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= A system of autonomous agents have to choose a
special distinguished agent for the purposes of some
task.
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Leader Election

= A system of autonomous agents have to choose a
special distinguished agent for the purposes of some
task.

= Paradigmatic of distributed decision making.

= That’s easy: designate a leader when the system is
set up.

= Not always appropriate: what happens if the
designated leader crashes?

= Designate a backup ...

= What if membership in the group changes
dynamically?
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Anonymous Systems

= \We work in a system where all the agents execute
the same program and start in the same initial state.
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Anonymous Systems

= \We work in a system where all the agents execute
the same program and start in the same initial state.

= \We assume that agents cannot be named.

= \We want all agents to have an equal chance of being
the leader.

= \WWe assume that communication takes place in
rounds and that all agents communicate with all other
agents in every step: broadcast.
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The Classical Situation

= Leader election cannot be solved: Angluin 1980.

= The initial state is symmetric and there is no
mechanism to break the symmetry.

= Much effort in “almost” anonymous situations, special
patterns of interconnectivity and probabilistic
solutions.
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Using Probability

= |f two processes have coins they can elect a leader
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the leader.
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Using Probability

= |f two processes have coins they can elect a leader
by tossing their coins. The one who gets “heads” is
the leader.

= If both get “heads” or both get “tails” they toss again.

= They are not guaranteed to terminate though they
will terminate with probability 1.

= Expected number of rounds is just 2.
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What Can be Done With Quantum Resources?

= \We can obviously mimic the probabilistic solutions.
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What Can be Done With Quantum Resources?

= \We can obviously mimic the probabilistic solutions.

= Can we come up with a technigue that is guaranteed
to terminate after some fixed number of rounds?

= Can we ensure that each one has equal chance of
being the leader?
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Using a Bell pair for Leader Election

= Suppose that two agents want to choose one of
themselves as a leader and they share a Bell pair.
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Using a Bell pair for Leader Election

= Suppose that two agents want to choose one of
themselves as a leader and they share a Bell pair.

= They can each measure |0)(0| 4 |1)(1|; the one who
gets [1) Is the leader.

= Each agent has the same chance of getting elected,
the process is guaranteed to terminate in one step.
Exactly what is classically impossible!

= Does this generalize to more than two agents?
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Networks of Agents

= A network of agents is a system in which several
Inter-communicating agents carry out computations
concurrently.
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Networks of Agents

= A network of agents is a system in which several
Inter-communicating agents carry out computations
concurrently.

= Synchronous: communication occurs in fixed rounds
of broadcasts. Communication is classical, we send
bits not qubits.

= Anonymous: All agents run the same protocol and
there is no mechanism for naming the agents.

= All agents start in the same state.
= Known network size.
= No faulty or malicious agents.
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Anonymity

= All agents are completely identical: they do not carry
iIndividual names with which they can be identified.
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Anonymity

= All agents are completely identical: they do not carry
iIndividual names with which they can be identified.

= The initial network specification must be invariant
under permutations of agents.

= Agents start out in identical local classical states.

= Angluin 80: there is no solution to leader election that
IS guaranteed to terminate.
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Anonymity in the Quantum Setting

= Each processor must have the same “loca
Its quantum state. This can be formalized

view” of
9%

requiring that they have the same reducec
matrix.

density
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Anonymity in the Quantum Setting

= Each processor must have the same “loca
Its quantum state. This can be formalized

view” of
9%

requiring that they have the same reducec
matrix.

= \WWe adopt the slightly stronger assumption

Initial quantum state Is invariant under permutation of

the agents subspaces.

= This rules out some states like [0)4|0) 5 + €”?|1) 4]1) 5.

density

that the
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Total Correctness

A totally correct distributed protocol is a protocol that is
terminating, I.e. it reaches a terminal configuration in
each computation, and partially correct, i.e. for each of
the reachable terminal configurations the goal of the pro-

tocol Is achieved.
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Easy Consequences

= No totally correct leader election protocol exists
without prior shared entanglement.
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Easy Consequences

= No totally correct leader election protocol exists
without prior shared entanglement.

= Totally correct leader election algorithms for
anonymous quantum networks are fair, i.e. each
processor has equal probabillity of being elected
leader.
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Three party states

= What kind of entangled states are there for 3 parties?

= There are inequivalent enatngled states, numerical
entanglement measures are inadequate.

= W = [100) + |010) + [001) and GHZ := |000) + |111).

= Both are maximally entangled but 1V is persistent, it
requires two measurements to destroy the
entanglement. GHZ becomes disentangled with just
one measurement.

= |V, requires n — 1 measurements to destroy the
entanglement while GH Z,, becomes disentangled
with just one measurement.
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QLE with the W state

= ¢ «— ¢th qubit of W,
b=0
result=wait
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QLE with the W state

= ¢ «— ¢th qubit of W,
b=0
result=wait

® b:= measure q
= If b =1 then result:= leader, else result:=follower.
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The Main result

If a system of n agents with a shared quantum state can
solve leader election then they must have had the W,

state or its “mirror image.”
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k-symmetric moves

Suppose an n-partite state |¢)) € H®", where H is a
2™ —dimensional Hilbert space, is distributed over n
processors. We say that there exists a k-symmetric
move for the processors iy, ..., with respect to |¢),

where 0 < k < n, if for all observables M = "7, \; P},
with J < 2™ and all P; projectors, we have that

e {1 Ty (PR i (Pt - - (Prot)in[¥0) # 0
(0)
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k-symmetric moves 2

The idea is that all measurements potentially give

Identical measurement results for k out of the n
Processors.

Because anonymous networks are invariant under per-

mutations we need not specify any particular subset of

Processors.

MFPS 20th May 2005 - Birmingham — p.17/2.



Proof Ideas

= k-symmetric moves exist if and only if a certain form
of the state holds.
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Proof Ideas

= k-symmetric moves exist if and only if a certain form
of the state holds.

= If a k-symmetric move Is possible this will persist in
any successor state.

= Any protocol for which k-symmetric branches exist
with £ different from 1 or n — 1 is not totally correct.

= From the form of the state in the first item we get the
desired result.

= \WWe can extend to the case where they share more
than 1 qubit each.
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Without Anonymity

= Suppose that we set up the state W, ,,_» and give
each processor one qubit. Each processor measures
Its qubit.
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Without Anonymity

= Suppose that we set up the state W, ,,_» and give
each processor one qubit. Each processor measures
Its qubit.

= |f it gets |1) it becomes a candidate otherwise it is a
voter. Now we can hold an election and choose a
leader, if n Is odd there Is a unigue winner.

= But how can the voters name their preference in an
anonymous network?
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Using Network Structure

= If the network is a ring then each voter sends a
message clockwise.
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Using Network Structure

= If the network is a ring then each voter sends a
message clockwise.

= \oters pass on messages they receive, candidates
count messages that they receive.

= As soon as one of them gets more than half the
votes it will declare itself leader.
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Conclusions

= The leader election problem can be exactly solved
with shared correlation; either with classical
correlated random variables or with the W state.
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Conclusions

= The leader election problem can be exactly solved
with shared correlation; either with classical
correlated random variables or with the W state.

= The I state is the only state that has this power. It is
worth studying the different kinds of entanglement
and their relative power in different computational
situations.

= These kind of symmetry breaking arguments have
been used to prove expressiveness theorems before
(e.g. Palamidessi 2003).

= A group of researchers in Japan have -
iIndependently - given a guantum algorithm for leader
election. They allow qubits to be passed around.

+ < >
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