))

]
. (4)

Here E is any ensemble of pure state inputs on n copies of
the channel and χ({pi, τi}) = H(

∑
x pxτx)−

∑
x pxH(τx)

is the Holevo quantity, with H the von Neumann entropy.
(See [10].) Eq. (4) is therefore bounded above by

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
+ max

|ψn〉
H

(
N⊗n(|ψn〉〈ψn|)

)
,

(5)
where ρn and ψn are any input mixed or pure states,
respectively, to n copies of the channel. The first term, a
quantity known as (minus) the CB minimal conditional
entropy, was studied in [11], where it was shown to be
additive in the sense that maximizing it over n copies
of the channel yields exactly n times the maximal value
for one copy. Furthermore, strong subadditivity of the
entropy ensures that the first term of Eq. (5) is concave
in τ . This, combined with the covariance of the channel,
implies that the single copy version is maximized by the
maximally mixed input:

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
= n[1−H(N (I/2))]. (6)

Eq. (5) therefore provides an upper bound on the classical
private capacity that depends only on the maximal out-
put entropy, optimized over all pure state inputs to theSaturday, March 13, 2010
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tors: this is called a Bogoliubov transformation [9]. We
emphasize that there is one Hilbert space of quantum
fields; only the Fock decomposition changes. A Bogoli-
ubov transformation acts independently in each mode, so
we can assume that we have detectors tuned to specific
modes and not worry about the transformation of all the
modes.

Consider a state |ψ〉 of the quantum field. The in-
ertial observers may see this as a many particle state:
Πia

†
i |vac〉. The Bogoliubov transformation changes each

ai to some combination αiã†+βiã where the ã and ã† are
the operators of the non-inertial observers’ Fock decom-
position. The Unruh channel N represents this change,
followed by tracing over the modes that are in the wedge
inaccessible to the accelerating observer, in the explicit
Fock space description of the field .

We will assume that Alice encodes information for Bob
by preparing quantum states of a bosonic, dual-rail qubit.
In other words, she has access to a two-dimensional sector
of her (and Bob’s) Fock space, with basis vectors given
by a single excitation of a massless scalar field in one of
two different modes, which we label by their associated
annihilation operators a and c [19]. Uac(r) is the unitary
operator transforming the sector of Alice’s Fock space to
the corresponding sector of Eve’s Fock space. In short,
the channel is Uac followed by the appropriate trace. The
parameter r is related to Eve’s proper acceleration τ and
the mode frequency ω by tanh r = exp (−πω/τ) [9].

In our dual-rail case, an arbitrary pure input state
|ψ〉 = (αb†+βa†) |vac〉 is transformed to Eve’s Fock space
according to

Uabcd(r) = Uac(r)⊗ Ubd(r) = er(a†c†+b†d†)−r(ac+bd)

= 1
cosh2 r etanh r(a†c†+b†d†)

× e− ln cosh r(a†a+b†b+c†c+d†d)e− tanh r(ac+bd). (1)

For all states in the dual-rail basis Eq. (1) reduces to
Uabcd(r) = 1/ cosh3 r exp [tanh r(a†c† + b†d†)]. This al-
lows us to write the state in Eve’s Fock space as |ψ〉 =
Uabcd(r)(αb† + βa†) |vac〉 = (αb† + βa†)Uabcd(r) |vac〉. If
we trace over degrees of freedom beyond Eve’s horizon
(cd), then σ = N (|ψ〉〈ψ|) = (1− z)3

⊕∞
k=0 zk σk is block

diagonal with blocks σk labeled by the total excitation
number k (z = tanh2 r):

σk ∝
k∑

n=0

[
|α|2(n + 1)|k − n, n + 1〉〈k − n, n + 1|

+ |β|2(k − n + 1)|k − n + 1, n〉〈k − n + 1, n|

+ αβ̄
√

(n + 1)(k − n + 1)|k − n, n + 1〉〈k − n + 1, n|

+ h.c.
]
. (2)

Each block σk can be expressed as a linear combination
of generators J (k+2)

x , J (k+2)
y and J (k+2)

z of the irreducible

(k + 2)−dimensional representation of SU(2). ( (J (2), for
example, consists of the Pauli matrices scaled by 1/2.) If
σ = N (ρ) with ρ = 11/2 + (n · (J (2) arbitrary, then

σk = 11(k + 1)/2 + nxJ (k+2)
x + nyJ (k+2)

y + nzJ
(k+2)
z . (3)

As a consequence, the channel N to Eve is covariant in
the sense that N (UρU†) = R(U)N (ρ)R(U†) where R is
the infinite dimensional representation of SU(2) given by
the direct sum over all its finite dimensional irreps. This
makes it easy to diagonalize σ: the eigenvalues of σk are
skm = 1/2[k + 1 + (k + 1− 2m)S] where S = ‖(n‖2 is the
length of ρ’s Bloch vector and m runs from 0 to k + 1.

