
Duality in Logic and Computation

Prakash Panangaden1

1School of Computer Science
McGill University

IEEE Symposium On Logic In Computer Science, June 2013

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 1 / 75

Introduction

Examples of duality principles

Linear programming.

Electric and magnetic fields,
now vastly generalized to geometric Langlands duality.
Controllability and observability in control theory, Kalman.
Many examples from semantics and logic.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 2 / 75

Introduction

Examples of duality principles

Linear programming.
Electric and magnetic fields,

now vastly generalized to geometric Langlands duality.
Controllability and observability in control theory, Kalman.
Many examples from semantics and logic.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 2 / 75

Introduction

Examples of duality principles

Linear programming.
Electric and magnetic fields,
now vastly generalized to geometric Langlands duality.

Controllability and observability in control theory, Kalman.
Many examples from semantics and logic.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 2 / 75

Introduction

Examples of duality principles

Linear programming.
Electric and magnetic fields,
now vastly generalized to geometric Langlands duality.
Controllability and observability in control theory, Kalman.

Many examples from semantics and logic.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 2 / 75

Introduction

Examples of duality principles

Linear programming.
Electric and magnetic fields,
now vastly generalized to geometric Langlands duality.
Controllability and observability in control theory, Kalman.
Many examples from semantics and logic.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 2 / 75

Introduction

What is Stone-type duality?

Two types of structures: Shiv and Vish.

Every Shiv has an associated Vish and vice versa.
V → S, S→ V ′; V and V ′ are isomorphic.
Two – apparently – different structures are actually two different
descriptions of the same thing.
More importantly given a map: f : S1 → S2 we get a map
f̂ : V2 → V1 and vice versa;
note the reversal in the direction of the arrows.
The two mathematical universes are mirror images of each other.
Two completely different sets of theorems that one can use.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 3 / 75

Introduction

What is Stone-type duality?

Two types of structures: Shiv and Vish.
Every Shiv has an associated Vish and vice versa.

V → S, S→ V ′; V and V ′ are isomorphic.
Two – apparently – different structures are actually two different
descriptions of the same thing.
More importantly given a map: f : S1 → S2 we get a map
f̂ : V2 → V1 and vice versa;
note the reversal in the direction of the arrows.
The two mathematical universes are mirror images of each other.
Two completely different sets of theorems that one can use.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 3 / 75

Introduction

What is Stone-type duality?

Two types of structures: Shiv and Vish.
Every Shiv has an associated Vish and vice versa.
V → S, S→ V ′; V and V ′ are isomorphic.

Two – apparently – different structures are actually two different
descriptions of the same thing.
More importantly given a map: f : S1 → S2 we get a map
f̂ : V2 → V1 and vice versa;
note the reversal in the direction of the arrows.
The two mathematical universes are mirror images of each other.
Two completely different sets of theorems that one can use.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 3 / 75

Introduction

What is Stone-type duality?

Two types of structures: Shiv and Vish.
Every Shiv has an associated Vish and vice versa.
V → S, S→ V ′; V and V ′ are isomorphic.
Two – apparently – different structures are actually two different
descriptions of the same thing.

More importantly given a map: f : S1 → S2 we get a map
f̂ : V2 → V1 and vice versa;
note the reversal in the direction of the arrows.
The two mathematical universes are mirror images of each other.
Two completely different sets of theorems that one can use.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 3 / 75

Introduction

What is Stone-type duality?

Two types of structures: Shiv and Vish.
Every Shiv has an associated Vish and vice versa.
V → S, S→ V ′; V and V ′ are isomorphic.
Two – apparently – different structures are actually two different
descriptions of the same thing.
More importantly given a map: f : S1 → S2 we get a map
f̂ : V2 → V1 and vice versa;

note the reversal in the direction of the arrows.
The two mathematical universes are mirror images of each other.
Two completely different sets of theorems that one can use.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 3 / 75

Introduction

What is Stone-type duality?

Two types of structures: Shiv and Vish.
Every Shiv has an associated Vish and vice versa.
V → S, S→ V ′; V and V ′ are isomorphic.
Two – apparently – different structures are actually two different
descriptions of the same thing.
More importantly given a map: f : S1 → S2 we get a map
f̂ : V2 → V1 and vice versa;
note the reversal in the direction of the arrows.

The two mathematical universes are mirror images of each other.
Two completely different sets of theorems that one can use.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 3 / 75

Introduction

What is Stone-type duality?

