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Why do we care?

• Security is about controlling the flow of 
“information.”

• We need to consider “adversaries” and 
analyze what they can do.

• Adversaries may have access to lots of 
data and perform statistical analysis.

• Thus we need to think probabilistically.
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What is information?

• A measure of uncertainty.

• Can we really analyze it quantitatively?

• What do the numerical values mean?

• Is it tied to “knowledge”?

• Is it subjective?
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Uncertainty and Probability

p1 =
1
n

, . . . , pn =
1
n

Suppose that you have a distribution

This is clearly very uncertain.
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The other end
Consider a probability distribution like:

p1 = 1, p2 = 0, . . . , pn = 0.

We have a lot more “information.”
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Conveying Information
Suppose that we want to convey the results of an election. There are 5 politicians
running: Barak, Hillary, John, Mike and Maggie. It would normally take 3 bits
to convey the result.

Suppose that the probabilities of winning are:

B :
1
2
,H :

1
4
, J :

1
8
,Mi, Ma :

1
16

We can encode the results as:

B : 0,H : 01, J : 001,Mi : 0001,Ma : 0000

Which uses only 1 7
8 bits on the average.
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What do we want?
We want a definition that satisfies the following conditions:

For a point distribution the uncertainty is 0
For a uniform distribution the uncertainty is maximized.

When we combine systems the uncertainty is additive

As we vary the probabilities the uncertainty changes

continuously
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Entropy

H(p1, . . . , pn) = −
∑

i

pi log2 pi

• H(0, 0, . . . , 1, 0, . . . , 0) = 0

• H( 1
n , . . . , 1

n ) = log2 n.

• Clearly continuous.
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Are there other candidates?

Entropy is the unique continuous function that is:

• maximized by the uniform distribution

• minimized by the point distribution

• additive when you combine systems

• and ....
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Grouping

Hm(p1, . . . , pm) = Hm−1(p1 + p2, p3, . . . , pm)+

(p1 + p2)H2(
p1

p1 + p + 2
,

p2

p1 + p2
)

What does this mean?
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A picture of grouping 1
(4) (Grouping Axiom)

HM(p1, · · · , pM) = H2

(

r
∑

i=1

pi,
M

∑

i=r+1

pi

)

+pHr

(

p1

p
, · · · ,

pr

p

)

+(1−p)HM−r

(

pr+1

1 − p
, · · · ,

pM

1 − p

)

This axiom is intuitively explained as follows. Consider the following conversion from
the graph on the left to the one on the right:

p

1 − p

p1

pn

pn+1

pm

O1

On
On+1

Om

“⇒”

p · p1

p · p2

(1 − p) · pm−1

(1 − p) · pm

O1

O2

Om−1

Om

We can also go the other way, and convert a one step process into a two step process
by clustering into two groups:

p1

pr

pr+1

pm

O1

Or
Or+1

Om

“⇒”
p

1 − p

p1

p

pr

p
pn+1

1−p

pm

1−p

O1

Or
Or+1

Om

Here we set p =
∑r

i=1 pi and 1 − p =
∑m

i=r+1 pi.

Theorem 1. The only function satisfying axioms 1–4 is

−C
M

∑

i=1

pi log pi

for some positive constant C.

Proof. The proof will proceed in five steps:

(i) f(Mk) = k · f(M) k ∈ N

(ii)

Claim 2. f(M) = C log M (where C is some constant), and hence f(1) = 0.
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Grouping Picture 2

(4) (Grouping Axiom)

HM(p1, · · · , pM) = H2

(

r
∑

i=1

pi,
M

∑

i=r+1

pi

)

+pHr

(

p1

p
, · · · ,

pr

p

)

+(1−p)HM−r

(

pr+1

1 − p
, · · · ,

pM

1 − p

)

This axiom is intuitively explained as follows. Consider the following conversion from
the graph on the left to the one on the right:

p

1 − p

p1

pn

pn+1

pm

O1

On
On+1

Om

“⇒”

p · p1

p · p2

(1 − p) · pm−1

(1 − p) · pm

O1

O2

Om−1

Om

We can also go the other way, and convert a one step process into a two step process
by clustering into two groups:

p1

pr

pr+1

pm

O1

Or
Or+1

Om

“⇒”
p

1 − p

p1

p

pr

p
pn+1

1−p

pm

1−p

O1

Or
Or+1

Om

Here we set p =
∑r

i=1 pi and 1 − p =
∑m

i=r+1 pi.