PRIVATE CLASSICAL CAPACITY

Capacities are defined by allowing arbitrarily many
uses of a channel and asking that the various data trans-
mission or privacy requirements hold to any desired level
of approximation in the limit of many uses. The private
classical capacity Cp(id2,N ) is the optimal rate, mea-
sured in bits per channel use, at which Alice can send
classical data to Bob over the noiseless channel id2 in
such a way that Eve is incapable of distinguishing the
messages based on her view, the output of the channel
N . A more formal definition can be found in [7] along
with a general formula for the private classical capac-
ity. In this case, the formula reduces to Cp(id2,N ) =
limn→∞

1
nC(1)

p (id⊗n
2 ,N⊗n), where

C(1)
p (id⊗n

2 ,N⊗n) = max
E

[
χ(E)− χ(N⊗n(E))

]
. (4)

Here E is any ensemble of pure state inputs on n copies of
the channel and χ({pi, τi}) = H(

∑
x pxτx)−

∑
x pxH(τx)

is the Holevo quantity, with H the von Neumann entropy.
(See [10].) Eq. (4) is therefore bounded above by

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
+ max

|ψn〉
H

(
N⊗n(|ψn〉〈ψn|)

)
,

(5)
where ρn and ψn are any input mixed or pure states,
respectively, to n copies of the channel. The first term, a
quantity known as (minus) the CB minimal conditional
entropy, was studied in [11], where it was shown to be
additive in the sense that maximizing it over n copies
of the channel yields exactly n times the maximal value
for one copy. Furthermore, strong subadditivity of the
entropy ensures that the first term of Eq. (5) is concave
in τ . This, combined with the covariance of the channel,
implies that the single copy version is maximized by the
maximally mixed input:

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
= n[1−H(N (I/2))]. (6)

Eq. (5) therefore provides an upper bound on the classical
private capacity that depends only on the maximal out-
put entropy, optimized over all pure state inputs to the

The output density matrix is infinite dimensional and block diagonal.
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two different modes, which we label by their associated
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the corresponding sector of Eve’s Fock space. In short,
the channel is Uac followed by the appropriate trace. The
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For all states in the dual-rail basis Eq. (1) reduces to
Uabcd(r) = 1/ cosh3 r exp [tanh r(a†c† + b†d†)]. This al-
lows us to write the state in Eve’s Fock space as |ψ〉 =
Uabcd(r)(αb† + βa†) |vac〉 = (αb† + βa†)Uabcd(r) |vac〉. If
we trace over degrees of freedom beyond Eve’s horizon
(cd), then σ = N (|ψ〉〈ψ|) = (1− z)3
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k=0 zk σk is block

diagonal with blocks σk labeled by the total excitation
number k (z = tanh2 r):
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x , J (k+2)
y and J (k+2)
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(k + 2)−dimensional representation of SU(2). ( (J (2), for
example, consists of the Pauli matrices scaled by 1/2.) If
σ = N (ρ) with ρ = 11/2 + (n · (J (2) arbitrary, then

σk = 11(k + 1)/2 + nxJ (k+2)
x + nyJ (k+2)

y + nzJ
(k+2)
z . (3)

As a consequence, the channel N to Eve is covariant in
the sense that N (UρU†) = R(U)N (ρ)R(U†) where R is
the infinite dimensional representation of SU(2) given by
the direct sum over all its finite dimensional irreps. This
makes it easy to diagonalize σ: the eigenvalues of σk are
skm = 1/2[k + 1 + (k + 1− 2m)S] where S = ‖(n‖2 is the
length of ρ’s Bloch vector and m runs from 0 to k + 1.

