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Introduction

Collaborators

This talk is based on work by Abramsky, Blute and me:
Abramsky, S., Blute, R., and Panangaden, P. (1999). Nuclear and trace
ideals in tensored-∗-categories. Journal of Pure and Applied Algebra,
143(1-3), 3-47.

Later we formalized conformal field theory:
Blute, R., Panangaden, P., and Pronk, D. (2007). Conformal field
theory as a nuclear functor. Electronic Notes in Theoretical Computer
Science, 172, 101-132.
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Introduction

Relations

Simply subsets of R ⊆ A1 × . . .× An, the basic ingredients of
relational databases and many many mathematical structures.

Binary relations: R ⊆ A × B, write aRb instead of (a, b) ∈ R

n-ary relations can be seen as binary ones
R ⊆ (A1 × . . .× Am)× (B1 × . . .× Bn) so we can write
R(x1, . . . , xm; y1, . . . , yn).
Sets and relations form a category: R : A −→ B means R ⊆ A × B.
Composition: R : A −→ B, S : B −→ C, define S ◦ R : A −→ C by
a(S ◦ R)c = ∃b ∈ B aRb ∧ bSc.
One can define a trace: TrA,B

U : Hom(A × U,B × U) −→ Hom(A,B) by
aTr(R)b = ∃u R(a, u; b, u)

We can repartition the interface: R(x1, . . . , xm; y1, . . . , yn) can be
transposed to give R′(x1, . . . , xm−1; xm, y1, . . . , yn).
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Introduction

Multilinear algebra

Finite-dimensional vector spaces over some field k.

We have a category with morphisms the k-linear maps.
We have notion of multi-linear map f : V1 × . . .Vn −→ k.
Introduce the concept of tensor product V1 ⊗ V2, to make the
multi-linear maps proper linear maps: !f : V1 ⊗ . . .⊗ Vn −→ k.
We have matrices as concrete (basis-dependent) representations
of linear maps. We have higher tensors for multilinear maps. Index
notations, diagrammatic notations.
One can define a partial trace: TrV,W

U : Hom(V × U,W × U)
−→ Hom(V,W) by well-known formulas.
We can repartition the interface, moving indices around by
transposing matrices or higher tensors.
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Compact closed categories

Monoidal categories

Categories C equipped with a “multiplication”: ⊗, a bifunctor C × C
−→ C.

Equipped with a unit, written I, and
⊗ is associative, “up to a natural isomorphism”.
Any diagram constructed from the natural isomorphisms must
commute.
Fortunately this follows from the requirement that a few specific
diagrams must commute.
Vector spaces and linear maps form a monoidal category with ⊗
the usual tensor product.
Sets and relations also form a monoidal category with the
cartesian product playing the role of the monoidal product.
If there is a natural iso A ⊗ B ∼= B ⊗ A (plus some conditions) we
have a symmetric monoidal category.
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Compact closed categories

Closed structure

Sometimes the collection of morphisms can be internalized as an
object.

A symmetric monoidal category C has, for every object X, a
functor (·)⊗ X (obeying all the required conditions).
A symmetric monoidal closed category, has for each functor
(·)⊗ X a right adjoint written X −◦ (·).
hom(A ⊗ X,B) = hom(A,X −◦ B).
Think of A −◦ B as the space of “linear maps” from A to B.
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Compact closed categories

Repartitioning - 1

Figure: A morphism from A ⊗ B ⊗ C to D ⊗ E ⊗ F
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Compact closed categories

Repartitioning - 2

Figure: A morphism from A ⊗ B to D ⊗ E ⊗ F ⊗ C
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Compact closed categories

Compact closed categories

When can we think of linear maps as matrices?

When do we have A −◦ B ∼= A∗ ⊗ B?
A compact closed category C has, for every object A a dual
object A∗ and isos: ν : I −→ A ⊗ A∗, ψ : A∗ ⊗ A −→ I.
These should interact sensibly with unit and associativity isos.
Then one can prove that it indeed has an internal hom −◦ and that
A −◦ B ∼= A∗ ⊗ B.
Finite-dimensional vector spaces and linear maps are the classic
example of a compact closed category.
The other basic example is sets and binary relations.
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Compact closed categories

Rel as a compact closed category

Objects: sets, morphisms: binary relations, composition: relational
composition.