Theorem 1. The only function satisfying axioms 1–4 is

−C
M

∑

i=1

pi log pi

for some positive constant C.

Proof. The proof will proceed in five steps:

(i) f(Mk) = k · f(M) k ∈ N

(ii)

Claim 2. f(M) = C log M (where C is some constant), and hence f(1) = 0.
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What does it tell us?
If you have a distribution p(s) on a set S,
you can define a code such that it takes H(p)
bits on the average to encode the members of the set.
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What we really care about

• In security we want to know how to 
extract secret information from readily 
available data.

• We want to measure how information 
(uncertainty) about one quantity 
conveys information about another.
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Random variables
A discrete probability space is a finite set Ω equipped with a probability distri-
bution

Pr : Ω→ [0, 1]

satisfying ∑

ω∈Ω

Pr(ω) = 1.

A random variable X is a function from Ω to a finite set S.

A random variable induces a distribution on S via:

PrX(s ∈ S) = Pr({ω : X(ω) = s})

Pr(X = s) = Pr({ω : X(ω) = s})
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Entropy of a Random 
Variable

We will just write p(s) for Pr(X = s) if the context is clear.

H(X) = −
∑

s∈S

Pr(X = s) log2 Pr(X = s)
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Joint Entropy

Consider a pair of random variables X, Y
taking values in sets X ,Y
with a joint distribution p(x, y).

H(X, Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log2 p(x, y)

Nothing new, yet!
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Conditional Entropy

H(Y |X = x) is the entropy of the random variable Y
given that you know that X is x.

H(Y |X) =
∑

x∈X
p(x)H(Y |X = x)

The conditional entropy is just the weighted sum:

H(Y |X) ≤ H(Y )
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The Chain Rule

H(X, Y ) = H(X) + H(Y |X)

H(X, Y |Z) = H(X|Z) + H(Y |X, Z)

H(X)−H(X|Y ) = H(Y )−H(Y |X)

But

H(X|Y ) != H(Y |X)
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Mutual Information
The reduction in the uncertainty of one RV given another.

I(X;Y ) = H(Y )−H(Y |X)

Recall, from the last slide, this means:

I(X;Y ) = H(X)−H(X|Y )

Hence, I(X;Y ) = I(Y ;X)
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How far apart are 
distributions ?

We want a “distance” between distributions.

KL(p !→ q) = n
∑

s∈S

p(s)[log2 p(s)− log2 q(s).

Recall that it takes H(p) bits to describe a set
distributed according to p. What if we used q instead?

It would require H(p) + KL(p !→ q) bits.

21



Relative Entropy 

The Kullback-Leibler distance is often called
relative entropy.

Suppose S = {a, b} and p(a) = 1
2 = p(b)

while q(a) = 1
4 and q(b) = 3

4 .

KL(p !→ q) = 0.2075 and KL(q !→ p) = 0.1887.
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Relative Entropy and 
Mutual Information 

I(X;Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log{ p(x, y)

p(x)p(y)
}

which is equal to:

KL(p(x, y) !→ p(x)q(x))

A measure of how far you are from independence!
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Some basic properties
There are chain rules for mutual information
and relative entropy.

KL(p !→ q) ≥ 0.

hence

I(X;Y ) ≥ 0.
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Channels

Message
Encoder

Channel

p(y|x)
Decoder

Xn Y n

Estimate of
the message.

A typical channel.
How well can we estimate the intended
message if the channel is noisy?
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Channel Capacity
We want some way of measuring how

well we can estimate the message
based on what we receive.