PRIVATE CLASSICAL CAPACITY

Capacities are defined by allowing arbitrarily many
uses of a channel and asking that the various data trans-
mission or privacy requirements hold to any desired level
of approximation in the limit of many uses. The private
classical capacity Cp(id2,N ) is the optimal rate, mea-
sured in bits per channel use, at which Alice can send
classical data to Bob over the noiseless channel id2 in
such a way that Eve is incapable of distinguishing the
messages based on her view, the output of the channel
N . A more formal definition can be found in [7] along
with a general formula for the private classical capac-
ity. In this case, the formula reduces to Cp(id2,N ) =
limn→∞

1
nC(1)

p (id⊗n
2 ,N⊗n), where

C(1)
p (id⊗n

2 ,N⊗n) = max
E

[
χ(E)− χ(N⊗n(E))

]
. (4)

Here E is any ensemble of pure state inputs on n copies of
the channel and χ({pi, τi}) = H(

∑
x pxτx)−

∑
x pxH(τx)

is the Holevo quantity, with H the von Neumann entropy.
(See [10].) Eq. (4) is therefore bounded above by

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
+ max

|ψn〉
H

(
N⊗n(|ψn〉〈ψn|)

)
,

(5)
where ρn and ψn are any input mixed or pure states,
respectively, to n copies of the channel. The first term, a
quantity known as (minus) the CB minimal conditional
entropy, was studied in [11], where it was shown to be
additive in the sense that maximizing it over n copies
of the channel yields exactly n times the maximal value
for one copy. Furthermore, strong subadditivity of the
entropy ensures that the first term of Eq. (5) is concave
in τ . This, combined with the covariance of the channel,
implies that the single copy version is maximized by the
maximally mixed input:

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
= n[1−H(N (I/2))]. (6)

Eq. (5) therefore provides an upper bound on the classical
private capacity that depends only on the maximal out-
put entropy, optimized over all pure state inputs to the

The output density matrix is infinite dimensional and block diagonal.

The only hope: deal with it block by block.
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tors: this is called a Bogoliubov transformation [9]. We
emphasize that there is one Hilbert space of quantum
fields; only the Fock decomposition changes. A Bogoli-
ubov transformation acts independently in each mode, so
we can assume that we have detectors tuned to specific
modes and not worry about the transformation of all the
modes.

Consider a state |ψ〉 of the quantum field. The in-
ertial observers may see this as a many particle state:
Πia

†
i |vac〉. The Bogoliubov transformation changes each

ai to some combination αiã†+βiã where the ã and ã† are
the operators of the non-inertial observers’ Fock decom-
position. The Unruh channel N represents this change,
followed by tracing over the modes that are in the wedge
inaccessible to the accelerating observer, in the explicit
Fock space description of the field .

We will assume that Alice encodes information for Bob
by preparing quantum states of a bosonic, dual-rail qubit.
In other words, she has access to a two-dimensional sector
of her (and Bob’s) Fock space, with basis vectors given
by a single excitation of a massless scalar field in one of
two different modes, which we label by their associated
annihilation operators a and c [19]. Uac(r) is the unitary
operator transforming the sector of Alice’s Fock space to
the corresponding sector of Eve’s Fock space. In short,
the channel is Uac followed by the appropriate trace. The
parameter r is related to Eve’s proper acceleration τ and
the mode frequency ω by tanh r = exp (−πω/τ) [9].

In our dual-rail case, an arbitrary pure input state
|ψ〉 = (αb†+βa†) |vac〉 is transformed to Eve’s Fock space
according to

Uabcd(r) = Uac(r)⊗ Ubd(r) = er(a†c†+b†d†)−r(ac+bd)

= 1
cosh2 r etanh r(a†c†+b†d†)

× e− ln cosh r(a†a+b†b+c†c+d†d)e− tanh r(ac+bd). (1)

For all states in the dual-rail basis Eq. (1) reduces to
Uabcd(r) = 1/ cosh3 r exp [tanh r(a†c† + b†d†)]. This al-
lows us to write the state in Eve’s Fock space as |ψ〉 =
Uabcd(r)(αb† + βa†) |vac〉 = (αb† + βa†)Uabcd(r) |vac〉. If
we trace over degrees of freedom beyond Eve’s horizon
(cd), then σ = N (|ψ〉〈ψ|) = (1− z)3

⊕∞
k=0 zk σk is block

diagonal with blocks σk labeled by the total excitation
number k (z = tanh2 r):

σk ∝
k∑

n=0

[
|α|2(n + 1)|k − n, n + 1〉〈k − n, n + 1|

+ |β|2(k − n + 1)|k − n + 1, n〉〈k − n + 1, n|

+ αβ̄
√

(n + 1)(k − n + 1)|k − n, n + 1〉〈k − n + 1, n|

+ h.c.
]
. (2)

Each block σk can be expressed as a linear combination
of generators J (k+2)

x , J (k+2)
y and J (k+2)

z of the irreducible

(k + 2)−dimensional representation of SU(2). ( (J (2), for
example, consists of the Pauli matrices scaled by 1/2.) If
σ = N (ρ) with ρ = 11/2 + (n · (J (2) arbitrary, then

σk = 11(k + 1)/2 + nxJ (k+2)
x + nyJ (k+2)

y + nzJ
(k+2)
z . (3)

As a consequence, the channel N to Eve is covariant in
the sense that N (UρU†) = R(U)N (ρ)R(U†) where R is
the infinite dimensional representation of SU(2) given by
the direct sum over all its finite dimensional irreps. This
makes it easy to diagonalize σ: the eigenvalues of σk are
skm = 1/2[k + 1 + (k + 1− 2m)S] where S = ‖(n‖2 is the
length of ρ’s Bloch vector and m runs from 0 to k + 1.