Given R : A −→ B we write Rc for the converse relation from B to A.
Tensor product: on objects: cartesian product.
R1 : A1 −→ B1,R2 : A2 −→ B2 we have (a, a′)(R1 ⊗ R2)(b, b′) iff aR1b
and a′R2b′.
Unit object: (any) one-point set
(·)∗ is given by X∗ = X and R∗ = Rc.
If we write I = {•} then ν : I −→ X ⊗ X∗ is •ν(x, x) for all x; similarly
for ψ.
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The search for quantitative relations

The naïve idea

Relations: R : A −→ B is R ⊂ A × B and S : B −→ C is S ⊂ B × C.

Composing relations: (R ◦ S) : A −→ C is a(R ◦ S)c iff ∃b, aRb ∧ bSc.
R ⊂ A × B is the same as R : A × B −→ {0, 1}.
Quantitative relations: f : X −→ Y is f : X × Y −→ R, g : Y −→ Z is
g : Y × Z −→ R.
Composition: (g ◦ f ) : X × Z −→ R, perhaps
(g ◦ f )(x, z) =

∫
Y f (x, y)g(y, z)dy.

If all works well we hope to get a compact closed category.
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The search for quantitative relations

Small Problem

Schwartz
There is no function that can serve as an identity for this operation.
There is no “function” δ such that:∫

Y
f (x, y′)δ(y′, y)dy′ = f (x, y)

Dirac
Well cook up a function that does the job!

Schwartz, Gelfand
OK, we’ll invent distributions.
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The search for quantitative relations

What happened to us

We explored the idea of using distributions but had to overcome
some technical difficulties.

But in the end we failed to construct a compact closed category.
Then we tried using measure theory and thinking of the Dirac
delta “function” as a measure. Again we failed to construct a
compact closed category.
Finally Rick Blute realized this was a pattern and formulated the
notion of nuclear ideals and realized that there was a well-known
example from Hilbert space theory.
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The search for quantitative relations

Summary

There are situations where one does not have a category because
the things that want to be the identity maps are too “singular”.

Nevertheless, the maps of interest can sit as ideals inside a
bona-fide monoidal category.
The maps in the nuclear ideal do behave strikingly like they were
part of a compact closed category: one can transpose freely.
This is what Grothendieck was doing with Banach spaces: when
can the maps be thought of as “matrices”?

Panangaden Nuclear Ideals Topos Feb 2023 15 / 42



The search for quantitative relations

Summary

There are situations where one does not have a category because
the things that want to be the identity maps are too “singular”.
Nevertheless, the maps of interest can sit as ideals inside a
bona-fide monoidal category.

The maps in the nuclear ideal do behave strikingly like they were
part of a compact closed category: one can transpose freely.
This is what Grothendieck was doing with Banach spaces: when
can the maps be thought of as “matrices”?

Panangaden Nuclear Ideals Topos Feb 2023 15 / 42



The search for quantitative relations

Summary

There are situations where one does not have a category because
the things that want to be the identity maps are too “singular”.
Nevertheless, the maps of interest can sit as ideals inside a
bona-fide monoidal category.
The maps in the nuclear ideal do behave strikingly like they were
part of a compact closed category: one can transpose freely.

This is what Grothendieck was doing with Banach spaces: when
can the maps be thought of as “matrices”?

Panangaden Nuclear Ideals Topos Feb 2023 15 / 42



The search for quantitative relations

Summary

There are situations where one does not have a category because
the things that want to be the identity maps are too “singular”.
Nevertheless, the maps of interest can sit as ideals inside a
bona-fide monoidal category.
The maps in the nuclear ideal do behave strikingly like they were
part of a compact closed category: one can transpose freely.
This is what Grothendieck was doing with Banach spaces: when
can the maps be thought of as “matrices”?

Panangaden Nuclear Ideals Topos Feb 2023 15 / 42



A bit of functional analysis

Hilbert spaces and tensor products

Hilbert spaces are vector spaces with an inner product, which
induces a norm which induces a metric.

