
Duality for Transition Systems

Prakash Panangaden1

1School of Computer Science
McGill University

work done while on sabbatical leave at
Oxford University

Australian Category Seminar: 27th Feb 2013

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 1 / 79

Introduction

Opening remarks

Thanks to Annabelle Mciver for inviting me to Macquarie
University

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 2 / 79

Introduction

Opening remarks

Thanks to Annabelle Mciver for inviting me to Macquarie
University

and to the Australian Category Seminar for hosting this talk.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 2 / 79

Introduction

Opening remarks

Thanks to Annabelle Mciver for inviting me to Macquarie
University

and to the Australian Category Seminar for hosting this talk.

Thanks to Prof. Mingsheng Ying for inviting me once again to
wonderful Sydney, Australia.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 2 / 79

Introduction

Opening remarks

Thanks to Annabelle Mciver for inviting me to Macquarie
University

and to the Australian Category Seminar for hosting this talk.

Thanks to Prof. Mingsheng Ying for inviting me once again to
wonderful Sydney, Australia.

Cricket prediction for Australia v India: 1-1.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 2 / 79

Introduction

Overview

We have discovered an - apparently - new kind of duality for
automata.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 3 / 79

Introduction

Overview

We have discovered an - apparently - new kind of duality for
automata.

Special case of this construction known since 1962 to Brzozowski.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 3 / 79

Introduction

Overview

We have discovered an - apparently - new kind of duality for
automata.

Special case of this construction known since 1962 to Brzozowski.

Works for probabilistic automata.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 3 / 79

Introduction

Overview

We have discovered an - apparently - new kind of duality for
automata.

Special case of this construction known since 1962 to Brzozowski.

Works for probabilistic automata.

Seems interesting for learning and planning.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 3 / 79

Joint work with Doina Precup, Joelle Pineau at the RL Lab at McGill
and Chris Hundt now working for Google. More recently with Nick
Bezhanishvili and Clemens Kupke. Now also with Helle Hvid Hansen,
Alexandra Silva, Jan Rutten, Dexter Kozen, Marcello Bonsangue and
Filippo Bonchi.

What is duality?

Often in mathematics one has two types of structures: Shiv and
Vish.

What is duality?

Often in mathematics one has two types of structures: Shiv and
Vish.

It turns out that every Shiv has an associated Vish and vice versa.

What is duality?

Often in mathematics one has two types of structures: Shiv and
Vish.

It turns out that every Shiv has an associated Vish and vice versa.

If one starts with a Vish, construct the associated Shiv and come
back one gets “practically” the same Vish that one started with.

What is duality?

Often in mathematics one has two types of structures: Shiv and
Vish.

It turns out that every Shiv has an associated Vish and vice versa.

If one starts with a Vish, construct the associated Shiv and come
back one gets “practically” the same Vish that one started with.

This means that these two – apparently – different structures are
actually two different descriptions of the same thing.

What is duality?

Often in mathematics one has two types of structures: Shiv and
Vish.

It turns out that every Shiv has an associated Vish and vice versa.

If one starts with a Vish, construct the associated Shiv and come
back one gets “practically” the same Vish that one started with.

This means that these two – apparently – different structures are
actually two different descriptions of the same thing.

Thus, one has two completely different sets of theorems that one
can use.

Examples of Duality

Maximum and minimum principles for linear programming.

Examples of Duality

Maximum and minimum principles for linear programming.

Boolean algebras and Stone spaces.

Examples of Duality

Maximum and minimum principles for linear programming.

Boolean algebras and Stone spaces.

Logics and Transition systems.

Examples of Duality

Maximum and minimum principles for linear programming.

Boolean algebras and Stone spaces.

Logics and Transition systems.

State transformer semantics and weakest precondition semantics.

Examples of Duality

Maximum and minimum principles for linear programming.

Boolean algebras and Stone spaces.

Logics and Transition systems.

State transformer semantics and weakest precondition semantics.

Measures and random variables.

Examples of Duality

Maximum and minimum principles for linear programming.

Boolean algebras and Stone spaces.

Logics and Transition systems.

State transformer semantics and weakest precondition semantics.

Measures and random variables.

Compact groups and discrete groups.

Examples of Duality

Maximum and minimum principles for linear programming.

Boolean algebras and Stone spaces.

Logics and Transition systems.

State transformer semantics and weakest precondition semantics.

Measures and random variables.

Compact groups and discrete groups.

C*-algebras and compact Hausdorff spaces.

Examples of Duality

Maximum and minimum principles for linear programming.

Boolean algebras and Stone spaces.

Logics and Transition systems.

State transformer semantics and weakest precondition semantics.

Measures and random variables.

Compact groups and discrete groups.

C*-algebras and compact Hausdorff spaces.

Vector spaces and vector spaces.

Deterministic Automata

Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite automaton. S is the set of
states , A an input alphabet (actions), O is a set of
observations .

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 7 / 79

Deterministic Automata

Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite automaton. S is the set of
states , A an input alphabet (actions), O is a set of
observations .

δ : S ×A −→ S is the state transition function .

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 7 / 79

Deterministic Automata

Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite automaton. S is the set of
states , A an input alphabet (actions), O is a set of
observations .

δ : S ×A −→ S is the state transition function .

γ : S −→ 2O or γ : S ×O −→ 2 is a labeling function.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 7 / 79

Deterministic Automata

Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite automaton. S is the set of
states , A an input alphabet (actions), O is a set of
observations .

δ : S ×A −→ S is the state transition function .

γ : S −→ 2O or γ : S ×O −→ 2 is a labeling function.

If O = {accept} we have ordinary deterministic finite automata,

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 7 / 79

Deterministic Automata

Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite automaton. S is the set of
states , A an input alphabet (actions), O is a set of
observations .

δ : S ×A −→ S is the state transition function .

γ : S −→ 2O or γ : S ×O −→ 2 is a labeling function.

If O = {accept} we have ordinary deterministic finite automata,

except that we do not have a start state,

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 7 / 79

Deterministic Automata

Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite automaton. S is the set of
states , A an input alphabet (actions), O is a set of
observations .

δ : S ×A −→ S is the state transition function .

γ : S −→ 2O or γ : S ×O −→ 2 is a labeling function.

If O = {accept} we have ordinary deterministic finite automata,

except that we do not have a start state,

but this can be easily added to the framework.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 7 / 79

An Example

States:{A,B,C,D,E,F} Observations: {Blue,Red,Yellow}.

