
+ < >

Duality in Probabilistic Automata

Chris Hundt

Prakash Panangaden

Joelle Pineau

Doina Precup

Gavin Seal

McGill University

MFPS May 2006 Genoa – p.1/40

+ < >

Overview

We have discovered an - apparently - new kind of
duality for automata.

Special case of this construction known since 1962
to Brzozowski.

Works for probabilistic automata.

Seems interesting for learning and planning.

Could be connected to duality in control theory,
Pontryagin duality or general concrete dualities.

We are not sure about the “right” categorical setting.

MFPS May 2006 Genoa – p.2/40

+ < >

Overview

We have discovered an - apparently - new kind of
duality for automata.

Special case of this construction known since 1962
to Brzozowski.

Works for probabilistic automata.

Seems interesting for learning and planning.

Could be connected to duality in control theory,
Pontryagin duality or general concrete dualities.

We are not sure about the “right” categorical setting.

MFPS May 2006 Genoa – p.2/40

+ < >

Overview

We have discovered an - apparently - new kind of
duality for automata.

Special case of this construction known since 1962
to Brzozowski.

Works for probabilistic automata.

Seems interesting for learning and planning.

Could be connected to duality in control theory,
Pontryagin duality or general concrete dualities.

We are not sure about the “right” categorical setting.

MFPS May 2006 Genoa – p.2/40

+ < >

Overview

We have discovered an - apparently - new kind of
duality for automata.

Special case of this construction known since 1962
to Brzozowski.

Works for probabilistic automata.

Seems interesting for learning and planning.

Could be connected to duality in control theory,
Pontryagin duality or general concrete dualities.

We are not sure about the “right” categorical setting.

MFPS May 2006 Genoa – p.2/40

+ < >

Overview

We have discovered an - apparently - new kind of
duality for automata.

Special case of this construction known since 1962
to Brzozowski.

Works for probabilistic automata.

Seems interesting for learning and planning.

Could be connected to duality in control theory,
Pontryagin duality or general concrete dualities.

We are not sure about the “right” categorical setting.

MFPS May 2006 Genoa – p.2/40

+ < >

Overview

We have discovered an - apparently - new kind of
duality for automata.

Special case of this construction known since 1962
to Brzozowski.

Works for probabilistic automata.

Seems interesting for learning and planning.

Could be connected to duality in control theory,
Pontryagin duality or general concrete dualities.

We are not sure about the “right” categorical setting.

MFPS May 2006 Genoa – p.2/40

+ < >

Deterministic Automata

A = (Q,Σ, P, δ, γ): a deterministic finite automaton. Q
is the set of states, Σ an input alphabet (actions), P
is a set of propositions.

δ : Q× Σ −→ Q is the state transition function.

γ : Q −→ 2P or γ : Q× P −→ 2 is a labeling function.

If P = {accept} we have ordinary deterministic finite
automata.

MFPS May 2006 Genoa – p.3/40

+ < >

Deterministic Automata

A = (Q,Σ, P, δ, γ): a deterministic finite automaton. Q
is the set of states, Σ an input alphabet (actions), P
is a set of propositions.

δ : Q× Σ −→ Q is the state transition function.

γ : Q −→ 2P or γ : Q× P −→ 2 is a labeling function.

If P = {accept} we have ordinary deterministic finite
automata.

MFPS May 2006 Genoa – p.3/40

+ < >

Deterministic Automata

A = (Q,Σ, P, δ, γ): a deterministic finite automaton. Q
is the set of states, Σ an input alphabet (actions), P
is a set of propositions.

δ : Q× Σ −→ Q is the state transition function.

γ : Q −→ 2P or γ : Q× P −→ 2 is a labeling function.

If P = {accept} we have ordinary deterministic finite
automata.

MFPS May 2006 Genoa – p.3/40

+ < >

Deterministic Automata

A = (Q,Σ, P, δ, γ): a deterministic finite automaton. Q
is the set of states, Σ an input alphabet (actions), P
is a set of propositions.

δ : Q× Σ −→ Q is the state transition function.

γ : Q −→ 2P or γ : Q× P −→ 2 is a labeling function.

If P = {accept} we have ordinary deterministic finite
automata.

MFPS May 2006 Genoa – p.3/40

+ < >

A Simple Modal Logic

Thinking of the elements of P as formulas we can
use them to define a simple modal logic. We define a
formula ϕ according to the following grammar:

ϕ ::== p ∈ P | (a)ϕ

where a ∈ Σ.

We say s |= p, if p ∈ γ(s) (or γ(s, p) = T).
We say s |= (a)ϕ if δ(s, a) |= ϕ.

Now we define [[ϕ]]A = {s ∈ Q|s |= ϕ}.

MFPS May 2006 Genoa – p.4/40

+ < >

A Simple Modal Logic

Thinking of the elements of P as formulas we can
use them to define a simple modal logic. We define a
formula ϕ according to the following grammar:

ϕ ::== p ∈ P | (a)ϕ

where a ∈ Σ.

We say s |= p, if p ∈ γ(s) (or γ(s, p) = T).
We say s |= (a)ϕ if δ(s, a) |= ϕ.

Now we define [[ϕ]]A = {s ∈ Q|s |= ϕ}.

MFPS May 2006 Genoa – p.4/40

+ < >

A Simple Modal Logic

Thinking of the elements of P as formulas we can
use them to define a simple modal logic. We define a
formula ϕ according to the following grammar:

ϕ ::== p ∈ P | (a)ϕ

where a ∈ Σ.

We say s |= p, if p ∈ γ(s) (or γ(s, p) = T).
We say s |= (a)ϕ if δ(s, a) |= ϕ.

Now we define [[ϕ]]A = {s ∈ Q|s |= ϕ}.

MFPS May 2006 Genoa – p.4/40

+ < >

An Equivalence Relation on Formulas

We write sa as shorthand for δ(s, a).

Define ∼A between formulas as ϕ ∼A ψ if
[[ϕ]]A = [[ψ]]A.

Note that this allows us to identify an equivalence
class for ϕ with the set of states [[ϕ]]A that satisfy ϕ.

Note that another way of defining this equivalence
relations is

ϕ ∼A ϕ′ := ∀s ∈ Q.s |= ϕ ⇐⇒ s |= ϕ′.

MFPS May 2006 Genoa – p.5/40

+ < >

An Equivalence Relation on Formulas

We write sa as shorthand for δ(s, a).

Define ∼A between formulas as ϕ ∼A ψ if
[[ϕ]]A = [[ψ]]A.

Note that this allows us to identify an equivalence
class for ϕ with the set of states [[ϕ]]A that satisfy ϕ.

Note that another way of defining this equivalence
relations is

ϕ ∼A ϕ′ := ∀s ∈ Q.s |= ϕ ⇐⇒ s |= ϕ′.

MFPS May 2006 Genoa – p.5/40

+ < >

An Equivalence Relation on Formulas

We write sa as shorthand for δ(s, a).

Define ∼A between formulas as ϕ ∼A ψ if
[[ϕ]]A = [[ψ]]A.

Note that this allows us to identify an equivalence
class for ϕ with the set of states [[ϕ]]A that satisfy ϕ.

Note that another way of defining this equivalence
relations is

ϕ ∼A ϕ′ := ∀s ∈ Q.s |= ϕ ⇐⇒ s |= ϕ′.

MFPS May 2006 Genoa – p.5/40

+ < >

An Equivalence Relation on Formulas

We write sa as shorthand for δ(s, a).

Define ∼A between formulas as ϕ ∼A ψ if
[[ϕ]]A = [[ψ]]A.

Note that this allows us to identify an equivalence
class for ϕ with the set of states [[ϕ]]A that satisfy ϕ.

Note that another way of defining this equivalence
relations is

ϕ ∼A ϕ′ := ∀s ∈ Q.s |= ϕ ⇐⇒ s |= ϕ′.

MFPS May 2006 Genoa – p.5/40

+ < >

An Equivalence Relation on States

We also define an equivalence ≡ between states in
A as s1 ≡ s2 if for all formulas ϕ on A,
s1 |= ϕ ⇐⇒ s2 |= ϕ.

The equivalence relations ∼ and ≡ are clearly closely
related: they are the hinge of the duality between
states and observations.

We say that A is reduced if the ≡-equivalence
classes are singletons.

Since there is more than just one proposition in
general the relation ≡ is finer than the usual
equivalence of automata theory.

MFPS May 2006 Genoa – p.6/40

+ < >

An Equivalence Relation on States

We also define an equivalence ≡ between states in
A as s1 ≡ s2 if for all formulas ϕ on A,
s1 |= ϕ ⇐⇒ s2 |= ϕ.

The equivalence relations ∼ and ≡ are clearly closely
related: they are the hinge of the duality between
states and observations.