Two types of structures: Shiv and Vish.
Every Shiv has an associated Vish and vice versa.
V → S, S→ V ′; V and V ′ are isomorphic.
Two – apparently – different structures are actually two different
descriptions of the same thing.
More importantly given a map: f : S1 → S2 we get a map
f̂ : V2 → V1 and vice versa;
note the reversal in the direction of the arrows.
The two mathematical universes are mirror images of each other.

Two completely different sets of theorems that one can use.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 3 / 75

Introduction

What is Stone-type duality?

Two types of structures: Shiv and Vish.
Every Shiv has an associated Vish and vice versa.
V → S, S→ V ′; V and V ′ are isomorphic.
Two – apparently – different structures are actually two different
descriptions of the same thing.
More importantly given a map: f : S1 → S2 we get a map
f̂ : V2 → V1 and vice versa;
note the reversal in the direction of the arrows.
The two mathematical universes are mirror images of each other.
Two completely different sets of theorems that one can use.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 3 / 75

Introduction

Examples of Stone-type dualities

Vector spaces and vector spaces.

Boolean algebras and Stone spaces. [Stone]
Modal logics and boolean algebras with operators. [Jonsson,
Tarski]
State transformer semantics and weakest precondition semantics.
[DeBakker,Plotkin,Smyth]
Logics and Transition systems. [Bonsangue, Kurz,...]
Measures and random variables. [Kozen]
Commutative unital C*-algebras and compact Hausdorff spaces.
[Gelfand, Stone]
Labelled Markov processes and C∗-algebras with operators.
[Mislove, Ouaknine, Pavlovic, Worrell]

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 4 / 75

Introduction

Examples of Stone-type dualities

Vector spaces and vector spaces.
Boolean algebras and Stone spaces. [Stone]

Modal logics and boolean algebras with operators. [Jonsson,
Tarski]
State transformer semantics and weakest precondition semantics.
[DeBakker,Plotkin,Smyth]
Logics and Transition systems. [Bonsangue, Kurz,...]
Measures and random variables. [Kozen]
Commutative unital C*-algebras and compact Hausdorff spaces.
[Gelfand, Stone]
Labelled Markov processes and C∗-algebras with operators.
[Mislove, Ouaknine, Pavlovic, Worrell]

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 4 / 75

Introduction

Examples of Stone-type dualities

Vector spaces and vector spaces.
Boolean algebras and Stone spaces. [Stone]
Modal logics and boolean algebras with operators. [Jonsson,
Tarski]

State transformer semantics and weakest precondition semantics.
[DeBakker,Plotkin,Smyth]
Logics and Transition systems. [Bonsangue, Kurz,...]
Measures and random variables. [Kozen]
Commutative unital C*-algebras and compact Hausdorff spaces.
[Gelfand, Stone]
Labelled Markov processes and C∗-algebras with operators.
[Mislove, Ouaknine, Pavlovic, Worrell]

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 4 / 75

Introduction

Examples of Stone-type dualities

Vector spaces and vector spaces.
Boolean algebras and Stone spaces. [Stone]
Modal logics and boolean algebras with operators. [Jonsson,
Tarski]
State transformer semantics and weakest precondition semantics.
[DeBakker,Plotkin,Smyth]

Logics and Transition systems. [Bonsangue, Kurz,...]
Measures and random variables. [Kozen]
Commutative unital C*-algebras and compact Hausdorff spaces.
[Gelfand, Stone]
Labelled Markov processes and C∗-algebras with operators.
[Mislove, Ouaknine, Pavlovic, Worrell]

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 4 / 75

Introduction

Examples of Stone-type dualities

Vector spaces and vector spaces.
Boolean algebras and Stone spaces. [Stone]
Modal logics and boolean algebras with operators. [Jonsson,
Tarski]
State transformer semantics and weakest precondition semantics.
[DeBakker,Plotkin,Smyth]
Logics and Transition systems. [Bonsangue, Kurz,...]