PRIVATE CLASSICAL CAPACITY

Capacities are defined by allowing arbitrarily many
uses of a channel and asking that the various data trans-
mission or privacy requirements hold to any desired level
of approximation in the limit of many uses. The private
classical capacity Cp(id2,N ) is the optimal rate, mea-
sured in bits per channel use, at which Alice can send
classical data to Bob over the noiseless channel id2 in
such a way that Eve is incapable of distinguishing the
messages based on her view, the output of the channel
N . A more formal definition can be found in [7] along
with a general formula for the private classical capac-
ity. In this case, the formula reduces to Cp(id2,N ) =
limn→∞

1
nC(1)

p (id⊗n
2 ,N⊗n), where

C(1)
p (id⊗n

2 ,N⊗n) = max
E

[
χ(E)− χ(N⊗n(E))

]
. (4)

Here E is any ensemble of pure state inputs on n copies of
the channel and χ({pi, τi}) = H(

∑
x pxτx)−

∑
x pxH(τx)

is the Holevo quantity, with H the von Neumann entropy.
(See [10].) Eq. (4) is therefore bounded above by

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
+ max

|ψn〉
H

(
N⊗n(|ψn〉〈ψn|)

)
,

(5)
where ρn and ψn are any input mixed or pure states,
respectively, to n copies of the channel. The first term, a
quantity known as (minus) the CB minimal conditional
entropy, was studied in [11], where it was shown to be
additive in the sense that maximizing it over n copies
of the channel yields exactly n times the maximal value
for one copy. Furthermore, strong subadditivity of the
entropy ensures that the first term of Eq. (5) is concave
in τ . This, combined with the covariance of the channel,
implies that the single copy version is maximized by the
maximally mixed input:

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
= n[1−H(N (I/2))]. (6)

Eq. (5) therefore provides an upper bound on the classical
private capacity that depends only on the maximal out-
put entropy, optimized over all pure state inputs to the
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In other words, she has access to a two-dimensional sector
of her (and Bob’s) Fock space, with basis vectors given
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two different modes, which we label by their associated
annihilation operators a and c [19]. Uac(r) is the unitary
operator transforming the sector of Alice’s Fock space to
the corresponding sector of Eve’s Fock space. In short,
the channel is Uac followed by the appropriate trace. The
parameter r is related to Eve’s proper acceleration τ and
the mode frequency ω by tanh r = exp (−πω/τ) [9].

In our dual-rail case, an arbitrary pure input state
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according to
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= 1
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we trace over degrees of freedom beyond Eve’s horizon
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diagonal with blocks σk labeled by the total excitation
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Each block σk can be expressed as a linear combination
of generators J (k+2)

x , J (k+2)
y and J (k+2)

z of the irreducible

(k + 2)−dimensional representation of SU(2). ( (J (2), for
example, consists of the Pauli matrices scaled by 1/2.) If
σ = N (ρ) with ρ = 11/2 + (n · (J (2) arbitrary, then

σk = 11(k + 1)/2 + nxJ (k+2)
x + nyJ (k+2)

y + nzJ
(k+2)
z . (3)

As a consequence, the channel N to Eve is covariant in
the sense that N (UρU†) = R(U)N (ρ)R(U†) where R is
the infinite dimensional representation of SU(2) given by
the direct sum over all its finite dimensional irreps. This
makes it easy to diagonalize σ: the eigenvalues of σk are
skm = 1/2[k + 1 + (k + 1− 2m)S] where S = ‖(n‖2 is the
length of ρ’s Bloch vector and m runs from 0 to k + 1.

