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Approximation via Averaging

@ Approximation of Markov processes should be based on
“averaging”.
© Averages are computed by expectation values.

© Beautiful functorial presentation of expectation values d’aprés
Vincent Danos.

© Make bisimulation and approximation live in the same universe
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Duality is the Key

M<P(X) <=~ L] (X,p) <~ LL"(X,p) (1)
] A 4
B
Mg LL(X,p) ==L (X,p)

where the vertical arrows represent dualities and the horizontal arrows
represent isomorphisms.

Pairing function

There is a map from the product of the cones LY (X, p) and L (X,p) to
R* defined as follows:

Vf € LL(X,p),g € L{ (X,p) (f, g) = /fgdp-
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@ Given (X,%,p) and (Y, A) and a measurable functionf : X — Y we
obtain a measure g on Y by ¢(B) = p(f~'(B)). This is written M;(p)
and is called the image measure of p under f.

© We say that a measure v is absolutely continuous with respect
to another measure . if for any measurable set A, u(A) = 0 implies
that v(A) = 0. We write v < p.
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The Radon-Nikodym Theorem

The Radon-Nikodym theorem is a central result in measure theory
allowing one to define a “derivative” of a measure with respect to
another measure.

Radon-Nikodym

If v < pu, where v, i are finite measures on a measurable space (X, Y)
there is a positive measurable function z# on X such that for every

measurable set B
v(B) = /hd,u.
B

The function & is defined uniquely up to a set of y-measure 0. The
function £ is called the Radon-Nikodym derivative of v with respect to
w; we denote it by S—Z Since v is finite, g—z € LT (X, p).
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Notation for Radon-Nikodym

@ Given an (almost-everywhere) positive function f € L (X, p), we let
f - p be the measure which has density f with respect to p.
@ Two identities that we get from the Radon-Nikodym theorem are:
o given ¢ < p, we have §-p = gq.
e givenf e L (X,p), d{;—p” =f
© These two identities just say that the operations (—) - p and %
are inverses of each other as maps between L (X, p) and
M<P(X) the space of finite measures on X that are absolutely
continuous with respect to p.
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Expectation and conditional expectation

@ The expectation E,(f) of a measurable function f is the average
computed by [ fdp and therefore it is just a number.

© The conditional expectation is not a mere number but a random
variable.

© It is meant to measure the expected value in the presence of
additional information.

© The additional information takes the form of a sub-o algebra, say
A, of . The experimenter knows, for every B € A, whether the
outcome is in B or not.

@ Now she can recompute the expectation values given this
information.
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Formalizing conditional expectation

@ It is an immediate consequence of the Radon-Nikodym theorem
that such conditional expectations exist.

Kolmogorov

Let (X, X, p) be a measure space with p a finite measure, f be in
Li(X,3,p) and A be a sub-c-algebra of ¥, then there exists a
g € Li(X,A,p) such that forall B € A

/dep: /Bgdp-

@ This function g is usually denoted by E(f|A).

@ We clearly have f - p <« p so the required g is S|mply "’, where
p |a is the restriction of p to the sub-o-algebra A.
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Properties of conditional expectation

@ The point of requiring A-measurability is that it “smooths out”
variations that are too rapid to show up in A.

© The conditional expectation is linear, increasing with respect to
the pointwise order.

© ltis defined uniquely p-almost everywhere.
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Where the action happens

@ We define two categories Rad., and Rad; that will be needed for
the functorial definition of conditional expectation.

@ This will allow for Lo, and L; versions of the theory.
@ Going between these versions by duality will be very useful.
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The “infinity” category

The category Rad,, has as objects probability spaces, and as arrows
a: (X,p) — (Y, q), measurable maps such that M, (p) < Kq for some
real number K.

The reason for choosing the name Rad, is that o € Rad., maps to
d/dgMa(p) € LL (Y, q).
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The “one” category

The category Rad; has as objects probability spaces and as arrows
a: (X,p) — (Y,q), measurable maps such that M, (p) < q.

@ The reason for choosing the name Rad, is that o € Rad; maps to
d/dgMo(p) € LY (Y, q).

@ The fact that the category Rad., embeds in Rad; reflects the fact
that LY, embeds in L.
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Pairing function revisited

Recall the isomorphism between Lt (X, p) and L (X, p) mediated by
the pairing function:

feLi(X,p)— Ag:Lf(X,p).{f, g) = /fgdp-
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Precomposition

@ Now, precomposition with « in Rad,, gives a map P;(«) from
L (Y,q) to LT (X,p).

@ Dually, given « € Rad, : (X,p) — (Y,q) and g € L1 (Y, q) we have
that P (a)(g) € LL (X, p).

© Thus the subscripts on the two precomposition functors describe
the target categories.