Measures and random variables. [Kozen]
Commutative unital C*-algebras and compact Hausdorff spaces.
[Gelfand, Stone]
Labelled Markov processes and C∗-algebras with operators.
[Mislove, Ouaknine, Pavlovic, Worrell]

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 4 / 75

Introduction

Examples of Stone-type dualities

Vector spaces and vector spaces.
Boolean algebras and Stone spaces. [Stone]
Modal logics and boolean algebras with operators. [Jonsson,
Tarski]
State transformer semantics and weakest precondition semantics.
[DeBakker,Plotkin,Smyth]
Logics and Transition systems. [Bonsangue, Kurz,...]
Measures and random variables. [Kozen]

Commutative unital C*-algebras and compact Hausdorff spaces.
[Gelfand, Stone]
Labelled Markov processes and C∗-algebras with operators.
[Mislove, Ouaknine, Pavlovic, Worrell]

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 4 / 75

Introduction

Examples of Stone-type dualities

Vector spaces and vector spaces.
Boolean algebras and Stone spaces. [Stone]
Modal logics and boolean algebras with operators. [Jonsson,
Tarski]
State transformer semantics and weakest precondition semantics.
[DeBakker,Plotkin,Smyth]
Logics and Transition systems. [Bonsangue, Kurz,...]
Measures and random variables. [Kozen]
Commutative unital C*-algebras and compact Hausdorff spaces.
[Gelfand, Stone]

Labelled Markov processes and C∗-algebras with operators.
[Mislove, Ouaknine, Pavlovic, Worrell]

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 4 / 75

Introduction

Examples of Stone-type dualities

Vector spaces and vector spaces.
Boolean algebras and Stone spaces. [Stone]
Modal logics and boolean algebras with operators. [Jonsson,
Tarski]
State transformer semantics and weakest precondition semantics.
[DeBakker,Plotkin,Smyth]
Logics and Transition systems. [Bonsangue, Kurz,...]
Measures and random variables. [Kozen]
Commutative unital C*-algebras and compact Hausdorff spaces.
[Gelfand, Stone]
Labelled Markov processes and C∗-algebras with operators.
[Mislove, Ouaknine, Pavlovic, Worrell]

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 4 / 75

The need for Category Theory

Maps matter!

An essential aspect of mathematics: structure-preserving maps
between objects.

Interesting constructions on objects (usually) have corresponding
constructions on the maps.
Compositions are preserved or reversed.
This is functoriality.
From this one can often conclude invariance properties.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 5 / 75

The need for Category Theory

Maps matter!

An essential aspect of mathematics: structure-preserving maps
between objects.
Interesting constructions on objects (usually) have corresponding
constructions on the maps.

Compositions are preserved or reversed.
This is functoriality.
From this one can often conclude invariance properties.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 5 / 75

The need for Category Theory

Maps matter!

An essential aspect of mathematics: structure-preserving maps
between objects.
Interesting constructions on objects (usually) have corresponding
constructions on the maps.
Compositions are preserved or reversed.

This is functoriality.
From this one can often conclude invariance properties.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 5 / 75

The need for Category Theory

Maps matter!

An essential aspect of mathematics: structure-preserving maps
between objects.
Interesting constructions on objects (usually) have corresponding
constructions on the maps.
Compositions are preserved or reversed.
This is functoriality.

From this one can often conclude invariance properties.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 5 / 75

The need for Category Theory

Maps matter!

An essential aspect of mathematics: structure-preserving maps
between objects.
Interesting constructions on objects (usually) have corresponding
constructions on the maps.
Compositions are preserved or reversed.
This is functoriality.
From this one can often conclude invariance properties.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 5 / 75

The need for Category Theory

Duality categorically

C

F

""
Dop

G

bb

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 6 / 75

The need for Category Theory

Duality categorically

Given
A ∈ C

f
��

B ∈ C

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 7 / 75

The need for Category Theory

Duality categorically

We get
A ∈ C

f
��

F(A) ∈ D

B ∈ C F(B) ∈ D

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 8 / 75

The need for Category Theory

Duality categorically

and
A ∈ C

f
��

F(A) ∈ D

B ∈ C F(B) ∈ D.

F(f)

OO

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 9 / 75

The need for Category Theory

Duality categorically

Similarly, given
C ∈ D

g
��

D ∈ D

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 10 / 75

The need for Category Theory

Duality categorically

We get
G(C) ∈ C C ∈ D

g
��

G(D) ∈ C D ∈ D

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 11 / 75

The need for Category Theory

Duality categorically

and
G(C) ∈ C C ∈ D

g
��

G(D) ∈ C

G(g)

OO

D ∈ D.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 12 / 75

The need for Category Theory

Isomorphisms

We have isomorphisms

A ' G(F(A)) and C ' F(G(C)).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 13 / 75

The need for Category Theory

Duality categorically

Stone-type Duality
We have a (contravariant) adjunction between categories C and D,
which is an equivalence of categories.