A

C B D

F E

b
a

ab

ba

baa

b

a

b

Testing the Machine

What can we do with this machine?

Testing the Machine

What can we do with this machine?

We can ask if in the present state the red light is on.

Testing the Machine

What can we do with this machine?

We can ask if in the present state the red light is on.

We can ask whether after a b-transition from the present state the
yellow light is on.

Testing the Machine

What can we do with this machine?

We can ask if in the present state the red light is on.

We can ask whether after a b-transition from the present state the
yellow light is on.

We can ask whether after abab from the present state the blue
light is on.

Testing the Machine

What can we do with this machine?

We can ask if in the present state the red light is on.

We can ask whether after a b-transition from the present state the
yellow light is on.

We can ask whether after abab from the present state the blue
light is on.

We can ask whether after some fixed sequence of transitions a
particular light is on.

States Satisfy Tests (Or Not)

red is satisfied by {A,C}

States Satisfy Tests (Or Not)

red is satisfied by {A,C}

After b, yellow is on, is satisfied by {B,E,F} and no other states.

States Satisfy Tests (Or Not)

red is satisfied by {A,C}

After b, yellow is on, is satisfied by {B,E,F} and no other states.

After abab, blue is on is satisfied by {A,B,C,D,E,F}, i.e. by all
states.

red is satisfied by {A,C}

A

C B D

F E

b
a

ab

ba

baa

b

a

b

b-Yellow is satisfied by {B,E,F}

A

C B D

F E

b
a

ab

ba

baa

b

a

b

abab-Blue is always satisfied

A

C B D

F E

b
a

ab

ba

baa

b

a

b

A Simple Modal Logic

Thinking of the elements of O as formulas we can use them to
define a simple modal logic. We define a formula ϕ according to
the following grammar:

ϕ ::== ω ∈ O | (a)ϕ

where a ∈ A.

A Simple Modal Logic

Thinking of the elements of O as formulas we can use them to
define a simple modal logic. We define a formula ϕ according to
the following grammar:

ϕ ::== ω ∈ O | (a)ϕ

where a ∈ A.

We say s |= ω, if ω ∈ γ(s) (or γ(s, ω) = T).
We say s |= (a)ϕ if δ(s, a) |= ϕ.

A Simple Modal Logic

Thinking of the elements of O as formulas we can use them to
define a simple modal logic. We define a formula ϕ according to
the following grammar:

ϕ ::== ω ∈ O | (a)ϕ

where a ∈ A.

We say s |= ω, if ω ∈ γ(s) (or γ(s, ω) = T).
We say s |= (a)ϕ if δ(s, a) |= ϕ.

Now we define [[ϕ]]M = {s ∈ S|s |= ϕ}.

An Equivalence Relation on Formulas

We write sa as shorthand for δ(s, a).

An Equivalence Relation on Formulas

We write sa as shorthand for δ(s, a).

Define ∼M between formulas as ϕ ∼M ψ if [[ϕ]]M = [[ψ]]M.

An Equivalence Relation on Formulas

We write sa as shorthand for δ(s, a).

Define ∼M between formulas as ϕ ∼M ψ if [[ϕ]]M = [[ψ]]M.

Note that this allows us to identify an equivalence class for ϕ with
the set of states [[ϕ]]M that satisfy ϕ.

An Equivalence Relation on Formulas

We write sa as shorthand for δ(s, a).

Define ∼M between formulas as ϕ ∼M ψ if [[ϕ]]M = [[ψ]]M.

Note that this allows us to identify an equivalence class for ϕ with
the set of states [[ϕ]]M that satisfy ϕ.

Note that another way of defining this equivalence relations is

ϕ ∼M ϕ′ := ∀s ∈ S.s |= ϕ ⇐⇒ s |= ϕ′.

Examples of Equivalent Formulas

The formulas bbbyellow and bbbbbyellow are satisfied by all states.
They are thus equivalent.

Examples of Equivalent Formulas

The formulas bbbyellow and bbbbbyellow are satisfied by all states.
They are thus equivalent.

Other equivalent formulas are all formulas of the form bmyellow for
m > 1.

Examples of Equivalent Formulas

The formulas bbbyellow and bbbbbyellow are satisfied by all states.
They are thus equivalent.

Other equivalent formulas are all formulas of the form bmyellow for
m > 1.

There are a lot of formulas in this equivalence class!

Examples of Equivalent Formulas

The formulas bbbyellow and bbbbbyellow are satisfied by all states.
They are thus equivalent.

Other equivalent formulas are all formulas of the form bmyellow for
m > 1.

There are a lot of formulas in this equivalence class!

But there are only finitely many equivalence classes.

An Equivalence Relation on States

We also define an equivalence ≡ between states in M as s1 ≡ s2

if for all formulas ϕ on M, s1 |= ϕ ⇐⇒ s2 |= ϕ.

An Equivalence Relation on States

We also define an equivalence ≡ between states in M as s1 ≡ s2

if for all formulas ϕ on M, s1 |= ϕ ⇐⇒ s2 |= ϕ.

The equivalence relations ∼ and ≡ are clearly closely related:
they are the hinge of the duality between states and observations.

An Equivalence Relation on States

We also define an equivalence ≡ between states in M as s1 ≡ s2

if for all formulas ϕ on M, s1 |= ϕ ⇐⇒ s2 |= ϕ.

The equivalence relations ∼ and ≡ are clearly closely related:
they are the hinge of the duality between states and observations.

We say that M is reduced if the ≡-equivalence classes are
singletons.

An Equivalence Relation on States

We also define an equivalence ≡ between states in M as s1 ≡ s2

if for all formulas ϕ on M, s1 |= ϕ ⇐⇒ s2 |= ϕ.

The equivalence relations ∼ and ≡ are clearly closely related:
they are the hinge of the duality between states and observations.

We say that M is reduced if the ≡-equivalence classes are
singletons.

Since there is more than just one proposition in general the
relation ≡ is finer than the usual equivalence of automata theory.

A Dual Automaton

Given a finite automaton M = (S,A,O, δ, γ).
Let T be the set of ∼M-equivalence classes of formulas on M.

A Dual Automaton

Given a finite automaton M = (S,A,O, δ, γ).
Let T be the set of ∼M-equivalence classes of formulas on M.

