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@ Conformal field theory is an example of a
nuclear




Why compact closure
matters

Many mathematical objects have a notion

of “dual” object, e.g. vector spaces.

There is a notion of “matrix” representation.
If we can freely move between “input”

and “output” we have interesting “transpose”
operations.




Typical examples: Rel, the category of sets
and relations, FDVect(C), the category

of finite-dimensional vector spaces over the
complex numbers.

Relations can be turned around at will;

we can decide what is “input” and “output.”
Abramsky exploited this in his theory ot SProc,
relations extended in time.
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Relations

® We can view a relation as a matrix

@ Given a relation R(x,y;z,w) we can transpose
at will: R(x;y,z,w) or R(x,y,z,w;) or R(x,y,z;w).

@ We can take "traces”: R(x,y;w,z) becomes
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Vectors and Matrices

@ We can certainly view linear maps as
(higher-order) matrices.

@ We can transpose at will: from

AT WX

@ to

AL e X




We can take traces

A PRV T Osie

® becomes

@ t?“U()\> .V - W




But there are other
examples as well.




The category of Cobordisms. Objects are
circles (1D compact manifolds), morphisms
are 2 manifolds with boundary.







Composition

N

lg. 2. A composite of two cobordisms

We can deform at will. Thus, we are really looking
at manifolds up to homotopy equivalence. A
cylinder is the identity.
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We can transpose!




We can take traces!
’
:
’




Closed Structure

A symmetric monoidal category is closed or autonomous
if, for all objects A and B,
there is an object A — B and an adjointness relation:

Hom(A® B,C) =2 Hom(B,A — C)
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Compact Closure

A compact closed category is a symmetric monoidal category such that
for each object A there exists a dual object A*,
and canonical morphisms:

v:l - AR A"
V: ATRA— 1

such that the usual adjunction equations hold.

Examples: Rel, FDVect, FDHilb, Cob, SProc,...
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Dagger Structure

@ We often have a combination of transpose
and complex conjugation: complex Hilbert
spaces.

@ Conjugation and transpose can be combined
to give

@ Sometimes, the conjugation is trivial (Rel)
but in QM it is absolutely vital.




Dagger Compact
Categories

@ Abramsky and Coecke [LICS 2004] introduced
strongly compact closed categories to give a
categorical axiomatization of QM.

@ Selinger [2004] showed how to extend
everything to mixed states and axiomatized
adjointness as a “"dagger” functor.




Dagger Categories

Definition 3.3 A category C is a dagger category if it is equipped with a functor (—)":C? — C,
which is strictly involutive and the identity on objects. In such a category, a morphism f is unitary
if it is an isomorphism and f~' = f1. An endomorphism is hermitian if f = f1. A symmetric
monoidal dagger category s one wn which all of the structural morphisms in the definition of
symmetric monoidal category [25] are unitary and dagger commutes with the tensor product.

Definition 3.4 A symmetric monoidal dagger category C is said to have conjugation if equipped
with a covariant functor ( )*:C — C (called conjugation) which is strictly involutive and commutes
with both the symmetric monoidal structure and the dagger operation. Since we have a covariant
functor, we denote its action on arrows as follows:

f:A— B+— fi,: A" — B*
This is in line with the notation of [33].
So in particular, our x-functor satisfies

(f)f = (fNB* — A
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What about infinite
dimensions?

@ Even a single free electron has an infinite
dimensional state space.

@ Unfortunately, infinite-dimensional Hilbert
spaces are not compact closed.

@ But they really want to be!




Hilbert-Schmidt Maps

If H — K is a bounded linear map,
we call f a Hilbert-Schmidt map if the sum

> et I1f (el

is finite for an orthonormal basis {e; }icr.

The sum is independent of the basis chosen.




Towards Nuclearity

One can easily verify that the Hilbert-Schmidt operators on a space form a 2-sided ideal in the
set of all bounded linear operators. Furthermore, if HSO(H, K) denotes the set of Hilbert-Schmidt
maps from H to K, then HSO(H, K) is a Hilbert space, when endowed with an appropriate norm.

, there is a bijective correspondence:

HSO(H, K) = Hom (I, H* @ K)
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Why not Hilbert-
Schmidt?

@ We can transpose the Hilbert-Schmidt maps
but not any old linear maps.

@ HS maps form a two-sided ideal and interact
well with the monoidal structure.

@ Why not make a compact-closed category
out of the Hilbert-Schmidt maps?
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Identity Crisis?

@ The identity maps are not Hilbert-Schmidt
unless the space is finite dimensional!

@ They are too singular to be members of the
putative category of Hilbert-Schmidt maps.
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Nuclearity

@ We look for an “ambient” category that has
monoidal and dagger structure and include
all the morphisms that are "dying to be in a
compact closed category.”

@ We show that the morphisms of interest
form an ideal and have of the
properties of a dagger compact category.
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Trace Ideals

® However, we cannot take traces of all
nuclear maps.

@ There is a smaller ideal called the “trace
class” maps which do have traces.

@ Some nuclear maps are too singular fo be
traced.

@ However, the composite of any two nuclear
maps is always traced.



-
: o~ O
Wik O O

This is Hilbert-Schmidt because Y.~ i* < oo but

> iy &= 00.
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3.4  FExamples

The category Rel of sets and relations is a tensored x-category for which the entire category
forms a nuclear ideal.

The category of Hilbert spaces and bounded linear maps maps is a well-known tensored x-
category, which, in fact, led to the axiomatization [10]. Then the Hilbert-Schmidt maps form a
nuclear ideal [2]

The category DRel of tame distributions on Euclidean space [2] is a tensored x-category. The
ideal of test functions (viewed as distributions) is a nuclear ideal.