@ Using the -functor we get a map (P;(a))* from L;"*(X,p) to
L *(7,q) in the first case and

@ dually we get (Poo())* from LL*(X,p) to LL* (Y, q).
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Expectation value functor

@ The functor E(-) is a functor from Rad., to wCC which, on
objects, maps (X, p) to LE (X, p) and on maps is given as follows:

@ Given a: (X,p) — (Y,q) in Rad the action of the functor is to
produce the map E(«) : L (X, p) — LI (Y, q) obtained by
composing (P;(«))* with the isomorphisms between Lf“* and LT,

(P (a))*l lEoo (a)
LI (Y,q) > LEL(Y,q)
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Consequences

@ ltis an immediate consequence of the definitions that
foranyf € LY (X,p) and g € L (Y, q)

(Eoo(@)(f); 8)y = (s Pr()(8))x-

ML (X, p).f, h) <——if

Ag: LT (Y,q).(f, goa) —Ex(a)(f)

@ One can informally view this functor as a “left adjoint” in view of
this proposition.

© Note that since we started with « in Rad,, we get the expectation
value as a map between the LY, cones.
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The other expectation value functor

The functor E;(-) is a functor from Rad; to wCC which maps the
object (X,p) to L] (X,p) and on maps is given as follows:

Given o : (X,p) — (Y,q) in Rad, the action of the functor is to produce
the map E; () : L} (X,p) — L (Y, q) obtained by composing (Pe(c))*
with the isomorphisms between L and L™ as shown in the diagram
below
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Another “adjoint”

Once again we have an “adjointness” statement; this time it is a right
adjoint.

Right adjoint

Givenf € LL(Y,q) and g € L] (X,p) we have

{f;E1(a)(8))y = (Poo(@)(f); 8)x-
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Relating the two expectation value functors

Given a € Rad[(X,p), (Y,q)] we have

(@) Ej(a)(f oa) =Ex(a)(1x)f, forf € L (Y,q) and
(0) Eoo(a)(f 0 @) = Ei(a)(1x)f, forf € LL(Y,q).
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Markov kernels as linear maps

@ Given 7 a Markov kernel from (X, X) to (Y, A), we define
T E*( )—>£+( ), forfe LT(Y),x€ X, as

= [, f(2)7(x,dz).
Qo Th|s map is well- deflned, linear and w-continuous.

@ If we write 13 for the indicator function of the measurable set B we
have that T'-(15)(x) = 7(x, B).
© It encodes all the transition probability information
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From linear maps to markov kernels

@ Conversely, any w-continuous morphism L with L(1y) < 1x can be
cast as a Markov kernel by reversing the process on the last slide.

@ The interpretation of L is that L(1) is a measurable function on X
such that L(15)(x) is the probability of jumping from x to B.
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@ We can also define an operator on M(X) by using 7 the other way.

@ We define T, : M(X) — M(Y), for p € M(X) and B € A, as
T:(n)(B) = [y 7(x,B) du(x).

© ltis easy to show that this map is linear and w-continuous.
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What do they mean?

@ The operator T, transforms measures “forwards in time”; if 4 is a
measure on X representing the current state of the system, 7 (u)
is the resulting measure on Y after a transition through .

© The operator 7, may be interpreted as a likelihood transformer
which propagates information “backwards”, just as we expect from
predicate transformers.

Q T.(f)(x) is just the expected value of f after one 7-step given that
one is at x.
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Labelled abstract Markov processes

The definition

An abstract Markov kernel from (X, >, p) to (Y, A, g) is an
w-continuous linear map 7 : L (Y) — LI (X) with ||7| < 1.

LAMPS

A labelled abstract Markov process on a probability space (X, %, p)
with a set of labels (or actions) A is a family of abstract Markov kernels
7.+ LT (X, p) — LI (X, p) indexed by elements a of A.

v
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The approximation map

The expectation value functors project a probability space onto another
one with a possibly coarser o-algebra.

Given an AMP on (X,p) andamap « : (X,p) — (Y, q) in Rad.., we
have the following approximation scheme:

Approximation scheme

LE (X, p) —“~LEL(X,p)

Poo () T Exo () l

a(7q
L0 "L L5 (1,0)
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A special case

@ Take (X,X) and (X, A) with A C ¥ and use the measurable
function id : (X,%X) — (X,A) as a.

Coarsening the o-algebra

L;(Xa Eap) LLZ’.'O(Xj Eap)
Poo(a)T EOO(a)l/

LE;(X, Aap) ’d(T“)> L;’—O(Xv A7p)

@ Thus id(r,) is the approximation of 7, obtained by averaging over
the sets of the coarser o-algebra A.

@ We now have the machinery to consider approximating along
arbitrary maps a.
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The tower law

@ The special case on the previous slide can also be done for the L;
situation, we get the map E;(id) : L} (X,X,p) — L] (X, A, p).

@ This is exactly the map that is written as E(:||A) in probability
theory books.

@ The tower law is written E[E[X||A,]||A1] = E[X||A;] where A C A
and is given a half-page proof.

@ But this is just functoriality!
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