We define M′ = (S′,A,O′, δ′, γ′) as follows:

A Dual Automaton

Given a finite automaton M = (S,A,O, δ, γ).
Let T be the set of ∼M-equivalence classes of formulas on M.

We define M′ = (S′,A,O′, δ′, γ′) as follows:

S′ = T = {[[ϕ]]M}

A Dual Automaton

Given a finite automaton M = (S,A,O, δ, γ).
Let T be the set of ∼M-equivalence classes of formulas on M.

We define M′ = (S′,A,O′, δ′, γ′) as follows:

S′ = T = {[[ϕ]]M}

O′ = S

A Dual Automaton

Given a finite automaton M = (S,A,O, δ, γ).
Let T be the set of ∼M-equivalence classes of formulas on M.

We define M′ = (S′,A,O′, δ′, γ′) as follows:

S′ = T = {[[ϕ]]M}

O′ = S

δ′([[ϕ]]M, a) = [[(a)ϕ]]M

A Dual Automaton

Given a finite automaton M = (S,A,O, δ, γ).
Let T be the set of ∼M-equivalence classes of formulas on M.

We define M′ = (S′,A,O′, δ′, γ′) as follows:

S′ = T = {[[ϕ]]M}

O′ = S

δ′([[ϕ]]M, a) = [[(a)ϕ]]M
γ′([[ϕ]]M) = [[ϕ]]M or γ′([[ϕ]]A, s) = (s |= ϕ).

Let’s look at that last line again

γ′([[ϕ]]M) = [[ϕ]]M?

Let’s look at that last line again

γ′([[ϕ]]M) = [[ϕ]]M?

Does it make sense? Is γ′ just the identity?

Let’s look at that last line again

γ′([[ϕ]]M) = [[ϕ]]M?

Does it make sense? Is γ′ just the identity?

On the left-hand side [[ϕ]] is an equivalence class of formulas,
hence a state of the dual machine;

Let’s look at that last line again

γ′([[ϕ]]M) = [[ϕ]]M?

Does it make sense? Is γ′ just the identity?

On the left-hand side [[ϕ]] is an equivalence class of formulas,
hence a state of the dual machine;

so the right-hand side ought to have a set of observations of the
dual machine,

Let’s look at that last line again

γ′([[ϕ]]M) = [[ϕ]]M?

Does it make sense? Is γ′ just the identity?

On the left-hand side [[ϕ]] is an equivalence class of formulas,
hence a state of the dual machine;

so the right-hand side ought to have a set of observations of the
dual machine,

but that is just a set of states of the original machine!

The intuition

We have interchanged the states and the observations or propositions;
more precisely we have interchanged equivalence classes of formulas
- based on the observations - with the states. We have made the
states of the old machine the observations of the dual machine.

The Dual Machine For Our Example

bB R aR

B aB bY

Y

a

b

a

bb

a
a

b

a b

a,b

a,b

Note that aB ∼ abY ∼ bR ∼ false and that aR ∼ bbY ∼ abB ∼ true.

The Dual Machine Labelled with Observations (aka
States)

A,C,D A,C S

B∗ ∅ B,E,F

E

a

b

a

bb

a
a

b

a b

a,b

a,b

∗: This means the state B, not the colour Blue!
S stands for the set of all states.

Some Remarks

The dual machine has more states than the primal machine.

Some Remarks

The dual machine has more states than the primal machine.

The dual machine could have at most 2|S| states.

Some Remarks

The dual machine has more states than the primal machine.

The dual machine could have at most 2|S| states.

Not every possible set of states is the denotation of some formula.

Some Remarks

The dual machine has more states than the primal machine.

The dual machine could have at most 2|S| states.

Not every possible set of states is the denotation of some formula.

If it were the case that every possible set of states is described by
some formula then we would indeed have exponential blow up in
the size.

Some Remarks

The dual machine has more states than the primal machine.

The dual machine could have at most 2|S| states.

Not every possible set of states is the denotation of some formula.

If it were the case that every possible set of states is described by
some formula then we would indeed have exponential blow up in
the size.

If we had a richer logic then more sets of states would be
definable.

The Double Dual

Now consider M′′ = (M′)′, the dual of the dual.

The Double Dual

Now consider M′′ = (M′)′, the dual of the dual.

Its states are equivalence classes of M′-formulas.

The Double Dual

Now consider M′′ = (M′)′, the dual of the dual.

Its states are equivalence classes of M′-formulas.

Each such class is identified with a set [[ϕ′]]M′ of M′-states by
which formulas in that class are satisfied, and

The Double Dual

Now consider M′′ = (M′)′, the dual of the dual.

Its states are equivalence classes of M′-formulas.

Each such class is identified with a set [[ϕ′]]M′ of M′-states by
which formulas in that class are satisfied, and

each M′-state is an equivalence class of M-formulas.

The Double Dual

Now consider M′′ = (M′)′, the dual of the dual.

Its states are equivalence classes of M′-formulas.

Each such class is identified with a set [[ϕ′]]M′ of M′-states by
which formulas in that class are satisfied, and

each M′-state is an equivalence class of M-formulas.

Thus we can look at states in M′′ as collections of M-formula
equivalence classes.

The Double Dual 2

Let M′′ be the double dual, and for any state s ∈ S in the original
automaton we define

Sat(s) = {[[ϕ]]M : s |= ϕ}.

The Double Dual 2

Let M′′ be the double dual, and for any state s ∈ S in the original
automaton we define

Sat(s) = {[[ϕ]]M : s |= ϕ}.

Lemma: For any s ∈ S, Sat(s) is a state in M′′.

The Double Dual 2

Let M′′ be the double dual, and for any state s ∈ S in the original
automaton we define

Sat(s) = {[[ϕ]]M : s |= ϕ}.

Lemma: For any s ∈ S, Sat(s) is a state in M′′.

In fact all the states of the double dual have this form.

The Double Dual 2

Let M′′ be the double dual, and for any state s ∈ S in the original
automaton we define

Sat(s) = {[[ϕ]]M : s |= ϕ}.

Lemma: For any s ∈ S, Sat(s) is a state in M′′.

In fact all the states of the double dual have this form.

Lemma: Let s′′ = [[ϕ]]M′ ∈ S′′ be any state in M′′. Then
s′′ = Sat(sϕ) for some state sϕ ∈ S.