We say that A is reduced if the ≡-equivalence
classes are singletons.

Since there is more than just one proposition in
general the relation ≡ is finer than the usual
equivalence of automata theory.

MFPS May 2006 Genoa – p.6/40

+ < >

An Equivalence Relation on States

We also define an equivalence ≡ between states in
A as s1 ≡ s2 if for all formulas ϕ on A,
s1 |= ϕ ⇐⇒ s2 |= ϕ.

The equivalence relations ∼ and ≡ are clearly closely
related: they are the hinge of the duality between
states and observations.

We say that A is reduced if the ≡-equivalence
classes are singletons.

Since there is more than just one proposition in
general the relation ≡ is finer than the usual
equivalence of automata theory.

MFPS May 2006 Genoa – p.6/40

+ < >

An Equivalence Relation on States

We also define an equivalence ≡ between states in
A as s1 ≡ s2 if for all formulas ϕ on A,
s1 |= ϕ ⇐⇒ s2 |= ϕ.

The equivalence relations ∼ and ≡ are clearly closely
related: they are the hinge of the duality between
states and observations.

We say that A is reduced if the ≡-equivalence
classes are singletons.

Since there is more than just one proposition in
general the relation ≡ is finer than the usual
equivalence of automata theory.

MFPS May 2006 Genoa – p.6/40

+ < >

A Dual Automaton

Given a finite automaton A = (Q,Σ, P, δ, γ).
Let T be the set of ∼A-equivalence classes of
formulas on A.

We define A′ = (Q′,Σ, P ′, δ′, γ′) as follows:

Q′ = T = {[[ϕ]]A}

P ′ = Q

δ′([[ϕ]]A, a) = [[(a)ϕ]]A

γ′([[ϕ]]A, p) = [[ϕ]]A

MFPS May 2006 Genoa – p.7/40

+ < >

A Dual Automaton

Given a finite automaton A = (Q,Σ, P, δ, γ).
Let T be the set of ∼A-equivalence classes of
formulas on A.

We define A′ = (Q′,Σ, P ′, δ′, γ′) as follows:

Q′ = T = {[[ϕ]]A}

P ′ = Q

δ′([[ϕ]]A, a) = [[(a)ϕ]]A

γ′([[ϕ]]A, p) = [[ϕ]]A

MFPS May 2006 Genoa – p.7/40

+ < >

A Dual Automaton

Given a finite automaton A = (Q,Σ, P, δ, γ).
Let T be the set of ∼A-equivalence classes of
formulas on A.

We define A′ = (Q′,Σ, P ′, δ′, γ′) as follows:

Q′ = T = {[[ϕ]]A}

P ′ = Q

δ′([[ϕ]]A, a) = [[(a)ϕ]]A

γ′([[ϕ]]A, p) = [[ϕ]]A

MFPS May 2006 Genoa – p.7/40

+ < >

A Dual Automaton

Given a finite automaton A = (Q,Σ, P, δ, γ).
Let T be the set of ∼A-equivalence classes of
formulas on A.

We define A′ = (Q′,Σ, P ′, δ′, γ′) as follows:

Q′ = T = {[[ϕ]]A}

P ′ = Q

δ′([[ϕ]]A, a) = [[(a)ϕ]]A

γ′([[ϕ]]A, p) = [[ϕ]]A

MFPS May 2006 Genoa – p.7/40

+ < >

A Dual Automaton

Given a finite automaton A = (Q,Σ, P, δ, γ).
Let T be the set of ∼A-equivalence classes of
formulas on A.

We define A′ = (Q′,Σ, P ′, δ′, γ′) as follows:

Q′ = T = {[[ϕ]]A}

P ′ = Q

δ′([[ϕ]]A, a) = [[(a)ϕ]]A

γ′([[ϕ]]A, p) = [[ϕ]]A

MFPS May 2006 Genoa – p.7/40

+ < >

A Dual Automaton

Given a finite automaton A = (Q,Σ, P, δ, γ).
Let T be the set of ∼A-equivalence classes of
formulas on A.

We define A′ = (Q′,Σ, P ′, δ′, γ′) as follows:

Q′ = T = {[[ϕ]]A}

P ′ = Q

δ′([[ϕ]]A, a) = [[(a)ϕ]]A

γ′([[ϕ]]A, p) = [[ϕ]]A

MFPS May 2006 Genoa – p.7/40

+ < >

The intuition

We have interchanged the states and the observations or

propositions; more precisely we have interchanged equiv-

alence classes of formulas - based on the observations -

with the states. We have made the states of the old ma-

chine the observations of the dual machine.

MFPS May 2006 Genoa – p.8/40

+ < >

The Double Dual

Now consider A′′ = (A′)′, the dual of the dual.

Its states are equivalence classes of A′-formulas.

Each such class is identified with a set [[ϕ′]]A′ of
A′-states by which formulas in that class are
satisfied, and

each A′-state is an equivalence class of A-formulas.

Thus we can look at states in A′′ as collections of
S-formula equivalence classes.

MFPS May 2006 Genoa – p.9/40

+ < >

The Double Dual

Now consider A′′ = (A′)′, the dual of the dual.

Its states are equivalence classes of A′-formulas.

Each such class is identified with a set [[ϕ′]]A′ of
A′-states by which formulas in that class are
satisfied, and

each A′-state is an equivalence class of A-formulas.

Thus we can look at states in A′′ as collections of
S-formula equivalence classes.

MFPS May 2006 Genoa – p.9/40

+ < >

The Double Dual

Now consider A′′ = (A′)′, the dual of the dual.

Its states are equivalence classes of A′-formulas.

Each such class is identified with a set [[ϕ′]]A′ of
A′-states by which formulas in that class are
satisfied, and

each A′-state is an equivalence class of A-formulas.

Thus we can look at states in A′′ as collections of
S-formula equivalence classes.

MFPS May 2006 Genoa – p.9/40

+ < >

The Double Dual

Now consider A′′ = (A′)′, the dual of the dual.

Its states are equivalence classes of A′-formulas.

Each such class is identified with a set [[ϕ′]]A′ of
A′-states by which formulas in that class are
satisfied, and

each A′-state is an equivalence class of A-formulas.

Thus we can look at states in A′′ as collections of
S-formula equivalence classes.

MFPS May 2006 Genoa – p.9/40

+ < >

The Double Dual

Now consider A′′ = (A′)′, the dual of the dual.

Its states are equivalence classes of A′-formulas.

Each such class is identified with a set [[ϕ′]]A′ of
A′-states by which formulas in that class are
satisfied, and

each A′-state is an equivalence class of A-formulas.

Thus we can look at states in A′′ as collections of
S-formula equivalence classes.

MFPS May 2006 Genoa – p.9/40

+ < >

The Double Dual 2

Let A′′ be the double dual, and for any state s ∈ Q in
the original automaton we define

Sat(s) = {[[ϕ]]A : s |= ϕ}.

Lemma: For any s ∈ Q, Sat(s) is a state in A′′.

In fact all the states of the double dual have this
form.

Lemma: Let s′′ = [[ϕ]]A′ ∈ Q′′ be any state in A′′. Then
s′′ = Sat(sϕ) for some state sϕ ∈ Q.

The proof is by an easy induction on ϕ.

MFPS May 2006 Genoa – p.10/40

+ < >

The Double Dual 2

Let A′′ be the double dual, and for any state s ∈ Q in
the original automaton we define

Sat(s) = {[[ϕ]]A : s |= ϕ}.

Lemma: For any s ∈ Q, Sat(s) is a state in A′′.

In fact all the states of the double dual have this
form.

Lemma: Let s′′ = [[ϕ]]A′ ∈ Q′′ be any state in A′′. Then
s′′ = Sat(sϕ) for some state sϕ ∈ Q.

The proof is by an easy induction on ϕ.

MFPS May 2006 Genoa – p.10/40

+ < >

The Double Dual 2

Let A′′ be the double dual, and for any state s ∈ Q in
the original automaton we define

Sat(s) = {[[ϕ]]A : s |= ϕ}.

Lemma: For any s ∈ Q, Sat(s) is a state in A′′.

In fact all the states of the double dual have this
form.

Lemma: Let s′′ = [[ϕ]]A′ ∈ Q′′ be any state in A′′. Then
s′′ = Sat(sϕ) for some state sϕ ∈ Q.

The proof is by an easy induction on ϕ.

MFPS May 2006 Genoa – p.10/40

+ < >

The Double Dual 2

Let A′′ be the double dual, and for any state s ∈ Q in
the original automaton we define

Sat(s) = {[[ϕ]]A : s |= ϕ}.

Lemma: For any s ∈ Q, Sat(s) is a state in A′′.