PRIVATE CLASSICAL CAPACITY

Capacities are defined by allowing arbitrarily many
uses of a channel and asking that the various data trans-
mission or privacy requirements hold to any desired level
of approximation in the limit of many uses. The private
classical capacity Cp(id2,N ) is the optimal rate, mea-
sured in bits per channel use, at which Alice can send
classical data to Bob over the noiseless channel id2 in
such a way that Eve is incapable of distinguishing the
messages based on her view, the output of the channel
N . A more formal definition can be found in [7] along
with a general formula for the private classical capac-
ity. In this case, the formula reduces to Cp(id2,N ) =
limn→∞

1
nC(1)

p (id⊗n
2 ,N⊗n), where

C(1)
p (id⊗n

2 ,N⊗n) = max
E

[
χ(E)− χ(N⊗n(E))

]
. (4)

Here E is any ensemble of pure state inputs on n copies of
the channel and χ({pi, τi}) = H(

∑
x pxτx)−

∑
x pxH(τx)

is the Holevo quantity, with H the von Neumann entropy.
(See [10].) Eq. (4) is therefore bounded above by

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
+ max

|ψn〉
H

(
N⊗n(|ψn〉〈ψn|)

)
,

(5)
where ρn and ψn are any input mixed or pure states,
respectively, to n copies of the channel. The first term, a
quantity known as (minus) the CB minimal conditional
entropy, was studied in [11], where it was shown to be
additive in the sense that maximizing it over n copies
of the channel yields exactly n times the maximal value
for one copy. Furthermore, strong subadditivity of the
entropy ensures that the first term of Eq. (5) is concave
in τ . This, combined with the covariance of the channel,
implies that the single copy version is maximized by the
maximally mixed input:

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
= n[1−H(N (I/2))]. (6)

Eq. (5) therefore provides an upper bound on the classical
private capacity that depends only on the maximal out-
put entropy, optimized over all pure state inputs to the

Now we can calculate the entropies and
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Consider a state |ψ〉 of the quantum field. The in-
ertial observers may see this as a many particle state:
Πia

†
i |vac〉. The Bogoliubov transformation changes each

ai to some combination αiã†+βiã where the ã and ã† are
the operators of the non-inertial observers’ Fock decom-
position. The Unruh channel N represents this change,
followed by tracing over the modes that are in the wedge
inaccessible to the accelerating observer, in the explicit
Fock space description of the field .

We will assume that Alice encodes information for Bob
by preparing quantum states of a bosonic, dual-rail qubit.
In other words, she has access to a two-dimensional sector
of her (and Bob’s) Fock space, with basis vectors given
by a single excitation of a massless scalar field in one of
two different modes, which we label by their associated
annihilation operators a and c [19]. Uac(r) is the unitary
operator transforming the sector of Alice’s Fock space to
the corresponding sector of Eve’s Fock space. In short,
the channel is Uac followed by the appropriate trace. The
parameter r is related to Eve’s proper acceleration τ and
the mode frequency ω by tanh r = exp (−πω/τ) [9].

In our dual-rail case, an arbitrary pure input state
|ψ〉 = (αb†+βa†) |vac〉 is transformed to Eve’s Fock space
according to

Uabcd(r) = Uac(r)⊗ Ubd(r) = er(a†c†+b†d†)−r(ac+bd)

= 1
cosh2 r etanh r(a†c†+b†d†)

× e− ln cosh r(a†a+b†b+c†c+d†d)e− tanh r(ac+bd). (1)

For all states in the dual-rail basis Eq. (1) reduces to
Uabcd(r) = 1/ cosh3 r exp [tanh r(a†c† + b†d†)]. This al-
lows us to write the state in Eve’s Fock space as |ψ〉 =
Uabcd(r)(αb† + βa†) |vac〉 = (αb† + βa†)Uabcd(r) |vac〉. If
we trace over degrees of freedom beyond Eve’s horizon
(cd), then σ = N (|ψ〉〈ψ|) = (1− z)3

⊕∞
k=0 zk σk is block

diagonal with blocks σk labeled by the total excitation
number k (z = tanh2 r):

σk ∝
k∑

n=0

[
|α|2(n + 1)|k − n, n + 1〉〈k − n, n + 1|

+ |β|2(k − n + 1)|k − n + 1, n〉〈k − n + 1, n|

+ αβ̄
√

(n + 1)(k − n + 1)|k − n, n + 1〉〈k − n + 1, n|

+ h.c.
]
. (2)

Each block σk can be expressed as a linear combination
of generators J (k+2)

x , J (k+2)
y and J (k+2)

z of the irreducible

(k + 2)−dimensional representation of SU(2). ( (J (2), for
example, consists of the Pauli matrices scaled by 1/2.) If
σ = N (ρ) with ρ = 11/2 + (n · (J (2) arbitrary, then

σk = 11(k + 1)/2 + nxJ (k+2)
x + nyJ (k+2)

y + nzJ
(k+2)
z . (3)

As a consequence, the channel N to Eve is covariant in
the sense that N (UρU†) = R(U)N (ρ)R(U†) where R is
the infinite dimensional representation of SU(2) given by
the direct sum over all its finite dimensional irreps. This
makes it easy to diagonalize σ: the eigenvalues of σk are
skm = 1/2[k + 1 + (k + 1− 2m)S] where S = ‖(n‖2 is the
length of ρ’s Bloch vector and m runs from 0 to k + 1.