The space must be complete in this metric.
We can define tensor products of Hilbert spaces just as we did for
vector spaces but
we must make sure that we define an inner product on this
product and check completeness.
The category of Hilbert spaces and continuous (iff bounded) linear
maps forms a monoidal category.
It also has a ∗ functor like vector spaces.
For complex Hilbert spaces we also have conjugation or
equivalently a “dagger” (more later).
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A bit of functional analysis

Universal property of tensor products?

U × V ! //

b %%

U ⊗ V

!b
��

W

There is a unique map, !, from U × V to U ⊗ V such that: given a
bilinear map from U × V to W, there is a unique linear map from U ⊗ V
to W making the diagram commute.
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A bit of functional analysis

Hilbert-Schmidt maps

The above property fails in Hilbert spaces. So one cannot
internalize any bilinear map.

Of course, one can get a linear map from the tensor product
space as we did above; Hilbert spaces are vector spaces.
But this linear map may not be bounded i.e. it may not be
continuous.
But it does work for nice maps: the Hilbert-Schmidt (HS) maps.
If f : H −→ K is a bounded linear map, f is Hilbert-Schmidt if for
any ortho-normal basis {ei} of H, we have

∑
i

||f (ei)||2 <∞.

This is independent of the choice of basis in H.
f : H×H −→ H given by f (x, y) = x + y becomes x ⊗ y 7→ x + y.
Clearly this map is not Hilbert-Schmidt.
Alas, the identity is not Hilbert-Schmidt!
So we cannot have a category of Hilbert spaces and
Hilbert-Schmidt maps.
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A bit of functional analysis

Nuclear spaces

Grothendieck discovered nuclear spaces and nuclear maps
when he was trying to explpain why spaces of distributions had
nice properties with respect to tensor product.

The definition(s) of nuclear space are complicated and filled with
analysis details about topological vector spaces and various types
of tensor products.
Let f : A −→ B, where A and B are Banach spaces. Being nuclear
is equivalent to saying there is an element

∑
i fi ⊗ bi ∈ A∗ ⊗ B with

for all a ∈ A we have f (a) =
∑

i fi(a)bi. (Some details elided)
f can be thought of like a matrix.
The “common” spaces of functional analysis Lp spaces, are not
nuclear.
Nuclear spaces are typically not describable as normed vector
spaces; the only spaces that are nuclear and normed are finite
dimensional.
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A bit of functional analysis

Hilbert-Schmidt and Trace Ideals

Given a HS map f : H1 −→ H2 and any bounded linear maps
g : H2 −→ H3 and h : H0 −→ H1, the composites f ◦ h and g ◦ f are
both HS.

HS maps form a 2-sided ideal.
The space of Hilbert-Schmidt maps HS(H,K) can be made into a
Hilbert space.
We can define a trace for (positive) bounded linear operators T on
H by tr(T) =

∑
i⟨ei | Tei⟩ for an orthonormal basis {ei} of H.

Can be extended to arbitrary bounded linear operators.
We say T is trace class if tr(T) <∞.
Trace class maps also form a two-sided ideal.
The composite g ◦ f : H −→ H of two nuclear maps f : H −→ K and
g : K −→ H is always trace class.
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Nuclear ideals

Some morphisms

Let C be a symmetric monoidal closed category.

There is a map φ : B ⊗ A∗ −→ A −◦ B constructed by transposing:

B ⊗ A∗ ⊗ A
id⊗ψ−→ B ⊗ I

∼=−→ B

If f : A −→ B in C, we call n(f ) : I −→ A −◦ B the name of f .
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Nuclear ideals

Nuclear morphisms

We say that f is nuclear if there exists p(f ) : I −→ B ⊗ A∗ such that the
following diagram commutes:

I

n(f ) ""

p(f ) // B ⊗ A∗

φyy
A −◦ B
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Nuclear ideals

Preservation properties

Suppose that f : A −→ B and g : C −→ D are nuclear, then so are:
f ∗ : B∗ −→ A∗

f ′f : A −→ E for any morphism f ′ : B −→ E

fh : F −→ B for any morphism h : F −→ A

f ⊗ g : A ⊗ C −→ B ⊗ D
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Nuclear ideals

Nuclearity and compact closure

We say that an object of C is nuclear if its identity map is nuclear.