In fact all the states of the double dual have this form.

Lemma: Let s′′ = [[ϕ]]A′ ∈ Q′′ be any state in A′′. Then
s′′ = Sat(sϕ) for some state sϕ ∈ Q.

The proof is by an easy induction on ϕ.

MFPS May 2006 Genoa – p.10/40

+ < >

The Double Dual 2

Let A′′ be the double dual, and for any state s ∈ Q in
the original automaton we define

Sat(s) = {[[ϕ]]A : s |= ϕ}.

Lemma: For any s ∈ Q, Sat(s) is a state in A′′.

In fact all the states of the double dual have this form.

Lemma: Let s′′ = [[ϕ]]A′ ∈ Q′′ be any state in A′′. Then
s′′ = Sat(sϕ) for some state sϕ ∈ Q.

The proof is by an easy induction on ϕ.

MFPS May 2006 Genoa – p.10/40

+ < >

Minimality Properties

If A is reduced then Sat is a bijection from Q to Q′′.

The statement above can be strengthened to show
that we actually have an isomorphism of automata.

If we define a notion of bisimulation we can show that
a machine and its double dual are bisimilar.

The minimality is, of course, due to the use of the
equivalence relations in the duality.

MFPS May 2006 Genoa – p.11/40

+ < >

Minimality Properties

If A is reduced then Sat is a bijection from Q to Q′′.

The statement above can be strengthened to show
that we actually have an isomorphism of automata.

If we define a notion of bisimulation we can show that
a machine and its double dual are bisimilar.

The minimality is, of course, due to the use of the
equivalence relations in the duality.

MFPS May 2006 Genoa – p.11/40

+ < >

Minimality Properties

If A is reduced then Sat is a bijection from Q to Q′′.

The statement above can be strengthened to show
that we actually have an isomorphism of automata.

If we define a notion of bisimulation we can show that
a machine and its double dual are bisimilar.

The minimality is, of course, due to the use of the
equivalence relations in the duality.

MFPS May 2006 Genoa – p.11/40

+ < >

Minimality Properties

If A is reduced then Sat is a bijection from Q to Q′′.

The statement above can be strengthened to show
that we actually have an isomorphism of automata.

If we define a notion of bisimulation we can show that
a machine and its double dual are bisimilar.

The minimality is, of course, due to the use of the
equivalence relations in the duality.

MFPS May 2006 Genoa – p.11/40

+ < >

The Nondeterministic Case

Here we consider automata of the type

A = (Q,Σ, P, δ : Q× Σ −→ 2Q, γ : Q −→ 2P).

We use the same formulas but we have a different
notion of satisfaction: S ⊆ Q

S |= p ⇐⇒ ∃s ∈ S : p ∈ γ(s)

S |= (a)ϕ ⇐⇒ δ(S, a) |= ϕ.

We define an appropriate notion of simulation and
prove: A is simulated by A′′.

The double dual is always deterministic.

MFPS May 2006 Genoa – p.12/40

+ < >

The Nondeterministic Case

Here we consider automata of the type

A = (Q,Σ, P, δ : Q× Σ −→ 2Q, γ : Q −→ 2P).

We use the same formulas but we have a different
notion of satisfaction: S ⊆ Q

S |= p ⇐⇒ ∃s ∈ S : p ∈ γ(s)

S |= (a)ϕ ⇐⇒ δ(S, a) |= ϕ.

We define an appropriate notion of simulation and
prove: A is simulated by A′′.

The double dual is always deterministic.

MFPS May 2006 Genoa – p.12/40

+ < >

The Nondeterministic Case

Here we consider automata of the type

A = (Q,Σ, P, δ : Q× Σ −→ 2Q, γ : Q −→ 2P).

We use the same formulas but we have a different
notion of satisfaction: S ⊆ Q

S |= p ⇐⇒ ∃s ∈ S : p ∈ γ(s)

S |= (a)ϕ ⇐⇒ δ(S, a) |= ϕ.

We define an appropriate notion of simulation and
prove: A is simulated by A′′.

The double dual is always deterministic.

MFPS May 2006 Genoa – p.12/40

+ < >

The Nondeterministic Case

Here we consider automata of the type

A = (Q,Σ, P, δ : Q× Σ −→ 2Q, γ : Q −→ 2P).

We use the same formulas but we have a different
notion of satisfaction: S ⊆ Q

S |= p ⇐⇒ ∃s ∈ S : p ∈ γ(s)

S |= (a)ϕ ⇐⇒ δ(S, a) |= ϕ.

We define an appropriate notion of simulation and
prove: A is simulated by A′′.

The double dual is always deterministic.

MFPS May 2006 Genoa – p.12/40

+ < >

Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and
interchange initial and final states.

Determinize the result.

Reverse all the transitions again and interchange
initial and final states.

Determinize the result.

This gives the minimal DFA recognizing the same
language. The intermediate step can blow up the
size of the automaton exponentially before
minimizing it.

MFPS May 2006 Genoa – p.13/40

+ < >

Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and
interchange initial and final states.

Determinize the result.

Reverse all the transitions again and interchange
initial and final states.

Determinize the result.

This gives the minimal DFA recognizing the same
language. The intermediate step can blow up the
size of the automaton exponentially before
minimizing it.

MFPS May 2006 Genoa – p.13/40

+ < >

Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and
interchange initial and final states.

Determinize the result.

Reverse all the transitions again and interchange
initial and final states.

Determinize the result.

This gives the minimal DFA recognizing the same
language. The intermediate step can blow up the
size of the automaton exponentially before
minimizing it.

MFPS May 2006 Genoa – p.13/40

+ < >

Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and
interchange initial and final states.

Determinize the result.

Reverse all the transitions again and interchange
initial and final states.

Determinize the result.

This gives the minimal DFA recognizing the same
language. The intermediate step can blow up the
size of the automaton exponentially before
minimizing it.

MFPS May 2006 Genoa – p.13/40

+ < >

Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and
interchange initial and final states.

Determinize the result.

Reverse all the transitions again and interchange
initial and final states.

Determinize the result.

This gives the minimal DFA recognizing the same
language. The intermediate step can blow up the
size of the automaton exponentially before
minimizing it.

MFPS May 2006 Genoa – p.13/40

+ < >

Probabilistic systems

Everything is discrete.

Markov Decision Processes aka Labelled Markov
Processes:

M = (S,A,∀a ∈ Aτa : S × S −→ [0, 1]).

The τa are transition probability functions (matrices).

Usually MDPs have rewards but I will not consider
them for now.

We could make things continuous but that is
orthogonal.

MFPS May 2006 Genoa – p.14/40

+ < >

Probabilistic systems

Everything is discrete.

Markov Decision Processes aka Labelled Markov
Processes:

M = (S,A,∀a ∈ Aτa : S × S −→ [0, 1]).

The τa are transition probability functions (matrices).

Usually MDPs have rewards but I will not consider
them for now.

We could make things continuous but that is
orthogonal.

MFPS May 2006 Genoa – p.14/40

+ < >

Probabilistic systems

Everything is discrete.

Markov Decision Processes aka Labelled Markov
Processes:

M = (S,A,∀a ∈ Aτa : S × S −→ [0, 1]).

The τa are transition probability functions (matrices).

Usually MDPs have rewards but I will not consider
them for now.

We could make things continuous but that is
orthogonal.

MFPS May 2006 Genoa – p.14/40

+ < >

Probabilistic systems

Everything is discrete.

Markov Decision Processes aka Labelled Markov
Processes:

M = (S,A,∀a ∈ Aτa : S × S −→ [0, 1]).

The τa are transition probability functions (matrices).

Usually MDPs have rewards but I will not consider
them for now.

We could make things continuous but that is
orthogonal.

MFPS May 2006 Genoa – p.14/40

+ < >

Partial Observations

Partially Observable Markov Decision Processes
(POMDPs). We cannot see the entire state but we
can see something.

In process algebra we typically take actions as not
always being enabled and we observe whether
actions are accepted or rejected.

In POMDPs we assume actions are always accepted
but with each transition some propositions are true,
or some boolean observables are “on.”

Note that the observations can depend
probabilistically on the action taken and the final
state. Many variations are possible.

MFPS May 2006 Genoa – p.15/40

+ < >

Partial Observations

Partially Observable Markov Decision Processes
(POMDPs). We cannot see the entire state but we
can see something.

In process algebra we typically take actions as not
always being enabled and we observe whether
actions are accepted or rejected.

In POMDPs we assume actions are always accepted
but with each transition some propositions are true,
or some boolean observables are “on.”

Note that the observations can depend
probabilistically on the action taken and the final
state. Many variations are possible.

MFPS May 2006 Genoa – p.15/40

+ < >

Partial Observations

Partially Observable Markov Decision Processes
(POMDPs). We cannot see the entire state but we
can see something.