Often obtained by looking at maps into an object living in both
categories: a schizophrenic object.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 14 / 75

Vector space self-duality

Duality for high school students I

Finite-dimensional vector space V over, say R,

Dual space V∗ of linear maps from V to R.
V∗ has the same dimension as V and a (basis-dependent)
isomorphism between V and V∗.
The double dual V∗∗ is also isomorphic to V

with a “nice” canonical isomorphism: v ∈ V 7→ λσ ∈ V∗.σ(v).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 15 / 75

Vector space self-duality

Duality for high school students I

Finite-dimensional vector space V over, say R,
Dual space V∗ of linear maps from V to R.

V∗ has the same dimension as V and a (basis-dependent)
isomorphism between V and V∗.
The double dual V∗∗ is also isomorphic to V

with a “nice” canonical isomorphism: v ∈ V 7→ λσ ∈ V∗.σ(v).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 15 / 75

Vector space self-duality

Duality for high school students I

Finite-dimensional vector space V over, say R,
Dual space V∗ of linear maps from V to R.
V∗ has the same dimension as V and a (basis-dependent)
isomorphism between V and V∗.

The double dual V∗∗ is also isomorphic to V

with a “nice” canonical isomorphism: v ∈ V 7→ λσ ∈ V∗.σ(v).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 15 / 75

Vector space self-duality

Duality for high school students I

Finite-dimensional vector space V over, say R,
Dual space V∗ of linear maps from V to R.
V∗ has the same dimension as V and a (basis-dependent)
isomorphism between V and V∗.
The double dual V∗∗ is also isomorphic to V

with a “nice” canonical isomorphism: v ∈ V 7→ λσ ∈ V∗.σ(v).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 15 / 75

Vector space self-duality

Duality for high school students II

U θ // V

U∗ V∗
θ∗
oo

Given a linear maps θ between vector spaces U and V we get a map
θ∗ in the opposite direction between the dual spaces:

θ∗(σ ∈ V∗)(u ∈ U) = σ(θ(u)).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 16 / 75

Classical Stone duality

Boolean algebras

A Boolean algebra is a set A equipped with two constants, 0, 1, a unary
operation (·)′ and two binary operations ∨,∧ which obey the following
axioms, p, q, r are arbitrary members of A:

0′ = 1 1′ = 0
p ∧ 0 = 0 p ∨ 1 = 1
p ∧ 1 = p p ∨ 0 = p

p ∧ p′ = 0 p ∨ p′ = 1
p ∧ p = p p ∨ p = p

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 17 / 75

Classical Stone duality

Boolean algebras II

p′′ = p

(p ∧ q)′ = p′ ∨ q′

(p ∨ q)′ = p′ ∧ q′

p ∧ q = q ∧ p

p ∨ q = q ∨ p

p ∧ (q ∧ r) = (p ∧ q) ∧ r

p ∨ (q ∨ r) = (p ∨ q) ∨ r

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

The operation ∨ is called join, ∧ is called meet and (·)′ is called
complement.
Maps are Boolean algebra homomorphisms.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 18 / 75

Classical Stone duality

(Toy) Stone duality

FinSet

P

&&
FinBoolAlgop

A

ee

Here P is power-set and A takes the atoms of a Boolean algebra.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 19 / 75

Classical Stone duality

Stone spaces

A Stone space is a compact Hausdorff space with a base of
clopen sets: zero-dimensional space.

Totally disconnected: the only connected sets are singletons.
Many, but not all, Stone spaces are Polish.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 20 / 75

Classical Stone duality

Stone spaces

A Stone space is a compact Hausdorff space with a base of
clopen sets: zero-dimensional space.
Totally disconnected: the only connected sets are singletons.

Many, but not all, Stone spaces are Polish.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 20 / 75

Classical Stone duality

Stone spaces

A Stone space is a compact Hausdorff space with a base of
clopen sets: zero-dimensional space.
Totally disconnected: the only connected sets are singletons.
Many, but not all, Stone spaces are Polish.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 20 / 75

Classical Stone duality

Classical Stone duality

Stone space S, the clopens form a Boolean algebra: Cl(S).