The Double Dual 2

Let M′′ be the double dual, and for any state s ∈ S in the original
automaton we define

Sat(s) = {[[ϕ]]M : s |= ϕ}.

Lemma: For any s ∈ S, Sat(s) is a state in M′′.

In fact all the states of the double dual have this form.

Lemma: Let s′′ = [[ϕ]]M′ ∈ S′′ be any state in M′′. Then
s′′ = Sat(sϕ) for some state sϕ ∈ S.

The proof is by an easy induction on ϕ.

Minimality Properties

If M is reduced then Sat is a bijection from S to S′′.

Minimality Properties

If M is reduced then Sat is a bijection from S to S′′.

The statement above can be strengthened to show that we
actually have an isomorphism of automata.

Minimality Properties

If M is reduced then Sat is a bijection from S to S′′.

The statement above can be strengthened to show that we
actually have an isomorphism of automata.

In general, the double dual is the minimal machine with the same
behaviour!

Minimality Properties

If M is reduced then Sat is a bijection from S to S′′.

The statement above can be strengthened to show that we
actually have an isomorphism of automata.

In general, the double dual is the minimal machine with the same
behaviour!

For deterministic machines bisimulation is the same as trace
equivalence so there is no question about what equivalence we
have in mind.

Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and interchange
initial and final states.

Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and interchange
initial and final states.

Determinize the result.

Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and interchange
initial and final states.

Determinize the result.

Take the reachable states.

Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and interchange
initial and final states.

Determinize the result.

Take the reachable states.

Reverse all the transitions again and interchange initial and final
states.

Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and interchange
initial and final states.

Determinize the result.

Take the reachable states.

Reverse all the transitions again and interchange initial and final
states.

Determinize the result.

Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and interchange
initial and final states.

Determinize the result.

Take the reachable states.

Reverse all the transitions again and interchange initial and final
states.

Determinize the result.

Take the reachable states.

Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and interchange
initial and final states.

Determinize the result.

Take the reachable states.

Reverse all the transitions again and interchange initial and final
states.

Determinize the result.

Take the reachable states.

This gives the minimal DFA recognizing the same language. The
intermediate step can blow up the size of the automaton
exponentially before minimizing it.

Probabilistic Systems

Probabilistic systems

Everything is discrete.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 28 / 79

Probabilistic Systems

Probabilistic systems

Everything is discrete.

Markov Decision Processes aka Labelled Markov Processes:

M = (S,A,∀a ∈ A, τa : S × S −→ [0, 1]).

The τa are transition probability functions (matrices).

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 28 / 79

Probabilistic Systems

Probabilistic systems

Everything is discrete.

Markov Decision Processes aka Labelled Markov Processes:

M = (S,A,∀a ∈ A, τa : S × S −→ [0, 1]).

The τa are transition probability functions (matrices).

Usually MDPs have rewards but I will not consider them for now.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 28 / 79

Partial Observations

Partially Observable Markov Decision Processes (POMDPs). We
cannot see the entire state but we can see something.

Partial Observations

Partially Observable Markov Decision Processes (POMDPs). We
cannot see the entire state but we can see something.

In process algebra we typically take actions as not always being
enabled and we observe whether actions are accepted or
rejected.

Partial Observations

Partially Observable Markov Decision Processes (POMDPs). We
cannot see the entire state but we can see something.

In process algebra we typically take actions as not always being
enabled and we observe whether actions are accepted or
rejected.

In POMDPs we assume actions are always accepted but with
each transition some propositions are true, or some boolean
observables are “on.”

Partial Observations

Partially Observable Markov Decision Processes (POMDPs). We
cannot see the entire state but we can see something.

In process algebra we typically take actions as not always being
enabled and we observe whether actions are accepted or
rejected.

In POMDPs we assume actions are always accepted but with
each transition some propositions are true, or some boolean
observables are “on.”

Note that the observations can depend probabilistically on the
action taken and the final state. Many variations are possible.

Formal Definition of a POMDP

M = (S,A,O, δ : S ×A× S −→ [0, 1], γ : S ×A×O −→ [0, 1]),

Formal Definition of a POMDP

M = (S,A,O, δ : S ×A× S −→ [0, 1], γ : S ×A×O −→ [0, 1]),

where S is the set of states, O is the set of observations, A is the
set of actions, δ is the transition probability function and γ gives
the observation probabilities.

Automata with State-based Observations

A deterministic automaton with stochastic observations is a
quintuple

E = (S,A,O, δ : S ×A −→ S, γ : S ×O −→ [0, 1]).

Note that this has deterministic transitions and stochastic
observations.

Automata with State-based Observations

A deterministic automaton with stochastic observations is a
quintuple

E = (S,A,O, δ : S ×A −→ S, γ : S ×O −→ [0, 1]).

Note that this has deterministic transitions and stochastic
observations.

A probabilistic automaton with stochastic observations is

F = (S,A,O, δ : S ×A× S −→ [0, 1], γ : S ×O −→ [0, 1]).

Simple Tests

Rather than thinking of propositions and formulas we will think of
observations and tests. I will look at state-based notions of
observations.

Simple Tests

Rather than thinking of propositions and formulas we will think of
observations and tests. I will look at state-based notions of
observations.

Recall probabilistic automata

E = (S,A,O, δ, γ),

Simple Tests

Rather than thinking of propositions and formulas we will think of
observations and tests. I will look at state-based notions of
observations.

Recall probabilistic automata

E = (S,A,O, δ, γ),

where δ : S ×A× S −→ [0, 1] is the transition function

Simple Tests

Rather than thinking of propositions and formulas we will think of
observations and tests. I will look at state-based notions of
observations.

Recall probabilistic automata

E = (S,A,O, δ, γ),

where δ : S ×A× S −→ [0, 1] is the transition function

and γ : S ×O −→ [0, 1] is the observation function.

Simple Tests 2

We use the same logic as before except that we give a
probabilistic semantics and call the formulas “tests.” I write a.t or
at rather than (a)ϕ.

Simple Tests 2

We use the same logic as before except that we give a
probabilistic semantics and call the formulas “tests.” I write a.t or
at rather than (a)ϕ.

Tests define functions from states to [0, 1]. If they define the same
function they are equivalent.

Simple Tests 2

We use the same logic as before except that we give a
probabilistic semantics and call the formulas “tests.” I write a.t or
at rather than (a)ϕ.