In process algebra we typically take actions as not
always being enabled and we observe whether
actions are accepted or rejected.

In POMDPs we assume actions are always accepted
but with each transition some propositions are true,
or some boolean observables are “on.”

Note that the observations can depend
probabilistically on the action taken and the final
state. Many variations are possible.

MFPS May 2006 Genoa – p.15/40

+ < >

Partial Observations

Partially Observable Markov Decision Processes
(POMDPs). We cannot see the entire state but we
can see something.

In process algebra we typically take actions as not
always being enabled and we observe whether
actions are accepted or rejected.

In POMDPs we assume actions are always accepted
but with each transition some propositions are true,
or some boolean observables are “on.”

Note that the observations can depend
probabilistically on the action taken and the final
state. Many variations are possible.

MFPS May 2006 Genoa – p.15/40

+ < >

Formal Definition of a POMDP

M = (S,Σ,O, δ : S × Σ × S −→ [0, 1], γ : S × Σ ×O
−→ [0, 1]),

where S is a set of states, O is a set of observations,
Σ is a set of actions, δ is the transition probability
function and γ gives the observation probabilities.

MFPS May 2006 Genoa – p.16/40

+ < >

Formal Definition of a POMDP

M = (S,Σ,O, δ : S × Σ × S −→ [0, 1], γ : S × Σ ×O
−→ [0, 1]),

where S is a set of states, O is a set of observations,
Σ is a set of actions, δ is the transition probability
function and γ gives the observation probabilities.

MFPS May 2006 Genoa – p.16/40

+ < >

Formal Definition of a POMDP

M = (S,Σ,O, δ : S × Σ × S −→ [0, 1], γ : S × Σ ×O
−→ [0, 1]),

where S is a set of states, O is a set of observations,
Σ is a set of actions, δ is the transition probability
function and γ gives the observation probabilities.

MFPS May 2006 Genoa – p.16/40

+ < >

Automata with State-based Observations

An automaton with stochastic observations is a
quintuple

E = (S,Σ,O, δ : S × Σ −→ S, γ : S ×O −→ [0, 1]).

Note that this has deterministic transitions and
stochastic observations.

A probabilistic automaton with stochastic
observations is

F = (S,Σ,O, δ : S ×Σ× S −→ [0, 1], γ : S ×O −→ [0, 1]).

MFPS May 2006 Genoa – p.17/40

+ < >

Automata with State-based Observations

An automaton with stochastic observations is a
quintuple

E = (S,Σ,O, δ : S × Σ −→ S, γ : S ×O −→ [0, 1]).

Note that this has deterministic transitions and
stochastic observations.

A probabilistic automaton with stochastic
observations is

F = (S,Σ,O, δ : S ×Σ× S −→ [0, 1], γ : S ×O −→ [0, 1]).

MFPS May 2006 Genoa – p.17/40

+ < >

Simple Tests

Rather than thinking of propositions and formulas we
will think of observations and tests. I will look at
state-based notions of observations.

Recall probabilistic automata

E = (S,Σ,O, δ, γ),

where δ : S × Σ × S −→ [0, 1] is the transition function

and γ : S ×O −→ [0, 1] is the observation function.

MFPS May 2006 Genoa – p.18/40

+ < >

Simple Tests

Rather than thinking of propositions and formulas we
will think of observations and tests. I will look at
state-based notions of observations.

Recall probabilistic automata

E = (S,Σ,O, δ, γ),

where δ : S × Σ × S −→ [0, 1] is the transition function

and γ : S ×O −→ [0, 1] is the observation function.

MFPS May 2006 Genoa – p.18/40

+ < >

Simple Tests

Rather than thinking of propositions and formulas we
will think of observations and tests. I will look at
state-based notions of observations.

Recall probabilistic automata

E = (S,Σ,O, δ, γ),

where δ : S × Σ × S −→ [0, 1] is the transition function

and γ : S ×O −→ [0, 1] is the observation function.

MFPS May 2006 Genoa – p.18/40

+ < >

Simple Tests

Rather than thinking of propositions and formulas we
will think of observations and tests. I will look at
state-based notions of observations.

Recall probabilistic automata

E = (S,Σ,O, δ, γ),

where δ : S × Σ × S −→ [0, 1] is the transition function

and γ : S ×O −→ [0, 1] is the observation function.

MFPS May 2006 Genoa – p.18/40

+ < >

Simple Tests 2

We use the same logic as before except that we give
a probabilistic semantics and call the formulas “tests.”
I will a.t or at rather than (a)ϕ.

Tests define functions from states to [0, 1]. If they
define the same function they are equivalent.

The explicit definition of these functions are:

[[o]]E(s) = γ(s, o)

[[at]]E(s) =
∑

s′

δ(s, a, s′)[[t]]E(s′).

In AI these are called “e-tests.”

MFPS May 2006 Genoa – p.19/40

+ < >

Simple Tests 2

We use the same logic as before except that we give
a probabilistic semantics and call the formulas “tests.”
I will a.t or at rather than (a)ϕ.

Tests define functions from states to [0, 1]. If they
define the same function they are equivalent.

The explicit definition of these functions are:

[[o]]E(s) = γ(s, o)

[[at]]E(s) =
∑

s′

δ(s, a, s′)[[t]]E(s′).

In AI these are called “e-tests.”

MFPS May 2006 Genoa – p.19/40

+ < >

Simple Tests 2

We use the same logic as before except that we give
a probabilistic semantics and call the formulas “tests.”
I will a.t or at rather than (a)ϕ.

Tests define functions from states to [0, 1]. If they
define the same function they are equivalent.

The explicit definition of these functions are:

[[o]]E(s) = γ(s, o)

[[at]]E(s) =
∑

s′

δ(s, a, s′)[[t]]E(s′).

In AI these are called “e-tests.”

MFPS May 2006 Genoa – p.19/40

+ < >

Simple Tests 2

We use the same logic as before except that we give
a probabilistic semantics and call the formulas “tests.”
I will a.t or at rather than (a)ϕ.

Tests define functions from states to [0, 1]. If they
define the same function they are equivalent.

The explicit definition of these functions are:

[[o]]E(s) = γ(s, o)

[[at]]E(s) =
∑

s′

δ(s, a, s′)[[t]]E(s′).

In AI these are called “e-tests.”

MFPS May 2006 Genoa – p.19/40

+ < >

Duality with e-tests

S′ = {[[t]]E}

O′ = S

γ′([[t]]E , s) = [[t]]E(s)

δ′([[t]]E , a, [[at]]E) = 1; 0 otherwise.

This machine has deterministic transitions and γ ′ is
just the transpose of γ.

MFPS May 2006 Genoa – p.20/40

+ < >

Duality with e-tests

S′ = {[[t]]E}

O′ = S

γ′([[t]]E , s) = [[t]]E(s)

δ′([[t]]E , a, [[at]]E) = 1; 0 otherwise.

This machine has deterministic transitions and γ ′ is
just the transpose of γ.

MFPS May 2006 Genoa – p.20/40

+ < >

Duality with e-tests

S′ = {[[t]]E}

O′ = S

γ′([[t]]E , s) = [[t]]E(s)

δ′([[t]]E , a, [[at]]E) = 1; 0 otherwise.

This machine has deterministic transitions and γ ′ is
just the transpose of γ.

MFPS May 2006 Genoa – p.20/40

+ < >

Duality with e-tests

S′ = {[[t]]E}

O′ = S

γ′([[t]]E , s) = [[t]]E(s)

δ′([[t]]E , a, [[at]]E) = 1; 0 otherwise.

This machine has deterministic transitions and γ ′ is
just the transpose of γ.

MFPS May 2006 Genoa – p.20/40

+ < >

Duality with e-tests

S′ = {[[t]]E}

O′ = S

γ′([[t]]E , s) = [[t]]E(s)

δ′([[t]]E , a, [[at]]E) = 1; 0 otherwise.

This machine has deterministic transitions and γ ′ is
just the transpose of γ.

MFPS May 2006 Genoa – p.20/40

+ < >

Duality with e-tests

S′ = {[[t]]E}

O′ = S

γ′([[t]]E , s) = [[t]]E(s)

δ′([[t]]E , a, [[at]]E) = 1; 0 otherwise.

This machine has deterministic transitions and γ ′ is
just the transpose of γ.

MFPS May 2006 Genoa – p.20/40

+ < >

The Double Dual

If E is the primal and E ′ is the dual then the states of
the double dual, E ′′ are E ′-equivalence classes of
tests.

An “atomic” test is just an observation of E ′, which is
just a state of E so it has the form [[s]]E ′ for some s.