How about I(X;Y )?

But this depends on the input distribution!

C = max
p(x)

I(X;Y ).
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Binary Symmetric Channel
1− p

1− p

p

p

0

1

With probability p the bit is flipped.

C = 1−H(p)

0

1
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Coding Theorem

Informal version!

All rates below the capacity are achievable.

There is some coding so that one can send bits
with no loss of information as long as the
transmission rate is below the capacity.
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Capacity and Security

• We want to view protocols as channels: 
they transmit information.

• We would like our channels to be as bad 
as possible in transmitting information!

• Catuscia Palamidessi’s talk:  Channel 
capacity as a measure of anonymity.
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Capacity of What?
• Ira Moskowitz et. al. studied the capacity 

of a covert channel to measure how 
much information could be leaked out of 
a system by an agent with access to a 
covert channel.

• We are viewing the protocol itself as an 
abstract channel and thus adopting 
channel capacity as a quantitative 
measure of anonymity.
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Basic Definitions
• A is the set of anonymous actions and 
A is a random variable over it; a typical 
action is “a”.

• O is the set of observable actions and 
O is a random variable over it; a typical 
action is “o”

• p(a,o) = p(a) * p(o|a)

• p(o|a) is a characteristic of the 
protocol; we design this

• p(a) is what an attacker wants to know.
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Anonymity Protocol

• An anonymity protocol is a channel 
(A,O,p(.|.))

• The loss of anonymity is just the channel 
capacity
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Sanity Check

• To what does capacity 0 correspond?

• It corresponds precisely to strong 
anonymity, i.e. to the statement that A 
and O are independent.
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Relative Anonymity

• Sometimes we want something to be 
revealed; we do not want this to be seen 
as a flaw in the protocol.

• We need to conditionalize everything.
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Conditional Mutual 
Information

• Suppose that we want to reveal R

• For example, in an election we want to 
reveal the total tallies while keeping 
secret who voted for whom.

• Since we want to reveal R by design we 
can view it as an additional observable.
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The conditional mutual information I(A;O|R) is
I(A;O|R) = H(A|R)−H(A|R,O).

Let (A.O, p(·|·)) be an anonymity protocol.
Let R be a random variable defined by a set of values R
and a probability distribution p(r|a, o).

The relative loss of anonymity (conditional channel capacity)
of the protocol with respect to R is
C|R = maxp(a) I(A;O|R).
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An Example: Elections

• The actions are of the form “i votes for c”

• Suppose that there are two candidates, 
“c” and “d”; clearly we want to reveal 
the number of votes for “c” [everyone 
votes for exactly one candidate].

• Then the values of R are exactly the 
number of votes for “c.” 

• The observable event is a scrambled list 
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Partitions
• This is a very special case: the hidden 

event, i.e. the complete description of 
who voted for whom, determines the 
value “r” of R.

• The observable event also completely 
determines “r”.

• Thus each value “r” produces partitions 
of the hidden values and of the 
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Let (A,O, p(·|·)) be an anonymity protocol
and R a random variable with R = {r1, . . . , rn}.
If R partitions both A and O, then the protocol
matrix breaks into block diagonal form.

Each block is itself a channel with capacity Ci.
The conditional capacity
of the overall channel is bounded by
the maximum value of the Cis.
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Computing the Capacity

• There is no simple (analytic) formula for 
the channel capacity.

• There are various special symmetric 
cases known; see the paper.

• Recently Keye Martin has shown that 
channels can be ordered as a domain and 
that capacity is Scott continuous on this 
domain.  These results have been 
extended by Chatzikokolakis with Keye.   
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Conclusions
• Information theory is a rich and 

powerful way to analyze probabilistic 
protocols.

• A wealth of work to be done given how 
hard it is to compute anything exactly.

• All kinds of beautiful mathematics: 
convexity theory, domain theory in 
addition to traditional information 
theory.
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