We will define a subcategory of Rel called the category of locally finite relations. Let R: A — B
be a binary relation and @ € A. Then R, = {b € BlaRb}. Define R} similarly for b € B. Then
we say that a relation is locally finite if, for all a € A,b € B, R,, R are finite sets. Then it is
straightforward to verify that we have a tensored *-category which is no longer compact closed.
It is also easy to verify that the finite relations form a nuclear ideal.
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What is Cob?

@ The category of Cobordisms is in fact dagger
compact.

@ The identities are cylinders; nothing singular
about them.
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TQFT

@ Think of the circles as “space” and the
manifold as “space-time.”

® We want to describe the evolution of
quantum "matter” on this space-time: define

a functor from Cob fo FDHilb so that all the
compact-closed structure is preserved.

@ Note that everything is frace class in FDHilb.

@ Think of this as zero-energy physics.
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Conformal Field Theory

@ Want to define field theories that
correspond to more realisitic physics than
TQFT. [Actually CFT is older than TQFT].

@ Interested in phenomena that are
These arise in statistical mechanics
especially in the study of phase transitions.
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Conformal Field Theory
II

@ Want to study transformations that leave
the angles invariant but vary the length
scales These are called conformal
transformations.

@ These are closely connected to complex
analysis because these transformations are
precisely the ones that leave the complex
structure invariant.
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It is magnificent but is
IT Physics?

@ Segal's definition captures the essential ideas
of conformal transformations in a 2D setting.

@ The infinitesimal conformal transformations in
2D form an infinite dimensional Lie algebra
(which physicists call the conformal group)

@ which can be identified with the functions
that leave the complex analytic structure
Invariant.




Complex Structures

@ We need an abstract analogue of i.

@ Given a vector space V (not necessarily finite
dimensional) we define J: V --> V so that

g 7.




J?=—1I.
Taking determinants:
(det())* = (=1)™.

So n better be even.
Thus complex structures can only be

defined on even-dimensional manifolds.
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Riemann Surfaces

A Riemann surface is a topological space X
with an open cover U, together with
homeomorphisms ¢; : U; — O,

where O is an open subset of C

and on the overlap regions U; N U, the
composites (restricted appropriately)

O; O %‘_1 are holomorphic.
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Segal’s definition

@ Instead of using cobordisms, the morphisms
are required to be manifolds admitting
complex structures, Riemann surfaces.

@ they can only be squashed by conformal
transformations, i.e. transformations that
preserve the complex structure.
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Is this more
complicated?

@ In the topological case (TQFT) there is one
morphism from O to 1, namely a disc.

@ In CFT the of discs with different
conformal structures itself has the structure
of a complex manifold.
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Where is the identity?

@ The identity morphism cannot be a cylinder
anymore.

@ We cannot attach a cylinder and conformally
squash it down to a circle. A circle has no
complex structure!

@ The thing that wants to be the idenftity is
too “singular”!
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Nuclear Ideal?

@ Want to make Segal’s “category” live inside a
*_tensor category. This involves adding the
circles in some principled way.

@ There is a way of adding “singular” objects
to the collection of curves (Mumford
compactification) but this is more fancy than
needed.
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Enter Neretin

@ Neretin defined a category by “collaring” the
Riemann surfaces and then allowing the
circles to show up as thin collars. This is a
symmetric-monoidal dagger category called

Pants.

@ He defined a "volume” in such a way that
Riemann surfaces had positive volume and
the circles had zero volume.




Positive Volume Surface; collars do not intersect.
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The collared regions are conformal
images of the regions

DT ={z:|2] <1}
and

D™ ={z:|z| > 1}.
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A Nuclear Ideal

@ A morphism where the collars do not
intersect is said to have "positive volume.”




A Nuclear Ideal

@ A morphism where the collars do not
intersect is said to have "positive volume.”

@ The collection of positive volume morphisms

forms a nuclear ideal in Pants.
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CFT Revisited

@ A Conformal Field Theory is just a nuclear
functor from Pants to Hilb.

@ In this case it follows that the nuclear maps
in Pants go to maps in Hilb.

@ This gives Segal’s definition.

o A CFT is a nuclear functor from
Pants to any category with a nuclear ideal.
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Correct Linear Relations

@ Neretin gives a construction that turns out
to be an example of a generalized CFT based
on what he calls Correct Linear Relations

(CLR).

@ The bulk of the paper is taken up by
checking that this example really gives a
generalized CFT.
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CLR and G of I

@ CLRs are maftrices of operators which
compose according to a formula which is

@ exactly the G of I execution formula.




A linear relation P s called correct if it s the graph of an operator

QPZV_F@W_%V_@W_F

where the matrix
K L

L' M

has the following properties:

(a) K =K' and M = —M?;

(b) 1Qp] < 1;

c) ||K|| <1 and ||M|| <1;

(d) K and M are Hilbert-Schmidt operators.
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o)

(

A+ BK(1-CK) Bt
L'(1-CK) B!

B(1—-KC)™'L
M+ L1 -CK)'CL

|

48



49






Conclusions




Conclusions

@ Nuclear and Trace ideals play an important
role in mathematics, physics and computation.




Conclusions

@ Nuclear and Trace ideals play an important
role in mathematics, physics and computation.

@ The generalized version of CFT could allow
one to explore entirely new kinds of CFT, for
example, by looking at nuclear functors into
the category of Stochastic Relations.