We see that

γ′′([[s]]E ′ , [[o]]E) = [[s]]E ′([[o]]E) = γ′([[o]]E , s) = [[o]]E(s) = γ(s, o).

An easy calculation shows:

[[a1a2 · · · ako]]E ′′([[s]]E ′)

= [[a1a2 · · · ako]]E(s).

MFPS May 2006 Genoa – p.21/40

+ < >

The Double Dual

If E is the primal and E ′ is the dual then the states of
the double dual, E ′′ are E ′-equivalence classes of
tests.

An “atomic” test is just an observation of E ′, which is
just a state of E so it has the form [[s]]E ′ for some s.

We see that

γ′′([[s]]E ′ , [[o]]E) = [[s]]E ′([[o]]E) = γ′([[o]]E , s) = [[o]]E(s) = γ(s, o).

An easy calculation shows:

[[a1a2 · · · ako]]E ′′([[s]]E ′)

= [[a1a2 · · · ako]]E(s).

MFPS May 2006 Genoa – p.21/40

+ < >

The Double Dual

If E is the primal and E ′ is the dual then the states of
the double dual, E ′′ are E ′-equivalence classes of
tests.

An “atomic” test is just an observation of E ′, which is
just a state of E so it has the form [[s]]E ′ for some s.

We see that

γ′′([[s]]E ′ , [[o]]E) = [[s]]E ′([[o]]E) = γ′([[o]]E , s) = [[o]]E(s) = γ(s, o).

An easy calculation shows:

[[a1a2 · · · ako]]E ′′([[s]]E ′)

= [[a1a2 · · · ako]]E(s).

MFPS May 2006 Genoa – p.21/40

+ < >

The Double Dual

If E is the primal and E ′ is the dual then the states of
the double dual, E ′′ are E ′-equivalence classes of
tests.

An “atomic” test is just an observation of E ′, which is
just a state of E so it has the form [[s]]E ′ for some s.

We see that

γ′′([[s]]E ′ , [[o]]E) = [[s]]E ′([[o]]E) = γ′([[o]]E , s) = [[o]]E(s) = γ(s, o).

An easy calculation shows:

[[a1a2 · · · ako]]E ′′([[s]]E ′)

= [[a1a2 · · · ako]]E(s).

MFPS May 2006 Genoa – p.21/40

+ < >

Inadequacy of e-tests

There is a loss of information in the previous
construction.

The double dual behaves just like the primal with
respect to “e-tests” but not with respect to more
refined kinds of observations.

[[o1a1o2a2o3]]E ′′([[s]]E ′) =

[[o1]]E ′′([[s]]E ′′) · [[a1o2]]E ′′([[s]]E ′) · [[a1a2o3]]E ′′([[s]]E ′).

This does not hold in the primal.

The double dual does not conditionalize with respect
to intermediate observations.

MFPS May 2006 Genoa – p.22/40

+ < >

Inadequacy of e-tests

There is a loss of information in the previous
construction.

The double dual behaves just like the primal with
respect to “e-tests” but not with respect to more
refined kinds of observations.

[[o1a1o2a2o3]]E ′′([[s]]E ′) =

[[o1]]E ′′([[s]]E ′′) · [[a1o2]]E ′′([[s]]E ′) · [[a1a2o3]]E ′′([[s]]E ′).

This does not hold in the primal.

The double dual does not conditionalize with respect
to intermediate observations.

MFPS May 2006 Genoa – p.22/40

+ < >

Inadequacy of e-tests

There is a loss of information in the previous
construction.

The double dual behaves just like the primal with
respect to “e-tests” but not with respect to more
refined kinds of observations.

[[o1a1o2a2o3]]E ′′([[s]]E ′) =

[[o1]]E ′′([[s]]E ′′) · [[a1o2]]E ′′([[s]]E ′) · [[a1a2o3]]E ′′([[s]]E ′).

This does not hold in the primal.

The double dual does not conditionalize with respect
to intermediate observations.

MFPS May 2006 Genoa – p.22/40

+ < >

Inadequacy of e-tests

There is a loss of information in the previous
construction.

The double dual behaves just like the primal with
respect to “e-tests” but not with respect to more
refined kinds of observations.

[[o1a1o2a2o3]]E ′′([[s]]E ′) =

[[o1]]E ′′([[s]]E ′′) · [[a1o2]]E ′′([[s]]E ′) · [[a1a2o3]]E ′′([[s]]E ′).

This does not hold in the primal.

The double dual does not conditionalize with respect
to intermediate observations.

MFPS May 2006 Genoa – p.22/40

+ < >

More General Tests

Recall the definition of a POMDP

M = (S,Σ,O, δa : S × S −→ [0, 1], γa : S ×O −→ [0, 1]).

A test t is a non-empty sequence of actions followed
by an observation, i.e. t = a1 · · · ano, with n ≥ 1.

An experiment is a non-empty sequence of tests
e = t1 · · · tm with m ≥ 1.

MFPS May 2006 Genoa – p.23/40

+ < >

More General Tests

Recall the definition of a POMDP

M = (S,Σ,O, δa : S × S −→ [0, 1], γa : S ×O −→ [0, 1]).

A test t is a non-empty sequence of actions followed
by an observation, i.e. t = a1 · · · ano, with n ≥ 1.

An experiment is a non-empty sequence of tests
e = t1 · · · tm with m ≥ 1.

MFPS May 2006 Genoa – p.23/40

+ < >

More General Tests

Recall the definition of a POMDP

M = (S,Σ,O, δa : S × S −→ [0, 1], γa : S ×O −→ [0, 1]).

A test t is a non-empty sequence of actions followed
by an observation, i.e. t = a1 · · · ano, with n ≥ 1.

An experiment is a non-empty sequence of tests
e = t1 · · · tm with m ≥ 1.

MFPS May 2006 Genoa – p.23/40

+ < >

More General Tests

Recall the definition of a POMDP

M = (S,Σ,O, δa : S × S −→ [0, 1], γa : S ×O −→ [0, 1]).

A test t is a non-empty sequence of actions followed
by an observation, i.e. t = a1 · · · ano, with n ≥ 1.

An experiment is a non-empty sequence of tests
e = t1 · · · tm with m ≥ 1.

MFPS May 2006 Genoa – p.23/40

+ < >

Some Notation

We need to generalize the transition function to keep
track of the final state.

δε(s, s
′) = 1s=s′ ∀s, s′ ∈ S

δaα(s, s′) =
∑

s′′

δa(s, s
′′)δα(s′′, s′) ∀s, s′ ∈ S.

We have written 1s=s′ for the indicator function.

We define the symbol 〈s|t|s′〉 which gives the
probability that the system starts in s, is subjected to
the test t and ends up in the state s′; similarly 〈s|e|s′〉.

MFPS May 2006 Genoa – p.24/40

+ < >

Some Notation

We need to generalize the transition function to keep
track of the final state.

δε(s, s
′) = 1s=s′ ∀s, s′ ∈ S

δaα(s, s′) =
∑

s′′

δa(s, s
′′)δα(s′′, s′) ∀s, s′ ∈ S.

We have written 1s=s′ for the indicator function.

We define the symbol 〈s|t|s′〉 which gives the
probability that the system starts in s, is subjected to
the test t and ends up in the state s′; similarly 〈s|e|s′〉.

MFPS May 2006 Genoa – p.24/40

+ < >

Some Notation

We need to generalize the transition function to keep
track of the final state.

δε(s, s
′) = 1s=s′ ∀s, s′ ∈ S

δaα(s, s′) =
∑

s′′

δa(s, s
′′)δα(s′′, s′) ∀s, s′ ∈ S.

We have written 1s=s′ for the indicator function.

We define the symbol 〈s|t|s′〉 which gives the
probability that the system starts in s, is subjected to
the test t and ends up in the state s′; similarly 〈s|e|s′〉.

MFPS May 2006 Genoa – p.24/40

+ < >

Notation continued

We have

〈s|a1 · · · ano|s
′〉 = δα(s, s′)γan

(s′, o).

We define
〈s|e〉 =

∑

s′

〈s|e|s′〉.

MFPS May 2006 Genoa – p.25/40

+ < >

Notation continued

We have

〈s|a1 · · · ano|s
′〉 = δα(s, s′)γan

(s′, o).

We define
〈s|e〉 =

∑

s′

〈s|e|s′〉.

MFPS May 2006 Genoa – p.25/40

+ < >

Equivalence on Experiments

For experiments e1, e2, we say

e1 ∼M e2 ⇔ 〈s|e1〉 = 〈s|e2〉∀s ∈ S.

Then [e]M is the ∼M-equivalence class of e.

The construction of the dual proceeds as before by
making equivalence classes of experiments the
states of the dual machine and

the states of the primal machine become the
observations of the dual machine.

