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Approximate equations: a =✏ b, a is within ✏ of b.

Definitely not an equivalence relation;

it defines a uniformity.

Quantitative analogue of equational reasoning.

Birkho↵-like completeness theorem, uniformity results,

monads ...

Many examples: mostly probabilistic
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History

Moggi 1988: How to incorporate “e↵ects” into denotational
semantics? Answer: monads!

Plotkin, Power (and then many others): computational e↵ects

algebraically. Monads are given by operations and equations.

Categorically: equational presentations are Lawvere theories.

A monad of great interest: Lawvere (1964) The category of

probabilistic mappings (unpublished).

Later (1981) Giry: monad on measure spaces

and also on Polish spaces.
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Probabilistic reasoning requires measure theory but,

measure theory works best on metric (Polish) spaces.

Metric ideas present in semantics from the start:

Jaco de Bakker’s school.

Our goal (motivated by probability): develop the theory of
e↵ects in a metric setting.

Algebras will come with metric structure and

quantitative equational theories will define monads on Met.
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(M. H. Stone 1949)

Signature: {+✏|✏ 2 [0, 1]} (a set of operations)

Axioms:

(B1) ` t+1 t0 = t
(B2) ` t+✏ t0 = t
(SC) ` t+✏ t0 = t0 +1�✏ t
(SA) ` (t+✏ t0) +✏0 t00 = t+✏✏0 (t0 + ✏0�✏✏0

1�✏✏0
t00)

Equations define an equivalence relation on terms.
Our quantitative equations will define a metric on terms.



(Refl) ; ` t =0 t

(Symm) {t =✏ s} ` s =✏ t.

(Triang) {t =e s, s =e0 u} ` t =e+e0 u.

(Max) For e0 > 0, {t =e s} ` t =e+e0 s.

(Arch) For e � 0, {t =e0 s | e0 > e} ` t =e s.

(NExp) For f : n 2 ⌦,

{t1 =e s1, . . . , tn =e sn} ` f(t1, ..ti, ..tn) =e f(s1, ..si, ..sn)

(Subst) If � 2 ⌃(X), � ` t =e s implies �(�) ` �(t) =e �(s).

(Cut) If � ` � for all � 2 �

0
and �

0 `  , then � `  .

(Assumpt) If � 2 �, then � ` �.

Deducibility relations
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Signature ⌦, variables X we get terms TX
Quantitative equations: V(TX)

s =e t, s, t 2 TX, e 2 Q \ [0, 1].

Quantitative inferences: E(TX) = Pfin(V(TX))⇥ V(TX)

{s1 =e1 t1, . . . , sn =en tn} ` s =e t

Given S ⇢ E(TX), `S : smallest deducibility

relation containing S.

Equational theory: U = `S
T

E(TX)
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Quantitative Algebra
⌦: signature; A = (A, d):
A an ⌦-algebra and (A, d) a metric space

all functions in ⌦ are nonexpansive.

Morphisms are ⌦-algebra homomorphisms

that are nonexpansive.

TX is an ⌦-algebra.

� : TX ! A, ⌦-homomorphism.

(A, d) satisfies {si =ei ti/i = 1, . . . , n} ` s =e t if

8�, d(�(si),�(ti))  ei, i = 1, . . . , n
implies d(�(s),�(t))  e.

We write K(U ,⌦) for the algebras satisfying U .
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Completeness

8A 2 K(U ,⌦),A satisfies � ` � i↵ � ` � 2 U .

Analogue of the usual completeness theorem for

equational logic,

but the proof needs to deal

with quantitative issues and inequalities.
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Given U , TX can be given a pseudometric:

dU (s, t) = inf{e|; ` s =e t 2 U}.

Quotient by the kernel to get a metric space T[X].

Thm: (T[X], d) is in K(U ,⌦).

Starting from a metric space (M,d) we can define

TM by adding m 2 M as constants and ; ` m =e n
as axioms for every rational d(m,n)  e.