Boolean algebra B, Stone space U(B) is the space U of maximal
filters (ultrafilters).
b ∈ B, a basic open is defined by Ub := {u ∈ U | b ∈ u}.
Ultrafilters correspond precisely to maps from B to 2:
{b ∈ B | f (b) = 1} is always an ultrafilter.
Continuous maps f : S1 → S2 between Stone spaces give Boolean
algebra homomorphisms f−1 : Cl(S2)→ Cl(S1).
Boolean algebra homomorphisms h : B1 → B2 give rise to
continuous functions (·) ◦ f : U(B2)→ U(B1) between the Stone
spaces.
Everything that can, and should be, an isomorphism is an
isomorphism.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 21 / 75

Classical Stone duality

Classical Stone duality

Stone space S, the clopens form a Boolean algebra: Cl(S).
Boolean algebra B, Stone space U(B) is the space U of maximal
filters (ultrafilters).

b ∈ B, a basic open is defined by Ub := {u ∈ U | b ∈ u}.
Ultrafilters correspond precisely to maps from B to 2:
{b ∈ B | f (b) = 1} is always an ultrafilter.
Continuous maps f : S1 → S2 between Stone spaces give Boolean
algebra homomorphisms f−1 : Cl(S2)→ Cl(S1).
Boolean algebra homomorphisms h : B1 → B2 give rise to
continuous functions (·) ◦ f : U(B2)→ U(B1) between the Stone
spaces.
Everything that can, and should be, an isomorphism is an
isomorphism.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 21 / 75

Classical Stone duality

Classical Stone duality

Stone space S, the clopens form a Boolean algebra: Cl(S).
Boolean algebra B, Stone space U(B) is the space U of maximal
filters (ultrafilters).
b ∈ B, a basic open is defined by Ub := {u ∈ U | b ∈ u}.

Ultrafilters correspond precisely to maps from B to 2:
{b ∈ B | f (b) = 1} is always an ultrafilter.
Continuous maps f : S1 → S2 between Stone spaces give Boolean
algebra homomorphisms f−1 : Cl(S2)→ Cl(S1).
Boolean algebra homomorphisms h : B1 → B2 give rise to
continuous functions (·) ◦ f : U(B2)→ U(B1) between the Stone
spaces.
Everything that can, and should be, an isomorphism is an
isomorphism.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 21 / 75

Classical Stone duality

Classical Stone duality

Stone space S, the clopens form a Boolean algebra: Cl(S).
Boolean algebra B, Stone space U(B) is the space U of maximal
filters (ultrafilters).
b ∈ B, a basic open is defined by Ub := {u ∈ U | b ∈ u}.
Ultrafilters correspond precisely to maps from B to 2:

{b ∈ B | f (b) = 1} is always an ultrafilter.
Continuous maps f : S1 → S2 between Stone spaces give Boolean
algebra homomorphisms f−1 : Cl(S2)→ Cl(S1).
Boolean algebra homomorphisms h : B1 → B2 give rise to
continuous functions (·) ◦ f : U(B2)→ U(B1) between the Stone
spaces.
Everything that can, and should be, an isomorphism is an
isomorphism.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 21 / 75

Classical Stone duality

Classical Stone duality

Stone space S, the clopens form a Boolean algebra: Cl(S).
Boolean algebra B, Stone space U(B) is the space U of maximal
filters (ultrafilters).
b ∈ B, a basic open is defined by Ub := {u ∈ U | b ∈ u}.
Ultrafilters correspond precisely to maps from B to 2:
{b ∈ B | f (b) = 1} is always an ultrafilter.

Continuous maps f : S1 → S2 between Stone spaces give Boolean
algebra homomorphisms f−1 : Cl(S2)→ Cl(S1).
Boolean algebra homomorphisms h : B1 → B2 give rise to
continuous functions (·) ◦ f : U(B2)→ U(B1) between the Stone
spaces.
Everything that can, and should be, an isomorphism is an
isomorphism.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 21 / 75

Classical Stone duality

Classical Stone duality

Stone space S, the clopens form a Boolean algebra: Cl(S).
Boolean algebra B, Stone space U(B) is the space U of maximal
filters (ultrafilters).
b ∈ B, a basic open is defined by Ub := {u ∈ U | b ∈ u}.
Ultrafilters correspond precisely to maps from B to 2:
{b ∈ B | f (b) = 1} is always an ultrafilter.
Continuous maps f : S1 → S2 between Stone spaces give Boolean
algebra homomorphisms f−1 : Cl(S2)→ Cl(S1).