MFPS May 2006 Genoa – p.26/40

+ < >

Equivalence on Experiments

For experiments e1, e2, we say

e1 ∼M e2 ⇔ 〈s|e1〉 = 〈s|e2〉∀s ∈ S.

Then [e]M is the ∼M-equivalence class of e.

The construction of the dual proceeds as before by
making equivalence classes of experiments the
states of the dual machine and

the states of the primal machine become the
observations of the dual machine.

MFPS May 2006 Genoa – p.26/40

+ < >

Equivalence on Experiments

For experiments e1, e2, we say

e1 ∼M e2 ⇔ 〈s|e1〉 = 〈s|e2〉∀s ∈ S.

Then [e]M is the ∼M-equivalence class of e.

The construction of the dual proceeds as before by
making equivalence classes of experiments the
states of the dual machine and

the states of the primal machine become the
observations of the dual machine.

MFPS May 2006 Genoa – p.26/40

+ < >

Equivalence on Experiments

For experiments e1, e2, we say

e1 ∼M e2 ⇔ 〈s|e1〉 = 〈s|e2〉∀s ∈ S.

Then [e]M is the ∼M-equivalence class of e.

The construction of the dual proceeds as before by
making equivalence classes of experiments the
states of the dual machine and

the states of the primal machine become the
observations of the dual machine.

MFPS May 2006 Genoa – p.26/40

+ < >

The Dual Machine

We define the dual as M′ =

(S′,Σ,O′, δ′ : S′ × Σ −→ S′, γ′ : S′ ×O′ −→ [0, 1]),

where S′ = {[e]M}, O′ = S

δ′([e]M, a0) = [a0e]M and

γ′([e]M, s) = 〈s|e〉.

We get a deterministic transition system with
stochastic observations.

MFPS May 2006 Genoa – p.27/40

+ < >

The Dual Machine

We define the dual as M′ =

(S′,Σ,O′, δ′ : S′ × Σ −→ S′, γ′ : S′ ×O′ −→ [0, 1]),

where S′ = {[e]M}, O′ = S

δ′([e]M, a0) = [a0e]M and

γ′([e]M, s) = 〈s|e〉.

We get a deterministic transition system with
stochastic observations.

MFPS May 2006 Genoa – p.27/40

+ < >

The Dual Machine

We define the dual as M′ =

(S′,Σ,O′, δ′ : S′ × Σ −→ S′, γ′ : S′ ×O′ −→ [0, 1]),

where S′ = {[e]M}, O′ = S

δ′([e]M, a0) = [a0e]M and

γ′([e]M, s) = 〈s|e〉.

We get a deterministic transition system with
stochastic observations.

MFPS May 2006 Genoa – p.27/40

+ < >

The Dual Machine

We define the dual as M′ =

(S′,Σ,O′, δ′ : S′ × Σ −→ S′, γ′ : S′ ×O′ −→ [0, 1]),

where S′ = {[e]M}, O′ = S

δ′([e]M, a0) = [a0e]M and

γ′([e]M, s) = 〈s|e〉.

We get a deterministic transition system with
stochastic observations.

MFPS May 2006 Genoa – p.27/40

+ < >

The Double Dual

We use the e-test construction to go from the dual to
the double dual.

The double dual is

M′′ = (S′′,A′,O′′, δ′′, γ′′),

where

S′′ = {[t]M′}, O′′ = S′,

δ′′([t]M′ , a0) = [a0e]M and

γ′′([t]M′ , [t]M) = 〈[t]M|e〉 = 〈s|αRt〉 (e = αs).

MFPS May 2006 Genoa – p.28/40

+ < >

The Double Dual

We use the e-test construction to go from the dual to
the double dual.

The double dual is

M′′ = (S′′,A′,O′′, δ′′, γ′′),

where

S′′ = {[t]M′}, O′′ = S′,

δ′′([t]M′ , a0) = [a0e]M and

γ′′([t]M′ , [t]M) = 〈[t]M|e〉 = 〈s|αRt〉 (e = αs).

MFPS May 2006 Genoa – p.28/40

+ < >

The Double Dual

We use the e-test construction to go from the dual to
the double dual.

The double dual is

M′′ = (S′′,A′,O′′, δ′′, γ′′),

where

S′′ = {[t]M′}, O′′ = S′,

δ′′([t]M′ , a0) = [a0e]M and

γ′′([t]M′ , [t]M) = 〈[t]M|e〉 = 〈s|αRt〉 (e = αs).

MFPS May 2006 Genoa – p.28/40

+ < >

The Double Dual

We use the e-test construction to go from the dual to
the double dual.

The double dual is

M′′ = (S′′,A′,O′′, δ′′, γ′′),

where

S′′ = {[t]M′}, O′′ = S′,

δ′′([t]M′ , a0) = [a0e]M and

γ′′([t]M′ , [t]M) = 〈[t]M|e〉 = 〈s|αRt〉 (e = αs).

MFPS May 2006 Genoa – p.28/40

+ < >

The Double Dual

We use the e-test construction to go from the dual to
the double dual.

The double dual is

M′′ = (S′′,A′,O′′, δ′′, γ′′),

where

S′′ = {[t]M′}, O′′ = S′,

δ′′([t]M′ , a0) = [a0e]M and

γ′′([t]M′ , [t]M) = 〈[t]M|e〉 = 〈s|αRt〉 (e = αs).

MFPS May 2006 Genoa – p.28/40

+ < >

The Main Theorem

One has to check that everything is well defined.

The main result is: The probability of a state s in the
primal satisfying a experiment e, i.e. 〈s|e〉 is given by
〈[s]M′ |[e]M〉 = γ′′([s]M′)|[e]M〉, where [s] indicates the
equivalence class of the e-test on the dual which has
s as an observation and an empty sequence of
actions.

MFPS May 2006 Genoa – p.29/40

+ < >

The Main Theorem

One has to check that everything is well defined.

The main result is: The probability of a state s in the
primal satisfying a experiment e, i.e. 〈s|e〉 is given by
〈[s]M′ |[e]M〉 = γ′′([s]M′)|[e]M〉, where [s] indicates the
equivalence class of the e-test on the dual which has
s as an observation and an empty sequence of
actions.

MFPS May 2006 Genoa – p.29/40

+ < >

AI Motivation

One can plan when one has the model: value
iteration etc., but quite often one does not have the
model.

In the absence of a model, one is forced to learn
from data.

Learning is hopeless when one has no idea what the
state space is.

There should be no such thing as absolute state!
State is just a summary of past observations that can
be used to make predictions.

The double dual shows that the state can be
regarded as just the summary of the outcomes of
experiments.

MFPS May 2006 Genoa – p.30/40

+ < >

AI Motivation

One can plan when one has the model: value
iteration etc., but quite often one does not have the
model.

In the absence of a model, one is forced to learn
from data.

Learning is hopeless when one has no idea what the
state space is.

There should be no such thing as absolute state!
State is just a summary of past observations that can
be used to make predictions.

The double dual shows that the state can be
regarded as just the summary of the outcomes of
experiments.

MFPS May 2006 Genoa – p.30/40

+ < >

AI Motivation

One can plan when one has the model: value
iteration etc., but quite often one does not have the
model.

In the absence of a model, one is forced to learn
from data.

Learning is hopeless when one has no idea what the
state space is.

There should be no such thing as absolute state!
State is just a summary of past observations that can
be used to make predictions.

The double dual shows that the state can be
regarded as just the summary of the outcomes of
experiments.

MFPS May 2006 Genoa – p.30/40

+ < >

AI Motivation

One can plan when one has the model: value
iteration etc., but quite often one does not have the
model.

In the absence of a model, one is forced to learn
from data.

Learning is hopeless when one has no idea what the
state space is.

There should be no such thing as absolute state!
State is just a summary of past observations that can
be used to make predictions.

The double dual shows that the state can be
regarded as just the summary of the outcomes of
experiments.

MFPS May 2006 Genoa – p.30/40

+ < >

AI Motivation

One can plan when one has the model: value
iteration etc., but quite often one does not have the
model.

In the absence of a model, one is forced to learn
from data.

Learning is hopeless when one has no idea what the
state space is.

There should be no such thing as absolute state!
State is just a summary of past observations that can
be used to make predictions.

The double dual shows that the state can be
regarded as just the summary of the outcomes of
experiments.

MFPS May 2006 Genoa – p.30/40

+ < >

We have a paper in the upcoming AAAI conference
showing how to use the double-dual to represent
systems with hidden state.

MFPS May 2006 Genoa – p.31/40

+ < >

Machines Categorically

A a set and T : Set −→ Set is the functor TS = S × A.

