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What has been studied in the past?

Probabilistic bisimulation for finitely-branching systems on discrete
state spaces – Larsen and Skou 1989, 1991

Probabilistic bisimulation on analytic state spaces with discrete
time steps (LMPs) – Desharnais et al. 1997, 2002
Continuous-time Markov chains - many papers e.g. Baier et al.
2006, Desharnais and P. 2003
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What do we mean by Continuous-Time?

Labelled Markov Processes Continuous-Time Markov Chains
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“Real” Continuous-Time: flowing rather than jumping

There is no “next step”
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What is the right mathematical model?

For LMPs: τa : S× Σ −→ [0, 1] Markov kernel

For CTMCs: Q-matrix
For us there are many choices: Lévy process, Feller-Dynkin
process, etc. These two are particularly interesting.
Lévy process stationary and independent increments: generalizes
random walk.
Feller-Dynkin includes Lévy processes but allows more general
time dependence.
We chose Feller-Dynkin processes, perhaps we should have stuck
to Lévy!
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Markov kernels

Markov kernel
(X,Σ) a measurable space. A Markov kernel k : X × Σ −→ [0, 1] is a
map of the indicated type such that:

k(·,A) : X −→ [0, 1] is measurable ∀A ∈ Σ

and k(x, ·) : Σ −→ [0, 1] is a subprobability measure ∀x ∈ X.

This generalizes the notion of “transition probability matrix” and is the
probabilistic generalization of the notion of binary relation.

It is the
morphism in the Kleisli category of the Giry monad.
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State spaces

The state space E is a locally compact Hausdorff space.

We will think of a “point at infinity”, denoted by ∂, added
so that E∂ is the one-point compactification of E.
We will usually think of E as a Polish space and indeed a metric
space most of the time.
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Time evolution

Natural to think of a continuous-time process as a family of
Markov kernels parametrized by time: Pt(x,A).

This is fine but it is awkward to capture the conditions that must be
satisfied by the family.
So we will go back and forth between two views: Markov kernels
and function transformers.
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Markov kernels as function transformers

If E is a topological space we write C0(E) for the space of
real-valued bounded continuous functions that “vanish at infinity”:
this is a Banach space with the sup norm.

P: Markov kernel, then

P̂ : C0(E) −→ C0(E) := f 7→
∫

f (x′)P(x, dx′)

is a continuous linear function.
So we can think of families of Markov kernels as families of such
function transformers.
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Semigroup formed by the function transformers

P̂t : C0(E) −→ C0(E) linear

if 0 ≤ f ≤ 1, then 0 ≤ P̂tf ≤ 1

P̂s ◦ P̂t = P̂s+t

P̂0 is the identity
for f in C0(E), limt↓0 P̂tf = f ; this is called strong continuity.
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Stochastic process

Given a probability space (Ω,F ,P) and

a time set T ⊂ [0,∞)

a stochastic process is a T-indexed family of random variables Xt

i.e. measurable functions : Xt : Ω −→ R.
Probabilists often write {Xt ∈ B} for X−1

t (B).
Similarly one writes Xt = r for the event X−1

t ({r}).
If ∀ t, s, s′, s′ < s < t, P(Xt = r|Xs = u,X′s = u′) = P(Xt = r|Xs = u)
we have a Markov process.
One can think of each ω ∈ Ω as a trajectory.
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Trajectories

As the system evolves it traces a path through E, the state space.

A path may “go off to infinity”.
A path is a “function” f : R≥0 −→ E∂ .
What kind of function? Continuous?
Too restrictive, we need to allow jumps.
càdlàg paths: limits on the left and continuous on the right
Such paths have countably many jumps and all jumps are finite.
The space of all such paths can be given a complete separable
metric: Skorohod metric.
We assume that if a trajectory hits ∂ it stays there.
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Filtration

One needs to think about σ-algebras associated with the space of
trajectories.

A σ-algebra captures what aspects about the measurable space
one can “see”.
So one needs to have a family of σ-algebras that evolve in time.

Definition of a filtration
Let (Ω,F ,P) be a probability space: a filtration Ft is an increasing
family of σ-algebras ∀t < s, Ft ⊂ Fs ⊂ F .
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Adapted processes

A Markov process Xt is adapted to a filtration Ft ⊂ F if ∀t, Xt is
measurable with respect to Ft.