Tests define functions from states to [0, 1]. If they define the same
function they are equivalent.

The explicit definition of these functions are:

[[o]]E (s) = γ(s, o)

[[at]]E (s) =
∑

s′

δ(s, a, s′)[[t]]E (s
′).

Simple Tests 2

We use the same logic as before except that we give a
probabilistic semantics and call the formulas “tests.” I write a.t or
at rather than (a)ϕ.

Tests define functions from states to [0, 1]. If they define the same
function they are equivalent.

The explicit definition of these functions are:

[[o]]E (s) = γ(s, o)

[[at]]E (s) =
∑

s′

δ(s, a, s′)[[t]]E (s
′).

In AI these are called “e-tests.”

Duality with e-tests

S′ = {[[t]]E}

Duality with e-tests

S′ = {[[t]]E}

O′ = S

Duality with e-tests

S′ = {[[t]]E}

O′ = S

γ′([[t]]E , s) = [[t]]E(s)

Duality with e-tests

S′ = {[[t]]E}

O′ = S

γ′([[t]]E , s) = [[t]]E(s)

δ′([[t]]E , a, [[at]]E) = 1; 0 otherwise.

Duality with e-tests

S′ = {[[t]]E}

O′ = S

γ′([[t]]E , s) = [[t]]E(s)

δ′([[t]]E , a, [[at]]E) = 1; 0 otherwise.

This machine has deterministic transitions and γ′ is just the
transpose of γ.

The Double Dual

If E is the primal and E ′ is the dual then the states of the double
dual, E ′′ are E ′-equivalence classes of tests.

The Double Dual

If E is the primal and E ′ is the dual then the states of the double
dual, E ′′ are E ′-equivalence classes of tests.

An “atomic” test is just an observation of E ′, which is just a state of
E so it has the form [[s]]E ′ for some s.

The Double Dual

If E is the primal and E ′ is the dual then the states of the double
dual, E ′′ are E ′-equivalence classes of tests.

An “atomic” test is just an observation of E ′, which is just a state of
E so it has the form [[s]]E ′ for some s.

We see that

γ′′([[s]]E ′ , [[o]]E) = [[s]]E ′([[o]]E) = γ′([[o]]E , s) = [[o]]E (s) = γ(s, o).

The Double Dual

If E is the primal and E ′ is the dual then the states of the double
dual, E ′′ are E ′-equivalence classes of tests.

An “atomic” test is just an observation of E ′, which is just a state of
E so it has the form [[s]]E ′ for some s.

We see that

γ′′([[s]]E ′ , [[o]]E) = [[s]]E ′([[o]]E) = γ′([[o]]E , s) = [[o]]E (s) = γ(s, o).

An easy calculation shows:

[[a1a2 · · · ako]]E ′′([[s]]E ′)

= [[a1a2 · · · ako]]E (s).

Inadequacy of e-tests

There is a loss of information in the previous construction.

Inadequacy of e-tests

There is a loss of information in the previous construction.

The double dual behaves just like the primal with respect to
“e-tests” but not with respect to more refined kinds of
observations.

Inadequacy of e-tests

There is a loss of information in the previous construction.

The double dual behaves just like the primal with respect to
“e-tests” but not with respect to more refined kinds of
observations.

[[o1a1o2a2o3]]E ′′([[s]]E ′) =

[[o1]]E ′′([[s]]E ′′) · [[a1o2]]E ′′([[s]]E ′) · [[a1a2o3]]E ′′([[s]]E ′).

This does not hold in the primal.

Inadequacy of e-tests

There is a loss of information in the previous construction.

The double dual behaves just like the primal with respect to
“e-tests” but not with respect to more refined kinds of
observations.

[[o1a1o2a2o3]]E ′′([[s]]E ′) =

[[o1]]E ′′([[s]]E ′′) · [[a1o2]]E ′′([[s]]E ′) · [[a1a2o3]]E ′′([[s]]E ′).

This does not hold in the primal.

The double dual does not conditionalize with respect to
intermediate observations.

More General Tests

Recall the definition of a POMDP

M = (S,A,O, δa : S × S −→ [0, 1], γa : S ×O −→ [0, 1]).

More General Tests

Recall the definition of a POMDP

M = (S,A,O, δa : S × S −→ [0, 1], γa : S ×O −→ [0, 1]).

A test t is a non-empty sequence of actions followed by an
observation, i.e. t = a1 · · · ano, with n ≥ 1.

More General Tests

Recall the definition of a POMDP

M = (S,A,O, δa : S × S −→ [0, 1], γa : S ×O −→ [0, 1]).

A test t is a non-empty sequence of actions followed by an
observation, i.e. t = a1 · · · ano, with n ≥ 1.

An experiment is a non-empty sequence of tests e = t1 · · · tm with
m ≥ 1.

Some Notation

We need to generalize the transition function to keep track of the
final state.

δǫ(s, s
′) = 1s=s′ ∀s, s′ ∈ S

δaα(s, s
′) =

∑

s′′

δa(s, s
′′)δα(s

′′, s′) ∀s, s′ ∈ S.

Some Notation

We need to generalize the transition function to keep track of the
final state.

δǫ(s, s
′) = 1s=s′ ∀s, s′ ∈ S

δaα(s, s
′) =

∑

s′′

δa(s, s
′′)δα(s

′′, s′) ∀s, s′ ∈ S.

We have written 1s=s′ for the indicator function.

Some Notation

We need to generalize the transition function to keep track of the
final state.

δǫ(s, s
′) = 1s=s′ ∀s, s′ ∈ S

δaα(s, s
′) =

∑

s′′

δa(s, s
′′)δα(s

′′, s′) ∀s, s′ ∈ S.

We have written 1s=s′ for the indicator function.

We define the symbol 〈s|t|s′〉 which gives the probability that the
system starts in s, is subjected to the test t and ends up in the
state s′; similarly 〈s|e|s′〉.

Notation continued

We have
〈s|a1 · · · ano|s′〉 = δα(s, s

′)γan(s
′, o).

Notation continued

We have
〈s|a1 · · · ano|s′〉 = δα(s, s

′)γan(s
′, o).

We define
〈s|e〉 =

∑

s′

〈s|e|s′〉.

Equivalence on Experiments

For experiments e1, e2, we say

e1 ∼M e2 ⇔ 〈s|e1〉 = 〈s|e2〉∀s ∈ S.