From this we can construct (T[M ], dM ) 2 K(U ,⌦).



Title

Prakash Panangaden

30th June 2016

in Met K(U ,⌦)

(M,d) U(T[M ]) T[M ]

UA A

f

⌘

Uh h

1

Universal property

U : K(U ,⌦) ! Met: forgetful functor

T defines a monad on Met
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Signature: B = {+✏|✏ 2 [0, 1]} (a set of operations)

(B1) ` t+1 t
0 =0 t

(B2) ` t+✏ t =0 t

(SC) ` t+✏ t
0 =0 t0 +1�✏ t

(SA) ` t+✏ (t
0 +✏0 t

00) =0 (t+✏✏0 t
0) + ✏0�✏✏0

1�✏✏0
t00

(SB) ` t0 +✏ t =e t
00 +✏ t, ✏  e

Equations:

The freely generated algebra is the space of probability

distributions with the total variation metric.
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Example 2: Additive barycentric algebras

Same signature.

Equations:

(B1), (B2), (SC), (SA) and

Special case p = 1:

(W ){x1 =e1 y1, x2 =e2 y2} ` x1 +✏ x2 =e0 y1 +✏ y2

where (✏ · ep1 + (1� ✏)ep2)
1
p  e

0

(K){x1 =e1 y1, x2 =e2 y2} ` x1 +✏ x2 =e0 y1 +✏ y2

where (✏ · e1 + (1� ✏)e2)  e

0



x1 y1

x2 y2

x1 +✏ x2 y1 +✏ y2

e1

e2

e

0

✏

1� ✏

1

A picture of equation (K)
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Finitary case
(M,d): metric space,

⇧[M ]: finitely supported probability measures on M ,

µ+✏ ⌫ = ✏µ+ (1� ✏)⌫, convex sum.

where C(µ, ⌫) is the space of couplings:

probability distributions on M ⇥M
with marginals matching µ, ⌫.

W

p(µ, ⌫) = inf
!2C(µ,⌫)

Z

M⇥M
d(x, y)pd!

Prop. (⇧[M ],W p
) is in K.
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Thm. (⇧[M ],W p
) is the M -generated barycentric algebra

i.e. it has the universal property.

Proof ideas:

Couplings form a convex set.

Convexity properties of spaces of measures.

Linearity of integration.

Splitting lemma.

Non-expansiveness – induction on size of the support.
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Weak convergence

Need topology on �[M ] = Borel measures on M .

lim
i!1

µi = µ
if for all bounded continuous functions

f : M ! R we have
R
fdµi !

R
fdµ.

Thm. If M is complete and separable then ⇧[M ] is

dense in �[M ] in the weak topology. Moreover, W p

metrizes the weak topology.

Using this we can extend the barycentric algebra

results to the continuous case.
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Other examples

1. Pointed barycentric algebras (subprobability distributions)

2. Hausdor↵ metric from (quantitative) semilattices

3. Markov chains (not in the paper) with trace-based metric

4. Exceptions, state, IO - quantitative analogues
(not in the paper)
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Related work

van Breugel et al. (2007) Gives equational (in the ordinary
sense) presentation of Hausdor↵ and Kantorovich and exhibits
monads on the category of complete metric spaces.

Adamek et al. (2012) shows the finitely nature of these monads.

We use barycentric axioms rather than mean-value axioms.

We develop a general theory of quantitative equations.

We can easily adapt Kantorovich to Wasserstein.
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Most of our results work for metric taking values in

[0,1] except for Wasserstein/Kantorovich.

We need to extend Kantorovich-Rubinstein duality results.

Markov processes and bisimulation metrics. Perhaps need

many-sorted version of the theory (?)

Many tempting examples lurking in the shadows.

Quantitative theory of e↵ects: contribute to

probabilistic programming languages.

Birkho↵ variety theorem?