PRIVATE CLASSICAL CAPACITY

Capacities are defined by allowing arbitrarily many
uses of a channel and asking that the various data trans-
mission or privacy requirements hold to any desired level
of approximation in the limit of many uses. The private
classical capacity Cp(id2,N ) is the optimal rate, mea-
sured in bits per channel use, at which Alice can send
classical data to Bob over the noiseless channel id2 in
such a way that Eve is incapable of distinguishing the
messages based on her view, the output of the channel
N . A more formal definition can be found in [7] along
with a general formula for the private classical capac-
ity. In this case, the formula reduces to Cp(id2,N ) =
limn→∞

1
nC(1)

p (id⊗n
2 ,N⊗n), where

C(1)
p (id⊗n

2 ,N⊗n) = max
E

[
χ(E)− χ(N⊗n(E))

]
. (4)

Here E is any ensemble of pure state inputs on n copies of
the channel and χ({pi, τi}) = H(

∑
x pxτx)−

∑
x pxH(τx)

is the Holevo quantity, with H the von Neumann entropy.
(See [10].) Eq. (4) is therefore bounded above by

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
+ max

|ψn〉
H

(
N⊗n(|ψn〉〈ψn|)

)
,

(5)
where ρn and ψn are any input mixed or pure states,
respectively, to n copies of the channel. The first term, a
quantity known as (minus) the CB minimal conditional
entropy, was studied in [11], where it was shown to be
additive in the sense that maximizing it over n copies
of the channel yields exactly n times the maximal value
for one copy. Furthermore, strong subadditivity of the
entropy ensures that the first term of Eq. (5) is concave
in τ . This, combined with the covariance of the channel,
implies that the single copy version is maximized by the
maximally mixed input:

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
= n[1−H(N (I/2))]. (6)

Eq. (5) therefore provides an upper bound on the classical
private capacity that depends only on the maximal out-
put entropy, optimized over all pure state inputs to the

Now we can calculate the entropies and with a bit of work
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emphasize that there is one Hilbert space of quantum
fields; only the Fock decomposition changes. A Bogoli-
ubov transformation acts independently in each mode, so
we can assume that we have detectors tuned to specific
modes and not worry about the transformation of all the
modes.

Consider a state |ψ〉 of the quantum field. The in-
ertial observers may see this as a many particle state:
Πia

†
i |vac〉. The Bogoliubov transformation changes each

ai to some combination αiã†+βiã where the ã and ã† are
the operators of the non-inertial observers’ Fock decom-
position. The Unruh channel N represents this change,
followed by tracing over the modes that are in the wedge
inaccessible to the accelerating observer, in the explicit
Fock space description of the field .

We will assume that Alice encodes information for Bob
by preparing quantum states of a bosonic, dual-rail qubit.
In other words, she has access to a two-dimensional sector
of her (and Bob’s) Fock space, with basis vectors given
by a single excitation of a massless scalar field in one of
two different modes, which we label by their associated
annihilation operators a and c [19]. Uac(r) is the unitary
operator transforming the sector of Alice’s Fock space to
the corresponding sector of Eve’s Fock space. In short,
the channel is Uac followed by the appropriate trace. The
parameter r is related to Eve’s proper acceleration τ and
the mode frequency ω by tanh r = exp (−πω/τ) [9].

In our dual-rail case, an arbitrary pure input state
|ψ〉 = (αb†+βa†) |vac〉 is transformed to Eve’s Fock space
according to

Uabcd(r) = Uac(r)⊗ Ubd(r) = er(a†c†+b†d†)−r(ac+bd)

= 1
cosh2 r etanh r(a†c†+b†d†)

× e− ln cosh r(a†a+b†b+c†c+d†d)e− tanh r(ac+bd). (1)

For all states in the dual-rail basis Eq. (1) reduces to
Uabcd(r) = 1/ cosh3 r exp [tanh r(a†c† + b†d†)]. This al-
lows us to write the state in Eve’s Fock space as |ψ〉 =
Uabcd(r)(αb† + βa†) |vac〉 = (αb† + βa†)Uabcd(r) |vac〉. If
we trace over degrees of freedom beyond Eve’s horizon
(cd), then σ = N (|ψ〉〈ψ|) = (1− z)3