For any symmetric monoidal closed category, the full subcategory of
nuclear objects is compact-closed.
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Nuclear ideals

Tensor-∗ categories

C is a ∗-category if it is equipped with a functor: (−)∗ : Cop −→ C, which
is strictly involutive and the identity on objects.

A ∗-category is tensored if it is symmetric monoidal, (f ⊗ g)∗ = f ∗ ⊗ g∗,
and there is a covariant conjugate functor, ( ) : C −→ C, which
commutes with the ∗-functor and has some natural isomorphisms:

A ∼= A.
A ⊗ B ∼= A ⊗ B

I ∼= I.

satisfying the usual monoidal equations, and some other simple
equations.
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Nuclear ideals

Nuclear Ideal - I

Context: let C be a tensor-∗ category.

A nuclear ideal for C consists of:
Nuclear maps: for all objects A,B, a subset N (A,B) ⊆ Hom(A,B).
The class N must be closed under composition with arbitrary
C-morphisms,
closed under ⊗,
closed under (·)∗,
and the conjugate functor.
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Nuclear ideals

Nuclear Ideal - II

A bijection θ : N (A,B) −→ Hom(I,A ⊗ B).

If f : A −→ B is a nuclear morphism, we can use the bijection θ and the
∗-functor to construct various transposes.
The bijection θ must preserve all of the tensored ∗-structure.
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Nuclear ideals

Nuclear Ideal - III

Finally, θ has to satisfy a naturality property and a “compactness”
property.
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Nuclear ideals

Dagger compact categories

We defined ∗ and (·) to correspond to dual and conjugation.

It has become common to use † as a functor that models adjoints
in the sense of operators.
This leads to dagger compact categories much used in
categorical quantum mechanics.
Blute, P. and Pronk (2007) gave an alternate definition of nuclear
ideals in terms of dagger compact categories.
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PRel and SRel

Lawvere’s category of probabilistic mappings

Mes is the category of sets equipped with σ-algebras; morphisms
are measurable functions.

A probabilistic mapping p from (X,Σ) to (Y,Λ) is a function from
X to probability distributions over Λ.
We can “curry” p to give p : X × Λ −→ [0, 1].
For fixed x ∈ X, p(x, ·) : Λ −→ [0, 1] is a probability measure.
For fixed B ∈ Λ, p(·,B) : X −→ [0, 1] is a Borel-measurable function.
Composition: p : X −→ Y, q : Y −→ Z, q ◦ p : X −→ Z given by
q ◦ p(x,C) =

∫
Y q(y,C)p(x, dy).

These are well known in probability as Markov kernels.
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PRel and SRel

The Giry Monad

A monad on Mes: Γ : Mes −→ Mes

Γ((X,Σ)) = {ν|ν : Σ −→ [0, 1]}
This can be equipped with a natural σ-algebra of its own.
Γ on arrows is “image measure”: Γ(f )(ν) = ν ◦ f−1.
This forms a monad on Mes, the unit is x 7→ δx (point mass, Dirac
measure)
The monad multiplication is “weighted average”.
The Kleisli category of the Giry monad is exactly Lawvere’s
category of probabilistic mappings.
A plausible candidate for the title of “probabilistic relations”.
But it is not clear what transposition would mean here.
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PRel and SRel

The Radon-Nikodym theorem

Given (σ)-finite measures µ, ν on a measurable space X, we say ν
is absolutely continuous with respect to µ, if for every measurable
set A, µ(A) = 0 implies ν(A) = 0.

Notation: ν ≪ µ.
If ν ≪ µ then there is a measurable function h : X −→ R such that
∀A ⊂ X, ν(A) =

∫
A hdµ.

This h is “essentially unique”: if h′ satisfies the same equation then
h and h′ differ on a set of µ-measure 0.
This is a tool to construct Markov kernels.
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PRel and SRel

Marginals

Given a measure µ on a product space X × Y we get two
measures: µX on X and µY on Y.

For A ⊂ X we have µX(A) = µ(A × Y).
For B ⊂ Y we have µY(B) = µ(X × B).
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PRel and SRel

Probabilistic relations: PRel

Objects: (X,Σ, µ), where µ is a probability measure on (X,Σ).