A machine M is a pair (δ, γ) where δ : S ×A −→ S is a
T -algebra and γ : S × P −→ 2 is a relation in Set.

S is the set of states, A the actions and P the
propositions.

MFPS May 2006 Genoa – p.32/40

+ < >

Machines Categorically

A a set and T : Set −→ Set is the functor TS = S × A.

A machine M is a pair (δ, γ) where δ : S ×A −→ S is a
T -algebra and γ : S × P −→ 2 is a relation in Set.

S is the set of states, A the actions and P the
propositions.

MFPS May 2006 Genoa – p.32/40

+ < >

Machines Categorically

A a set and T : Set −→ Set is the functor TS = S × A.

A machine M is a pair (δ, γ) where δ : S ×A −→ S is a
T -algebra and γ : S × P −→ 2 is a relation in Set.

S is the set of states, A the actions and P the
propositions.

MFPS May 2006 Genoa – p.32/40

+ < >

Morphisms of Machines

A morphism m from
M1 = (δ1 : S1 ×A −→ S1, γ1 : S1 × P1 −→ 2)
to M2 = (δ21 : S2 × A −→ S2, γ2 : S2 × P2 −→ 2)
is a pair m = (f : S1 −→ S2, g : P2 −→ P1) making the
following diagrams commute

S1 × A
f×idA

//

δ1

��

S2 × A

δ2

��

S1
f

// S2

and S1 × P2
f×idP2

//

idS1×g

��

S2 × P2

γ2

��

S1
γ1

// S2

MFPS May 2006 Genoa – p.33/40

+ < >

Morphisms of Machines

A morphism m from
M1 = (δ1 : S1 ×A −→ S1, γ1 : S1 × P1 −→ 2)
to M2 = (δ21 : S2 × A −→ S2, γ2 : S2 × P2 −→ 2)
is a pair m = (f : S1 −→ S2, g : P2 −→ P1) making the
following diagrams commute

S1 × A
f×idA

//

δ1

��

S2 × A

δ2

��

S1
f

// S2

and S1 × P2
f×idP2

//

idS1×g

��

S2 × P2

γ2

��

S1
γ1

// S2

MFPS May 2006 Genoa – p.33/40

+ < >

The Dual Machine

The category of machines is written Mch.

Given a machine M we define the formulas of M,
FM, to be the set A∗ × P . If φ = (w, p) we will write aφ
for (aw, p).

We define satisfaction by

s |= (w, p) ⇐⇒ δ∗(s, w)γp.

The contravariant functor ′ sends M to M′, the dual
defined before, and the morphism (f, g) : M1 −→ M2

to (g′, f) where

g′([[(w, p)]]M2
) = [[(w, g(p))]]M1

.

MFPS May 2006 Genoa – p.34/40

+ < >

The Dual Machine

The category of machines is written Mch.

Given a machine M we define the formulas of M,
FM, to be the set A∗ × P . If φ = (w, p) we will write aφ
for (aw, p).

We define satisfaction by

s |= (w, p) ⇐⇒ δ∗(s, w)γp.

The contravariant functor ′ sends M to M′, the dual
defined before, and the morphism (f, g) : M1 −→ M2

to (g′, f) where

g′([[(w, p)]]M2
) = [[(w, g(p))]]M1

.

MFPS May 2006 Genoa – p.34/40

+ < >

The Dual Machine

The category of machines is written Mch.

Given a machine M we define the formulas of M,
FM, to be the set A∗ × P . If φ = (w, p) we will write aφ
for (aw, p).

We define satisfaction by

s |= (w, p) ⇐⇒ δ∗(s, w)γp.

The contravariant functor ′ sends M to M′, the dual
defined before, and the morphism (f, g) : M1 −→ M2

to (g′, f) where

g′([[(w, p)]]M2
) = [[(w, g(p))]]M1

.

MFPS May 2006 Genoa – p.34/40

+ < >

The Dual Machine

The category of machines is written Mch.

Given a machine M we define the formulas of M,
FM, to be the set A∗ × P . If φ = (w, p) we will write aφ
for (aw, p).

We define satisfaction by

s |= (w, p) ⇐⇒ δ∗(s, w)γp.

The contravariant functor ′ sends M to M′, the dual
defined before, and the morphism (f, g) : M1 −→ M2

to (g′, f) where

g′([[(w, p)]]M2
) = [[(w, g(p))]]M1

.

MFPS May 2006 Genoa – p.34/40

+ < >

The Reduction Functor

A machine is state reduced if

s1 6= s2 ⇒ ∃φ such that s1 6|= φ and s2 |= φ or vice versa.

A machine is proposition reduced if

∀p1, p2(∀w1, w2 ∈ A∗[[(w1, p1)]]M = [[(w2, p2)]]M) ⇒ p1 = p2.

We define the reduction functor to be ′ composed
with itself i.e. ′′.

if M = M′′ we say that it is completely reduced.

MFPS May 2006 Genoa – p.35/40

+ < >

The Reduction Functor

A machine is state reduced if

s1 6= s2 ⇒ ∃φ such that s1 6|= φ and s2 |= φ or vice versa.

A machine is proposition reduced if

∀p1, p2(∀w1, w2 ∈ A∗[[(w1, p1)]]M = [[(w2, p2)]]M) ⇒ p1 = p2.

We define the reduction functor to be ′ composed
with itself i.e. ′′.

if M = M′′ we say that it is completely reduced.

MFPS May 2006 Genoa – p.35/40

+ < >

The Reduction Functor

A machine is state reduced if

s1 6= s2 ⇒ ∃φ such that s1 6|= φ and s2 |= φ or vice versa.

A machine is proposition reduced if

∀p1, p2(∀w1, w2 ∈ A∗[[(w1, p1)]]M = [[(w2, p2)]]M) ⇒ p1 = p2.

We define the reduction functor to be ′ composed
with itself i.e. ′′.

if M = M′′ we say that it is completely reduced.

MFPS May 2006 Genoa – p.35/40

+ < >

The Reduction Functor

A machine is state reduced if

s1 6= s2 ⇒ ∃φ such that s1 6|= φ and s2 |= φ or vice versa.

A machine is proposition reduced if

∀p1, p2(∀w1, w2 ∈ A∗[[(w1, p1)]]M = [[(w2, p2)]]M) ⇒ p1 = p2.

We define the reduction functor to be ′ composed
with itself i.e. ′′.

if M = M′′ we say that it is completely reduced.

MFPS May 2006 Genoa – p.35/40

+ < >

The Disappointment

It would be very pleasant if we took Q : Mch

−→ Mchop and R : Mchop −→ Mch to be the two
(covariant) functors that represent ′ and get Q a R.

But this is not possible the way we have set things
up!

The unit of the adjunction would have to be a
morphism ηM : M −→ M′′ which would then require

a map g : [[FM]] × P −→ 2.

Unless M is proposition reduced there is no reason
at all for such a thing to exist.

MFPS May 2006 Genoa – p.36/40

+ < >

The Disappointment

It would be very pleasant if we took Q : Mch

−→ Mchop and R : Mchop −→ Mch to be the two
(covariant) functors that represent ′ and get Q a R.

But this is not possible the way we have set things
up!

The unit of the adjunction would have to be a
morphism ηM : M −→ M′′ which would then require

a map g : [[FM]] × P −→ 2.

Unless M is proposition reduced there is no reason
at all for such a thing to exist.

MFPS May 2006 Genoa – p.36/40

+ < >

The Disappointment

It would be very pleasant if we took Q : Mch

−→ Mchop and R : Mchop −→ Mch to be the two
(covariant) functors that represent ′ and get Q a R.

But this is not possible the way we have set things up!

The unit of the adjunction would have to be a
morphism ηM : M −→ M′′ which would then require

a map g : [[FM]] × P −→ 2.

Unless M is proposition reduced there is no reason
at all for such a thing to exist.

MFPS May 2006 Genoa – p.36/40

+ < >

The Disappointment

It would be very pleasant if we took Q : Mch

−→ Mchop and R : Mchop −→ Mch to be the two
(covariant) functors that represent ′ and get Q a R.

But this is not possible the way we have set things up!

The unit of the adjunction would have to be a
morphism ηM : M −→ M′′ which would then require

a map g : [[FM]] × P −→ 2.

Unless M is proposition reduced there is no reason
at all for such a thing to exist.

MFPS May 2006 Genoa – p.36/40

+ < >

The Disappointment

It would be very pleasant if we took Q : Mch

−→ Mchop and R : Mchop −→ Mch to be the two
(covariant) functors that represent ′ and get Q a R.

But this is not possible the way we have set things up!

The unit of the adjunction would have to be a
morphism ηM : M −→ M′′ which would then require

a map g : [[FM]] × P −→ 2.