Equivalence on Experiments

For experiments e1, e2, we say

e1 ∼M e2 ⇔ 〈s|e1〉 = 〈s|e2〉∀s ∈ S.

Then [e]M is the ∼M-equivalence class of e.

Equivalence on Experiments

For experiments e1, e2, we say

e1 ∼M e2 ⇔ 〈s|e1〉 = 〈s|e2〉∀s ∈ S.

Then [e]M is the ∼M-equivalence class of e.

The construction of the dual proceeds as before by making
equivalence classes of experiments the states of the dual
machine and

Equivalence on Experiments

For experiments e1, e2, we say

e1 ∼M e2 ⇔ 〈s|e1〉 = 〈s|e2〉∀s ∈ S.

Then [e]M is the ∼M-equivalence class of e.

The construction of the dual proceeds as before by making
equivalence classes of experiments the states of the dual
machine and

the states of the primal machine become the observations of the
dual machine.

The Dual Machine

We define the dual as M′ =

(S′,A,O′, δ′ : S′ ×A −→ S′, γ′ : S′ ×O′ −→ [0, 1]),

The Dual Machine

We define the dual as M′ =

(S′,A,O′, δ′ : S′ ×A −→ S′, γ′ : S′ ×O′ −→ [0, 1]),

where S′ = {[e]M}, O′ = S

The Dual Machine

We define the dual as M′ =

(S′,A,O′, δ′ : S′ ×A −→ S′, γ′ : S′ ×O′ −→ [0, 1]),

where S′ = {[e]M}, O′ = S

δ′([e]M, a0) = [a0e]M and

The Dual Machine

We define the dual as M′ =

(S′,A,O′, δ′ : S′ ×A −→ S′, γ′ : S′ ×O′ −→ [0, 1]),

where S′ = {[e]M}, O′ = S

δ′([e]M, a0) = [a0e]M and

γ′([e]M, s) = 〈s|e〉.

The Dual Machine

We define the dual as M′ =

(S′,A,O′, δ′ : S′ ×A −→ S′, γ′ : S′ ×O′ −→ [0, 1]),

where S′ = {[e]M}, O′ = S

δ′([e]M, a0) = [a0e]M and

γ′([e]M, s) = 〈s|e〉.

We get a deterministic transition system with stochastic
observations.

The Double Dual

We use the e-test construction to go from the dual to the double
dual.

The Double Dual

We use the e-test construction to go from the dual to the double
dual.

The double dual is

M′′ = (S′′,A′,O′′, δ′′, γ′′),

where

The Double Dual

We use the e-test construction to go from the dual to the double
dual.

The double dual is

M′′ = (S′′,A′,O′′, δ′′, γ′′),

where

S′′ = {[t]M′}, O′′ = S′,

The Double Dual

We use the e-test construction to go from the dual to the double
dual.

The double dual is

M′′ = (S′′,A′,O′′, δ′′, γ′′),

where

S′′ = {[t]M′}, O′′ = S′,

δ′′([t]M′ , a0) = [a0e]M and

The Double Dual

We use the e-test construction to go from the dual to the double
dual.

The double dual is

M′′ = (S′′,A′,O′′, δ′′, γ′′),

where

S′′ = {[t]M′}, O′′ = S′,

δ′′([t]M′ , a0) = [a0e]M and

γ′′([t]M′ , [t]M) = 〈[t]M|e〉 = 〈s|αRt〉 (e = αs).

The Main Theorem

One can use experiments to construct the dual,

The Main Theorem

One can use experiments to construct the dual,

this gives a DASO. Now we can use e-tests to construct the
double dual.

The Main Theorem

One can use experiments to construct the dual,

this gives a DASO. Now we can use e-tests to construct the
double dual.

The main result is: The probability of a state s in the primal
satisfying a experiment e, i.e. 〈s|e〉 is given by
〈[s]M′ |[e]M〉 = γ′′([s]M′)|[e]M〉, where [s] indicates the equivalence
class of the e-test on the dual which has s as an observation and
an empty sequence of actions.

AI Motivation

One can plan when one has the model: value iteration etc., but
quite often one does not have the model.

AI Motivation

One can plan when one has the model: value iteration etc., but
quite often one does not have the model.

In the absence of a model, one is forced to learn from data.

AI Motivation

One can plan when one has the model: value iteration etc., but
quite often one does not have the model.

In the absence of a model, one is forced to learn from data.

Learning is hopeless when one has no idea what the state space
is.

AI Motivation

One can plan when one has the model: value iteration etc., but
quite often one does not have the model.

In the absence of a model, one is forced to learn from data.

Learning is hopeless when one has no idea what the state space
is.

There should be no such thing as absolute state! State is just a
summary of past observations that can be used to make
predictions.

AI Motivation

One can plan when one has the model: value iteration etc., but
quite often one does not have the model.

In the absence of a model, one is forced to learn from data.

Learning is hopeless when one has no idea what the state space
is.

There should be no such thing as absolute state! State is just a
summary of past observations that can be used to make
predictions.

The double dual shows that the state can be regarded as just the
summary of the outcomes of experiments.

Categorical Considerations

What is the right categorical description?

Is this is some kind of familiar Stone-type duality?

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 45 / 79

Categorical Considerations

What is the right categorical description?

Is this is some kind of familiar Stone-type duality?

We know that machines are co-algebras and logics are algebras
but

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 45 / 79

Categorical Considerations

What is the right categorical description?

Is this is some kind of familiar Stone-type duality?

We know that machines are co-algebras and logics are algebras
but

why is the dual another automaton?

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 45 / 79

Automata as Coalgebras

Our automata are coalgebras of the following functor:

F(S) = SA × 2O, F(f : S −→ S′) = λ(α : A −→ S, O ⊂ O).(f ◦ α, O).

The category of these coalgebras is called PODFA.

Homomorphisms

A homomorphism for these coalgebras is a function f : S −→ S′ such
that the following diagram commutes:

S
f //

(δ, γ)
��

S′

(δ′, γ′)
��

SA × 2O
fA×id

// S′A × 2O

where fA(α) = f ◦ α.