Morphisms: α : (X,Σ, µ) −→ (X′,Σ′, µ′) are probability measures
on X × X′ (actually on Σ⊗ Σ′) such that:
its marginals are absolutely continuous with respect to µ and µ′.
How do we compose these things?
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PRel and SRel

From joint measures to Markov kernels

Let (X,ΣX) and (Y,ΣY) be measurable spaces.

Let PX be a probability a probability on (X,ΣX).
Let h(x,B) : X × ΣY −→ [0, 1] be a a stochastic kernel.
Then we have a unique measure P on the product such that for all
A ∈ ΣX:

P(A × B) =
∫

A
h(x,B)dPX(x).

So we can go back and forth between distributions on the product
space X × Y and a pair consisting of a kernel h : X −→ ΣY and a
measure on X.
And, of course we could instead use a kernel k : Y −→ ΣX and a
measure on Y.
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PRel and SRel

Composing probabilistic relations

To compose morphisms we calculate their associated stochastic
kernels F(x,B) and G(y,C) using the Radon-Nikodym theorem

and
compose as in Lawvere’s category to obtain a stochastic kernel
H(x,C).
We then obtain a measure on X × Z via the formula:

γ(A × C) =

∫
A

H(x,C)dµ(x)

The identity on (X,ΣX, µ)is ∆(A × B) = µ(A) · µ(B) which can be
extended to all the measurable sets of X × X. The associated kernel is
the Dirac delta “function”.
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PRel and SRel

A nuclear ideal for PRel

It is straightforward to show that PRel is a ∗-tensor category.

Consider objects (X,Σx, µX) and (Y,ΣY , µY)

Define N (X,Y) to be the set of all measures α on X × Y for which
there exists a measurable function f such that∫

C
f (x, y) dµX×µY (x, y) = α(C)

It is immediate that the marginals are absolutely continuous with
respect to µX and µY .
While f itself is only unique almost everywhere, the measure with
which f is associated is easily viewed - in a canonical way - both
as a member of Hom(X,Y) and as a member of Hom(I,X × Y).
Thus every element of the set Hom(I,X ⊗ Y) is associated with a
measure that has a functional kernel which is in turn one of the
members of the set N (X,Y).
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PRel and SRel

What have we got?

The nuclear ideal corresponds to the original naive idea of using
real-valued functions as relations.

The putative identity is too singular to be a function, but we can
realize it as a measure.
The category we get by including such measures is not compact
closed.
But the original functions do form a nuclear ideal.
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Other examples

Simple examples

One can easily construct a category of injective partial functions.

It is easy to make it a ∗-tensor category.
One can construct a nuclear ideal by looking at functions whose
domain consists of exactly one element and throw in the
everywhere undefined function as well.
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Other examples

Using Schwartz distributions

Schwartz, and independently Gelfand and Shilov, were trying to
make sense of “generalized functions” like the Dirac delta function
and its derivatives.

The Dirac delta function can be realized as a measure but its
derivatives cannot.
Such functions are formalized as continuous linear maps on a
suitable topological vector space of “nice” functions.
For example δ′(f ) = −f ′(0). Now we can differentiate these things!
These distributions are perfect for studying differential equations.
We developed another ∗-tensor category based on a special kind
of distribution and showed that the functional versions of these
distributions give a nuclear ideal.
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Other examples

Formalizing conformal field theory

Segal gave a categorical formulation of conformal field theory and
remarked in passing that his category lacked identity morphisms.

We showed that his “category” was actually a nuclear ideal inside
a ∗-tensor category.
This involved some interesting mathematics: cobordisms,
Riemann surfaces etc.
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Conclusions

Conclusions

There are many natural examples of nuclear ideals in
mathematics.

Beautiful theory, due to Blute (2007), of a general notion of
nuclear ideals emphasizing that the identity maps are “too
singular”: shape theory.
Is there a diagrammatic language for them?
Would they be useful for formalizing infinite-dimensional quantum
mechanics?
We defined trace ideals in terms of nuclear ideals. Is there a more
intrinsic way?
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