Such a process cannot “look into the future”.
The natural filtration associated with {Xt}t∈T is defined by setting
FX

t to be the σ-algebra generated by X−1
s (B) for all s ≤ t and all

Borel subsets B of R.
A process is automatically adapted to its natural filtration.
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The natural filtration associated with {Xt}t∈T is defined by setting
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Filtration associated with a process

Define Ω to be the space of trajectories: càdlàg path such that once it
hits ∂, it stays at ∂.

Ft = σ(Xs | 0 ≤ s ≤ t)

= σ({ω | ω(s) ∈ A} | 0 ≤ s ≤ t,A ∈ E)

The intuition is that it corresponds to the information you have about
the process up to time t.
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Feller-Dynkin processes : 1

Rough outline of the definition
start with a semigroup P̂t : C0(E) −→ C0(E)

Riesz representation theorem : there is a time-indexed family of
Markov kernels Pt such that

∀f ∈ C0(E) ∀x ∈ E P̂tf (x) =

∫
f (y)Pt(x, dy)

Pt(x,C) is the probability of being in C after time t starting from x
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Feller-Dynkin processes : 2

Daniell-Kolmogorov theorem gives a space-indexed family of
probability measures on Ω such that

Pt(x,C) = Px(Xt ∈ C)

Px is a probability measure on trajectories that has support in the
trajectories starting in x
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A subtle difference: entry-exit points

Discrete time CTMC

Continuous-Time
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Second entry times?

Discrete time CTMC

Continuous-Time
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What is the 2nd entry-time of these trajectories?

The boundary is not in the blue area and at time t2, the trajectory is on
the boundary, so

t2 or t4?
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What is the 2nd entry-time of these trajectories?
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What is the 2nd entry-time of these trajectories?

After time t1, it behaves like z 7→ z sin
(1

z

)
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Even though it looks like “we can just take limits”, we should be more
careful.
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Bisimulation

Recall Discrete Time Bisimulation

initiation condition

(co)induction condition

obs(x) = obs(y)

for C R-closed τ(x,C) = τ(y,C)

(z R v) ⇒ (z ∈ C iff v ∈ C)
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What is obs?

It is a function on the state space

into 2AP (atomic propositions)
an AP serves as an indicator and separates the state space into
different areas
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Example: Random Walk

State Space

Markov Kernel
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Bisimilarity for the random walk

When are two states n and m bisimilar?

0 is singled-out
Then look at the probabilities of reaching 0 in min(|n|, |m|) steps: if
these are not equal, then n and m cannot be bisimilar
if |n| = |m|, then they are bisimilar

We end up with n bisimilar to m if and only if |n| = |m|.
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Random Walk / Brownian Motion

Random Walk

Make the time between each jump and the distance between each
state increasingly small

Brownian Motion
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Brownian Motion

Diffusion
Pt(x,D) =

∫
y∈D

ρ(|y− x|, t)dy
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A failed attempt

What happens for Brownian Motion?
When are two states x and y bisimilar?

0 is singled-out
How do we replace steps?
Steps of time t

∀z 6= 0 ∀t ≥ 0 Pt(z, {0}) = 0

We end up with x = y = 0 or x 6= 0 and y 6= 0, i.e. two equivalence
classes : {0} and R \ {0}
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Going to the limit?

We cannot just replace steps by times.

Back to Random walk
What is the probability of having reached 0 between the n− 1-th and
the n-th steps?
What is the probability of having reached 0 at some point during the
first n steps?

We need more than a single time-step.

We need trajectories.
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Where do we want to have trajectories?

initiation condition

(co)induction condition

obs(x) = obs(y)

for C R-closed τ(x,C) = τ(y,C)

(z R v) ⇒ (z ∈ C iff v ∈ C)
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Extending the R-closed idea

time-R-closed
R an equivalence relation on E (extended to E∂ by setting ∂R∂). B a set
of trajectories is time-R-closed if ∀ω, ω′, trajectories such that
∀t ≥ 0, ω(t)Rω′(t) we have ω ∈ B ⇐⇒ ω′ ∈ B.

time-obs-closed
Take R to be obs(x) = obs(y).
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Time-R-closed sets of trajectories

The set of measurable time-R-closed sets is a σ-algebra.
It contains the σ-algebra generated by the sets