Unless M is proposition reduced there is no reason
at all for such a thing to exist.

MFPS May 2006 Genoa – p.36/40

+ < >

But what did we prove before?

We did not quite use the construction of the last two
slides.

M̃ = (δ′′, γ̃ : [[F]]M′ × P −→ 2).

We proved that this machine was state reduced.

We quietly ignored the extra propositions in the
double dual.

MFPS May 2006 Genoa – p.37/40

+ < >

But what did we prove before?

We did not quite use the construction of the last two
slides.

M̃ = (δ′′, γ̃ : [[F]]M′ × P −→ 2).

We proved that this machine was state reduced.

We quietly ignored the extra propositions in the
double dual.

MFPS May 2006 Genoa – p.37/40

+ < >

But what did we prove before?

We did not quite use the construction of the last two
slides.

M̃ = (δ′′, γ̃ : [[F]]M′ × P −→ 2).

We proved that this machine was state reduced.

We quietly ignored the extra propositions in the
double dual.

MFPS May 2006 Genoa – p.37/40

+ < >

But what did we prove before?

We did not quite use the construction of the last two
slides.

M̃ = (δ′′, γ̃ : [[F]]M′ × P −→ 2).

We proved that this machine was state reduced.

We quietly ignored the extra propositions in the
double dual.

MFPS May 2006 Genoa – p.37/40

+ < >

Purgatory I

There is another way of decomposing ′′ into a pair of
(covariant) functors F and G. F modifies only the
propositions and G modifies only the states.

FM = (δ : S ×A −→ S, γ̃ : S × [[F]]M −→ 2) where
sγ̃[[φ]]M ⇐⇒ [[φ]]Mγ′s ⇐⇒ s ∈ [[φ]]M.

GM = (δ : [S]M ×A −→ [S]M, γ : [S]M × P −→ 2);
where

[s]M := {s′ ∈ S|∀φ ∈ F , s′ |= φ ⇐⇒ s |= φ} and

δ([s]M, a) := [δ(s, a)]M and [s]Mγp ⇐⇒ sγp.

MFPS May 2006 Genoa – p.38/40

+ < >

Purgatory I

There is another way of decomposing ′′ into a pair of
(covariant) functors F and G. F modifies only the
propositions and G modifies only the states.

FM = (δ : S ×A −→ S, γ̃ : S × [[F]]M −→ 2) where
sγ̃[[φ]]M ⇐⇒ [[φ]]Mγ′s ⇐⇒ s ∈ [[φ]]M.

GM = (δ : [S]M ×A −→ [S]M, γ : [S]M × P −→ 2);
where

[s]M := {s′ ∈ S|∀φ ∈ F , s′ |= φ ⇐⇒ s |= φ} and

δ([s]M, a) := [δ(s, a)]M and [s]Mγp ⇐⇒ sγp.

MFPS May 2006 Genoa – p.38/40

+ < >

Purgatory I

There is another way of decomposing ′′ into a pair of
(covariant) functors F and G. F modifies only the
propositions and G modifies only the states.

FM = (δ : S ×A −→ S, γ̃ : S × [[F]]M −→ 2) where
sγ̃[[φ]]M ⇐⇒ [[φ]]Mγ′s ⇐⇒ s ∈ [[φ]]M.

GM = (δ : [S]M ×A −→ [S]M, γ : [S]M × P −→ 2);
where

[s]M := {s′ ∈ S|∀φ ∈ F , s′ |= φ ⇐⇒ s |= φ} and

δ([s]M, a) := [δ(s, a)]M and [s]Mγp ⇐⇒ sγp.

MFPS May 2006 Genoa – p.38/40

+ < >

Purgatory I

There is another way of decomposing ′′ into a pair of
(covariant) functors F and G. F modifies only the
propositions and G modifies only the states.

FM = (δ : S ×A −→ S, γ̃ : S × [[F]]M −→ 2) where
sγ̃[[φ]]M ⇐⇒ [[φ]]Mγ′s ⇐⇒ s ∈ [[φ]]M.

GM = (δ : [S]M ×A −→ [S]M, γ : [S]M × P −→ 2);
where

[s]M := {s′ ∈ S|∀φ ∈ F , s′ |= φ ⇐⇒ s |= φ} and

δ([s]M, a) := [δ(s, a)]M and [s]Mγp ⇐⇒ sγp.

MFPS May 2006 Genoa – p.38/40

+ < >

Purgatory II

The following natural isos hold:

F 2 = F, G2 ∼= G, QF ∼= Q, and GF = FG ∼= RQ.

For any machine M the following diagram is a
pullback

and a pushout at the same time

FM
(πS ,id[[F]])

//

idS×πP

��

FGM

(id[S],πP)

��

M
(πS ,idP)

// GM

MFPS May 2006 Genoa – p.39/40

+ < >

Purgatory II

The following natural isos hold:

F 2 = F, G2 ∼= G, QF ∼= Q, and GF = FG ∼= RQ.

For any machine M the following diagram is a
pullback

and a pushout at the same time

FM
(πS ,id[[F]])

//

idS×πP

��

FGM

(id[S],πP)

��

M
(πS ,idP)

// GM

MFPS May 2006 Genoa – p.39/40

+ < >

Purgatory II

The following natural isos hold:

F 2 = F, G2 ∼= G, QF ∼= Q, and GF = FG ∼= RQ.

For any machine M the following diagram is a
pullback

and a pushout at the same time

FM
(πS ,id[[F]])

//

idS×πP

��

FGM

(id[S],πP)

��

M
(πS ,idP)

// GM

MFPS May 2006 Genoa – p.39/40

+ < >

Purgatory II

The following natural isos hold:

F 2 = F, G2 ∼= G, QF ∼= Q, and GF = FG ∼= RQ.

For any machine M the following diagram is a
pullback

and a pushout at the same time

FM
(πS ,id[[F]])

//

idS×πP

��

FGM

(id[S],πP)

��

M
(πS ,idP)

// GM

MFPS May 2006 Genoa – p.39/40

+ < >

Conclusions

We need to understand the general framework in
which this fits. How is it related to dualities in control
theory? [Alexander Kurz, Jan Rutten]

We are experimenting with these ideas for practical
problems in the RL Lab at McGill; joint with Doina
Precup and Joelle Pineau.

Extension to continuous observation and continuous
state spaces.

It is possible to eliminate state completely in favour of
histories; when can this representation be
compressed and made tractable?

MFPS May 2006 Genoa – p.40/40

+ < >

Conclusions

We need to understand the general framework in
which this fits. How is it related to dualities in control
theory? [Alexander Kurz, Jan Rutten]

We are experimenting with these ideas for practical
problems in the RL Lab at McGill; joint with Doina
Precup and Joelle Pineau.

Extension to continuous observation and continuous
state spaces.

It is possible to eliminate state completely in favour of
histories; when can this representation be
compressed and made tractable?

MFPS May 2006 Genoa – p.40/40

+ < >

Conclusions

We need to understand the general framework in
which this fits. How is it related to dualities in control
theory? [Alexander Kurz, Jan Rutten]

We are experimenting with these ideas for practical
problems in the RL Lab at McGill; joint with Doina
Precup and Joelle Pineau.

Extension to continuous observation and continuous
state spaces.

It is possible to eliminate state completely in favour of
histories; when can this representation be
compressed and made tractable?

MFPS May 2006 Genoa – p.40/40

+ < >

Conclusions

We need to understand the general framework in
which this fits. How is it related to dualities in control
theory? [Alexander Kurz, Jan Rutten]

We are experimenting with these ideas for practical
problems in the RL Lab at McGill; joint with Doina
Precup and Joelle Pineau.

Extension to continuous observation and continuous
state spaces.

It is possible to eliminate state completely in favour of
histories; when can this representation be
compressed and made tractable?

MFPS May 2006 Genoa – p.40/40

	Overview
	Deterministic Automata
	A Simple Modal Logic
	An Equivalence Relation on Formulas
	An Equivalence Relation on States
	A Dual Automaton
	The intuition
	The Double Dual
	The Double Dual 2
	Minimality Properties
	The Nondeterministic Case
	Brzozowski's Algorithm 1962
	Probabilistic systems
	Partial Observations
	Formal Definition of a POMDP
	Automata with State-based Observations
	Simple Tests
	Simple Tests 2
	Duality with e-tests
	The Double Dual
	Inadequacy of e-tests
	More General Tests
	Some Notation
	Notation continued
	Equivalence on Experiments
	The Dual Machine
	The Double Dual
	The Main Theorem
	AI Motivation
	
	Machines Categorically
	Morphisms of Machines
	The Dual Machine
	The Reduction Functor
	The Disappointment
	But what did we prove before?
	Purgatory I
	Purgatory II
	Conclusions