This translates to the following conditions:

∀s ∈ S, ω ∈ O, ω ∈ γ(s) ⇐⇒ ω ∈ γ′(f (s)) (1)

and
∀s ∈ S, a ∈ A, f (δ(s, a)) = δ′(f (s), a). (2)

The Dual Category

The category of finite boolean algebras with operators (FBAO)
has as objects finite boolean algebras B with

The Dual Category

The category of finite boolean algebras with operators (FBAO)
has as objects finite boolean algebras B with

the usual operations ∧, ¬ and constants T and ⊥ and, in addition,

The Dual Category

The category of finite boolean algebras with operators (FBAO)
has as objects finite boolean algebras B with

the usual operations ∧, ¬ and constants T and ⊥ and, in addition,

together with unary operators (a) and constants ω.

The Dual Category

The category of finite boolean algebras with operators (FBAO)
has as objects finite boolean algebras B with

the usual operations ∧, ¬ and constants T and ⊥ and, in addition,

together with unary operators (a) and constants ω.

We denote an object by B = (B, {(a)|a ∈ A}, {ω|ω ∈ O},T,∧,¬).

Morphisms

The morphisms are the usual boolean homomorphisms preserving, in
addition, the constants and the unary operators.
The following three equations hold:

(a)(b1 ∧ b2) = (a)b1 ∧ (a)b2, (3a)

(a)T = T, (3b)

¬(a)¬b = (a)b. (3c)

Duality Theorem

There is a dual equivalence of categories

PODFAop ∼= FBAO.

One functor P is just the contravariant power set functor and the other
one H maps a boolean algebra to its set of atoms.

Minimization?

Obviously, if we have an equivalence of categories we get the
same machine back when we go back and forth.

Minimization?

Obviously, if we have an equivalence of categories we get the
same machine back when we go back and forth.

So how do we explain the minimization?

Definable Subsets

Define a logic L by

φ ::== T|⊥|φ1 ∧ φ2|¬φ|(a)φ|ω

and define the definable subsets D(S) of a machine M = (S, δ, γ) as
sets of the form [[φ]].

D(S) is a subobject of P(M)

D(S) is a subobject of P(M)

in fact it is the smallest possible subalgebra and

D(S) is a subobject of P(M)

in fact it is the smallest possible subalgebra and

any other subalgebra must contain D(S).

In Pictures

M // P(M)

M // P(M)

D(S)
?�

1

OO

M //

2
����

P(M)

H(D(S)) D(S)oo
?�

1

OO

M //

2
����

3

����✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡

P(M)

H(D(S)) D(S)oo
?�

1

OO

S ′ //
4

// // P(S ′)

M //

2
����

3

����✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡

P(M)

H(D(S)) D(S)oo
?�

1

OO

S ′ //
4

// // P(S ′)
L,

5

ZZ✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻

M //

2
����

3

����✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡

P(M)

H(D(S)) D(S)oo
?�

1

OO

� r

6 $$■
■■

■■
■■

■

S ′ //
4

// // P(S ′)
L,

5

ZZ✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻

The Secret of Minimization

M //

2
����

3

����✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡

P(M)

H(D(S)) D(S)oo
?�

1

OO

� r

6 $$■
■■

■■
■■

■

S ′

7

;; ;;✇✇✇✇✇✇✇✇✇
//

4
// // P(S ′)

L,

5

ZZ✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻

A Simpler Logic

Why did the minimization work with just the logic

φ ::== ω|(a)φ?

A Simpler Logic

Why did the minimization work with just the logic

φ ::== ω|(a)φ?

With this logic the definable subsets E(S) do not form a boolean
algebra

A Simpler Logic

Why did the minimization work with just the logic

φ ::== ω|(a)φ?

With this logic the definable subsets E(S) do not form a boolean
algebra

it is just a “set with operations”

A Simpler Logic

Why did the minimization work with just the logic

φ ::== ω|(a)φ?

With this logic the definable subsets E(S) do not form a boolean
algebra

it is just a “set with operations”

in other words it can be viewed as an automaton!

Deterministic vs Nondeterministic Automata

For deterministic automata we can flatten formulas like
(a)(ω1 ∧ (b)ω2) to (a)ω1 ∧ (a)(b)ω2.

Deterministic vs Nondeterministic Automata

For deterministic automata we can flatten formulas like
(a)(ω1 ∧ (b)ω2) to (a)ω1 ∧ (a)(b)ω2.

Thus for deterministic automata the boolean algebra generated
by E(S) is just the same as D(S) so the minimization picture works
with boolean algebra generated by E(S).

Deterministic vs Nondeterministic Automata

For deterministic automata we can flatten formulas like
(a)(ω1 ∧ (b)ω2) to (a)ω1 ∧ (a)(b)ω2.

Thus for deterministic automata the boolean algebra generated
by E(S) is just the same as D(S) so the minimization picture works
with boolean algebra generated by E(S).

For nondeterministic automata the story is different.

Weighted Automata

These are automata where the state space is a vector space and
the transitions are given by matrices.

Weighted Automata

These are automata where the state space is a vector space and
the transitions are given by matrices.

Stefan Kiefer came up with a beautiful backwards-and-forwards
minimization algorithm after hearing my original talk on this last
autumn.

Weighted Automata

These are automata where the state space is a vector space and
the transitions are given by matrices.

Stefan Kiefer came up with a beautiful backwards-and-forwards
minimization algorithm after hearing my original talk on this last
autumn.

Recently, Nick Bezhanishvili, Clemens Kupke and I showed that
this construction is a beautiful example of our categorical picture

Weighted Automata

These are automata where the state space is a vector space and
the transitions are given by matrices.

Stefan Kiefer came up with a beautiful backwards-and-forwards
minimization algorithm after hearing my original talk on this last
autumn.

Recently, Nick Bezhanishvili, Clemens Kupke and I showed that
this construction is a beautiful example of our categorical picture

exploiting the fact that the category of vector spaces is self dual.

Categorical Considerations

Probabilistic Automata

With probabilistic automata one can define an associated
deterimnistic automaton where the states are probability
distributions (belief automata).

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 65 / 79

Categorical Considerations

Probabilistic Automata

With probabilistic automata one can define an associated
deterimnistic automaton where the states are probability
distributions (belief automata).

These are compact Hausdorff spaces with transitions and
observations.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 65 / 79

Categorical Considerations

Probabilistic Automata

With probabilistic automata one can define an associated
deterimnistic automaton where the states are probability
distributions (belief automata).

These are compact Hausdorff spaces with transitions and
observations.