⊕∞
k=0 zk σk is block

diagonal with blocks σk labeled by the total excitation
number k (z = tanh2 r):

σk ∝
k∑

n=0

[
|α|2(n + 1)|k − n, n + 1〉〈k − n, n + 1|

+ |β|2(k − n + 1)|k − n + 1, n〉〈k − n + 1, n|

+ αβ̄
√

(n + 1)(k − n + 1)|k − n, n + 1〉〈k − n + 1, n|

+ h.c.
]
. (2)

Each block σk can be expressed as a linear combination
of generators J (k+2)

x , J (k+2)
y and J (k+2)

z of the irreducible

(k + 2)−dimensional representation of SU(2). ( (J (2), for
example, consists of the Pauli matrices scaled by 1/2.) If
σ = N (ρ) with ρ = 11/2 + (n · (J (2) arbitrary, then

σk = 11(k + 1)/2 + nxJ (k+2)
x + nyJ (k+2)

y + nzJ
(k+2)
z . (3)

As a consequence, the channel N to Eve is covariant in
the sense that N (UρU†) = R(U)N (ρ)R(U†) where R is
the infinite dimensional representation of SU(2) given by
the direct sum over all its finite dimensional irreps. This
makes it easy to diagonalize σ: the eigenvalues of σk are
skm = 1/2[k + 1 + (k + 1− 2m)S] where S = ‖(n‖2 is the
length of ρ’s Bloch vector and m runs from 0 to k + 1.

PRIVATE CLASSICAL CAPACITY

Capacities are defined by allowing arbitrarily many
uses of a channel and asking that the various data trans-
mission or privacy requirements hold to any desired level
of approximation in the limit of many uses. The private
classical capacity Cp(id2,N ) is the optimal rate, mea-
sured in bits per channel use, at which Alice can send
classical data to Bob over the noiseless channel id2 in
such a way that Eve is incapable of distinguishing the
messages based on her view, the output of the channel
N . A more formal definition can be found in [7] along
with a general formula for the private classical capac-
ity. In this case, the formula reduces to Cp(id2,N ) =
limn→∞

1
nC(1)

p (id⊗n
2 ,N⊗n), where

C(1)
p (id⊗n

2 ,N⊗n) = max
E

[
χ(E)− χ(N⊗n(E))

]
. (4)

Here E is any ensemble of pure state inputs on n copies of
the channel and χ({pi, τi}) = H(

∑
x pxτx)−

∑
x pxH(τx)

is the Holevo quantity, with H the von Neumann entropy.
(See [10].) Eq. (4) is therefore bounded above by

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
+ max

|ψn〉
H

(
N⊗n(|ψn〉〈ψn|)

)
,

(5)
where ρn and ψn are any input mixed or pure states,
respectively, to n copies of the channel. The first term, a
quantity known as (minus) the CB minimal conditional
entropy, was studied in [11], where it was shown to be
additive in the sense that maximizing it over n copies
of the channel yields exactly n times the maximal value
for one copy. Furthermore, strong subadditivity of the
entropy ensures that the first term of Eq. (5) is concave
in τ . This, combined with the covariance of the channel,
implies that the single copy version is maximized by the
maximally mixed input:

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
= n[1−H(N (I/2))]. (6)

Eq. (5) therefore provides an upper bound on the classical
private capacity that depends only on the maximal out-
put entropy, optimized over all pure state inputs to the

Now we can calculate the entropies and with a bit of work
the private capacities.
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FIG. 1: (a) 1
nC(1)

p (id⊗n
2 ,N⊗n) for n = 1, 2. Each curve gives

a lower bound on the private classical capacity Cp(id2,N ).
The n = 2 curve strictly dominates the n = 1 curve, illustrat-
ing that the maximal output entropy is not additive. This
contrasts sharply with the minimal output entropy, which is
widely believed to be additive, a conjecture that has been the
focus of significant effort [12]. (b) H(N (|ψ1〉〈ψ1|)), the en-
tropy of the output state for a pure input or, equivalently,
the entanglement between Eve’s output and Eve’s environ-
ment. This corresponds to the second term in Eq. (5) and
was also studied in [5], where it was approximated by diag-
onalizing the k = 0, 1 blocks of Eq. (2). Using our methods,
it can be shown that the exact value of the entanglement is
−3 [z ln z/(1 − z) + ln (1 − z)]+(1−z)2 ∂

∂z
∂
∂sLi (s, z) |s=0 nats.

channel. Moreover, this upper bound is attainable: given
any multicopy input state |ψn〉, the bound of Eq. (5) cor-
responds to taking the ensemble over states of the form
U⊗n |ψn〉 with U distributed according to the Haar mea-
sure.