{ω | ω(t) ∈ C}

with C R-closed and measurable.
Are these equal? No
Are they under certain conditions (which conditions?)? I don’t know
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Bisimulation

initiation condition

(co)induction condition

obs(x) = obs(y)

for B time-R-closed Px(B) = Py(B)

∀t ≥ 0 (ω(t) R ω′(t)) ⇒ (ω ∈ B iff ω′ ∈ B) ω, ω′

trajectories
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Temporal equivalence

initiation condition (trace
equivalence)

for B time-obs-closed Px(B) = Py(B)

(obs ◦ ω = obs ◦ ω′) ⇒
(ω ∈ B iff ω′ ∈ B)

(co)induction condition

for C R-closed and t ≥ 0,
Pt(x,C) = Pt(y,C)

(z R z′) ⇒ (z ∈ C iff z′ ∈ C)
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Let us compare the three

trace equivalence

temporal equivalence

OO

bisimulation

OO
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An example: the fork

deterministic drift at constant speed except at branching

Panangaden Luminy Jan-Feb 2022 1 February 2022 37 / 55



An example: the fork

x0 and y0 are trace equivalent:

two trajectories from x0: ωU
x , ωD

x (each
prob 1

2 )
two trajectories from y0: ωU

y , ωD
y (each

prob 1
2 )

obs ◦ ωU
x = obs ◦ ωU

y (similarly for the
other trajectories)
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An example: the fork
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An example: the fork
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An example: the fork

Trace equivalence strictly includes the greatest temporal equivalence:

x0 and y0 are trace equivalent but not temporally equivalent nor
bisimilar.
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Another example: Brownian Motion
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Other example continued
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Other Example finished

translation by k ∈ Z

reflexion around k

reflexion around k + 1/2
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Common theme of many examples

Florence’s thesis contains numerous explicit examples of systems
with bisimulation explicitly described.

However, almost every example relied on us knowing in advance
what the bisimulation relation would turn out!
How does one know in advance?
By using symmetry.
So perhaps we should promote this from a secret intuition to
definition.
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Group of symmetries - I

Group of homeomorphisms on the state space

that commute with obs

and that leave the dynamics of the system unchanged
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Group of symmetries - II

Group of symmetries

for all h ∈ H, obs ◦ h = obs, and
for all x ∈ E∂ , for all f ∈ H and for all measurable sets B such that
for all h ∈ H, h∗(B) = B,

Px(B) = Pf (x)(B).
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Brownian motion with 0 distinguished

The set {s, id} (with s(x) = −x) is a group of symmetries

Hence the smallest equivalence R such that x R − x is a
bisimulation and a temporal equivalence
Another consequence is that x and −x are trace equivalent.
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Feller-Dynkin homomorphisms

FD-homomorphisms

obs = obs′ ◦ f ,
for all x ∈ E and for all measurable sets B′ ⊂ Ω′,

Pf (x)(B′) = Px(B)

where B := {ω ∈ Ω | f ◦ ω ∈ B′}.

These are like “zigzag morphisms”. One can define an equivalence
based on cospans of FD homomorphisms.
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Game interpretation for temporal equivalence

Duplicator wants to prove that x, y are temporally equivalent

Spoiler wants to prove that they are not temporally equivalent by
providing a (hopefully R-closed) set C and a time t such that
Pt(x,C) 6= Pt(y,C)

Duplicator now wants to show that C is not R-closed by providing
x′, y′ such that x′ ∈ C and y′ /∈ C that he claims are temporally
equivalent.
...
End of game?
one cannot reply (and he loses)
if the game goes on forever, Duplicator wins.
Two states x, y are temporally equivalent if and only if Duplicator
has a winning strategy starting from x and y.
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Game interpretation for bisimulation
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Behavioural equivalences: summary of results

trace equivalence

discrete time bisimulation oo // temporal equivalence oo //

OO

game interpretation

FD-cospans bisimulation

OO

//oo oo // game interpretation

group of symmetries

OO
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What is in Florence’s thesis

A lot more examples

Relation to discrete-time equivalences
Some consequences of temporal equivalence based on hitting
times
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Some open questions and issues

Understanding sets of trajectories (measurability)

Approximations
Finding relevant metrics
Can we define metrics and logics if we restrict to Lévy processes?
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Thanks for your attention

This work is published in Mathematical Foundations of Programming
Semantics 2019 and 2020.
Journal paper is under review.
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