The dual is a C* algebra with operations.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 65 / 79

Categorical Considerations

Probabilistic Automata

With probabilistic automata one can define an associated
deterimnistic automaton where the states are probability
distributions (belief automata).

These are compact Hausdorff spaces with transitions and
observations.

The dual is a C* algebra with operations.

The same picture applies.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 65 / 79

Brzozowski revisited

Diagram of an automaton

1
i

""❊
❊❊

❊❊
❊ 2

S

f <<②②②②②②

δ��
SA

S is the state space
δ is the transition function
f defines the final states.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 66 / 79

Brzozowski revisited

The butterfly

1

ε

��

i

""❊
❊❊

❊❊
❊❊

❊❊
❊ 2

A∗ r //❴❴❴❴

α
��

S

f
;;①①①①①①①①①①

δ
��

o //❴❴❴❴ 2A∗

β
��

ε?

OO

(A∗)A

rA
//❴❴❴ SA

oA
//❴❴❴ (2A∗

)A

Left: Automaton of words (initial)

α : A∗ −→ (A∗)A α(w)(a) = w · a

Right: Automaton of languages (terminal)

β : 2A∗

−→ (2A∗

)A β(L)(a) = {w ∈ A∗ | a · w ∈ L}

r defines reachability; o defines observability.
Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 67 / 79

Brzozowski revisited

Reachability and observability

A deterministic automaton (S, δ, i, f) is reachable if r is surjective, it is
observable if o is injective, and it is minimal if it is both reachable and
observable.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 68 / 79

Brzozowski revisited

Contravariant power set functor

V

f

��

2V

2(−) : 7→

W 2W

2f

OO

which is defined, for a set V, by 2V = {S | S ⊆ V} and, for f : V −→ W
and S ⊆ W, by

2f : 2W −→ 2V 2f (S) = {v ∈ V | f (v) ∈ S}

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 69 / 79

Brzozowski revisited

Reversing

S

δ
��

SA

A × A

��
S

2S×A

2S

OO (2S)A

2S

2δ

OO

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 70 / 79

Brzozowski revisited

Initial becomes final

Applying the operation 2(−) to the initial state (function) of our
automaton gives

1

i
��

X

2

2S

2i

OO

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 71 / 79

Brzozowski revisited

Reachable becomes observable - I

Apply the powerset functor:

2

2S

2i

::✉✉✉✉✉✉✉✉✉✉✉

2δ
��

2r
// 2A∗

2α
��

2ε

OO

(2S)A

2rA
// (2A∗

)A

For any L ∈ 2A∗

, we have 2ε(L) = ε?(L) and, for any a ∈ A,

2α(L)(a) = {w ∈ A∗ | w · a ∈ L}

Like β(L)(a) but it uses w · a instead of a · w.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 72 / 79

Brzozowski revisited

Reachable becomes observable - II

By finality of (2A∗

, β, ε?), there exists a unique homomorphism rev : 2A∗

−→ 2A∗

2

2A∗

2ε
99ttttttttttt

2α
��

rev //❴❴❴❴ 2A∗

β
��

ε?

OO

(2A∗

)A

revA
//❴❴❴ (2A∗

)A

which sends a language L to its reverse

rev(L) = {w ∈ A∗ | wR ∈ L }

where wR is the reverse of w.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 73 / 79

Brzozowski revisited

Reachable becomes observable - III

Combining diagrams yields:

2

2S

2i

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

2δ

��

2r
// 2A∗

2α

��

2ε

99tttttttttttt

rev
// 2A∗

β

��

ε?

OO

(2S)A

2rA
// (2A∗

)A

revA
// (2A∗

)A

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 74 / 79

Brzozowski revisited

Reachable becomes observable - IV

Thus the composition of rev and 2r is the unique function that makes
the following diagram commute:

2

2S

2i

::✉✉✉✉✉✉✉✉✉✉✉

2δ
��

O //❴❴❴❴ 2A∗

β
��

ε?

OO

(2S)A

OA
//❴❴❴ (2A∗

)A

O = rev ◦ 2r

One can easily show that it satisfies, for any X ⊆ S,

O(X) = {wR ∈ A∗ | iw ∈ X}

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 75 / 79

Brzozowski revisited

Final becomes initial

2

S

f

OO 1

f
��

2S

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 76 / 79

Brzozowski revisited

Putting everything together

We have obtained the following, new deterministic automaton:

1

ε

��

f

$$■
■■

■■
■■

■■
■ 2

A∗
R

//❴❴❴❴

α
��

2X

2i

::✉✉✉✉✉✉✉✉✉✉✉

2t

��

O
//❴❴❴❴ 2A∗

β
��

ε?

OO

(A∗)A

RA
//❴❴❴ (2X)A

OA
//❴❴❴ (2A∗

)A

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 77 / 79

Brzozowski revisited

The main theorem

Let (S, δ, i, f) be a deterministic automaton and let (2S, 2δ , f , 2i) be the
reversed deterministic automaton constructed as above.

1 If (S, δ, i, f) is reachable, then (2S, 2δ , f , 2i) is observable.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 78 / 79

Brzozowski revisited

The main theorem

Let (S, δ, i, f) be a deterministic automaton and let (2S, 2δ , f , 2i) be the
reversed deterministic automaton constructed as above.

1 If (S, δ, i, f) is reachable, then (2S, 2δ , f , 2i) is observable.
2 If (S, δ, i, f) accepts the language L, then (2S, 2δ , f , 2i) accepts

rev(L).

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 78 / 79

Conclusions

Conclusions

We are experimenting with these ideas for use in approximation in
the RL Lab at McGill; joint with Doina Precup and Joelle Pineau
and their students.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 79 / 79

Conclusions

Conclusions

We are experimenting with these ideas for use in approximation in
the RL Lab at McGill; joint with Doina Precup and Joelle Pineau
and their students.

Extension to continuous observation and continuous state spaces.

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 79 / 79

Conclusions

Conclusions

We are experimenting with these ideas for use in approximation in
the RL Lab at McGill; joint with Doina Precup and Joelle Pineau
and their students.

Extension to continuous observation and continuous state spaces.

It is possible to eliminate state completely in favour of histories;
when can this representation be compressed and made tractable?

Panangaden (McGill University) Duality for Transition Systems Macquarie 2013 79 / 79

	Introduction
	Deterministic Automata
	Probabilistic Systems
	Categorical Considerations
	Brzozowski revisited
	Conclusions