Evaluating the formula by optimizing over pure states
|ψn〉 on n copies then gives successive lower bounds on
the true classical private capacity. For example, the op-
timization for n = 1 is trivial due to the covariance of N
and gives that Cp(id2,N ) is bounded above by

C(1)
p (id2,N ) = (1− z)2

∂

∂z

[
∂

∂s
Li (s, z) |s=0

]

− (1− z)3

2
∂2

∂z2

[
z

∂

∂s
Li (s, z) |s=0

]
. (7)

where Li (s, z) is the polylogarithm function. We plot
these bounds for n = 1, 2 in Fig. 1.

PRIVATE QUANTUM CAPACITY

General case

The definition of the private quantum capacity is done
by analogy with the private classical capacity except that
Alice sends Bob qubits instead of classical bits. We will
take that to mean that Alice would like to transmit halves
of entangled pairs to Bob. Privacy in this context means
that there should be no correlation between the output of
Eve’s channel and the entanglement kept in Alice’s labo-

ratory. Since the private quantum capacity has not been
studied elsewhere, we begin by providing some formal
definitions and studying the general case.

Given are a quantum channel N1 from Alice to Bob
and another N2 from Alice to Eve. Let Φ2k rep-
resent the density operator of k maximally entangled
pairs of qubits and τ2k the maximally mixed state on
k qubits. An (n, k, δ, ε) private entanglement trans-
mission code from Alice to Bob consists of an en-
coding channel E taking k qubits into the input of
N⊗n

1 and a decoding channel D taking the output
of Bob’s channel N⊗n

1 back to k qubits satisfying
1. Transmission:∥∥(id⊗D ◦N⊗n

1 ◦ E)(Φ2k)− Φ2k

∥∥
1
≤ δ.

2. Privacy:∥∥(id⊗N⊗n
2 ◦ E)(Φ2k)− τ2k ⊗ (N⊗n

2 ◦ E)(τ2k)
∥∥

1
≤ ε.

A rate Q is an achievable rate for private entanglement
transmission if for all δ, ε > 0 and sufficiently large n
there exist (n, &nQ', δ, ε) private entanglement transmis-
sion codes. The private quantum capacity is the supre-
mum of the achievable rates.

Achievable rates: Given any pure state |ϕ〉AA′
, the

rate min(I(A〉B)ρ,H(A|E)σ) is achievable, where ρ =
(id⊗N1)(ϕ), σ = (id⊗N2)(ϕ), I(A〉B)ρ = H(B)ρ −
H(AB)ρ is the coherent information and H(A|E)σ =
H(AE)σ −H(E)σ the conditional entropy.

Designing the necessary codes is simply a matter of
adapting the results of [13]. Write N c

2 for the channel to
the environment Ec of Eve’s channel, that is, the com-
plement of Eve’s channel with respect its Stinespring di-
lation. The privacy condition applied to N2 is equiva-
lent to entanglement transmission to N c

2 via Uhlmann’s
theorem [10]. The encodings analyzed in [13] do not de-
pend on the channels, however, just the dummy input
ϕ. Thus, the same encoding can be used to achieve en-
tanglement transmission from Alice to Bob and from Al-
ice to Eve’s complement provided the code’s rate sat-
isfies both Q ≤ I(A〉B)ρ and Q ≤ I(A〉Ec)ω, where
ω = (id⊗N c

2 )(ϕ). But since σ and ω are restrictions
of a common pure state on AEEc, H(Ec)ω = H(AE)σ

and H(AEc)ω = H(E)σ, so I(A〉Ec)ω = H(A|E)σ.

If we write Q(1)
p (N1,N2) for the supremum of this

achievable rate over all input states, then it is possible
to express the private quantum capacity in terms of this
one-shot achievable rate.

“Trivial” converse: The private quantum capacity is
equal to limn→∞

1
nQ(1)

p (N⊗n
1 ,N⊗n

2 ).

This follows from the equivalence of entanglement
transmission with privacy to the complement [7, 13] and
the asymptotic optimality of the optimized coherent in-
formation for entanglement transmission [14].

The classical private capacitiy is not zero
and depends on the acceleration.
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Γ

Encoding

U

1

Part of the output is discarded

|φ〉−→

A non-isometric encoding.
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The effect of horizons is particularly interesting.

First nontrivial example where quantum private capacity has been calculated.

Calculations used symmetry (representation theory of SU(2)).

We can deal with n-ary states (are they really called “nits?”)
using representation theory of SU(N).

Next stop: Hawking radiation from black holes.
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