Boolean algebra homomorphisms h : B1 → B2 give rise to
continuous functions (·) ◦ f : U(B2)→ U(B1) between the Stone
spaces.
Everything that can, and should be, an isomorphism is an
isomorphism.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 21 / 75

Classical Stone duality

Classical Stone duality

Stone space S, the clopens form a Boolean algebra: Cl(S).
Boolean algebra B, Stone space U(B) is the space U of maximal
filters (ultrafilters).
b ∈ B, a basic open is defined by Ub := {u ∈ U | b ∈ u}.
Ultrafilters correspond precisely to maps from B to 2:
{b ∈ B | f (b) = 1} is always an ultrafilter.
Continuous maps f : S1 → S2 between Stone spaces give Boolean
algebra homomorphisms f−1 : Cl(S2)→ Cl(S1).
Boolean algebra homomorphisms h : B1 → B2 give rise to
continuous functions (·) ◦ f : U(B2)→ U(B1) between the Stone
spaces.

Everything that can, and should be, an isomorphism is an
isomorphism.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 21 / 75

Classical Stone duality

Classical Stone duality

Stone space S, the clopens form a Boolean algebra: Cl(S).
Boolean algebra B, Stone space U(B) is the space U of maximal
filters (ultrafilters).
b ∈ B, a basic open is defined by Ub := {u ∈ U | b ∈ u}.
Ultrafilters correspond precisely to maps from B to 2:
{b ∈ B | f (b) = 1} is always an ultrafilter.
Continuous maps f : S1 → S2 between Stone spaces give Boolean
algebra homomorphisms f−1 : Cl(S2)→ Cl(S1).
Boolean algebra homomorphisms h : B1 → B2 give rise to
continuous functions (·) ◦ f : U(B2)→ U(B1) between the Stone
spaces.
Everything that can, and should be, an isomorphism is an
isomorphism.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 21 / 75

Duality in semantics

State-transformer semantics

Operational semantics: states, transitions. What are the next
states?

Elegant and (almost) compositional version: Plotkin’s structured
operational semantics.
Denotational semantics: compositional, equivalent to operational
semantics.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 22 / 75

Duality in semantics

State-transformer semantics

Operational semantics: states, transitions. What are the next
states?
Elegant and (almost) compositional version: Plotkin’s structured
operational semantics.

Denotational semantics: compositional, equivalent to operational
semantics.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 22 / 75

Duality in semantics

State-transformer semantics

Operational semantics: states, transitions. What are the next
states?
Elegant and (almost) compositional version: Plotkin’s structured
operational semantics.
Denotational semantics: compositional, equivalent to operational
semantics.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 22 / 75

Duality in semantics

Predicate transformers: Dijkstra

Predicate transformers: if after the execution of a command a
property P holds, what must have been true before?

Weakest precondition (wp).
Backward flow in wp semantics.
D and E domains, viewed as topological spaces, open sets: OD

and OE. A predicate transformer is a strict, continuous and
multiplicative map p : OE → OD.
Relate predicate-transformer semantics to state-transformer
semantics: Jaco De Bakker (1978).
Duality: The category of state transformers is equivalent to the
(opposite of) the category of predicate transformers: Plotkin
(1979).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 23 / 75

Duality in semantics

Predicate transformers: Dijkstra

Predicate transformers: if after the execution of a command a
property P holds, what must have been true before?
Weakest precondition (wp).

Backward flow in wp semantics.
D and E domains, viewed as topological spaces, open sets: OD

and OE. A predicate transformer is a strict, continuous and
multiplicative map p : OE → OD.
Relate predicate-transformer semantics to state-transformer
semantics: Jaco De Bakker (1978).
Duality: The category of state transformers is equivalent to the
(opposite of) the category of predicate transformers: Plotkin
(1979).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 23 / 75

Duality in semantics

Predicate transformers: Dijkstra

Predicate transformers: if after the execution of a command a
property P holds, what must have been true before?
Weakest precondition (wp).
Backward flow in wp semantics.

D and E domains, viewed as topological spaces, open sets: OD

and OE. A predicate transformer is a strict, continuous and
multiplicative map p : OE → OD.
Relate predicate-transformer semantics to state-transformer
semantics: Jaco De Bakker (1978).
Duality: The category of state transformers is equivalent to the
(opposite of) the category of predicate transformers: Plotkin
(1979).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 23 / 75

Duality in semantics

Predicate transformers: Dijkstra

Predicate transformers: if after the execution of a command a
property P holds, what must have been true before?
Weakest precondition (wp).
Backward flow in wp semantics.
D and E domains, viewed as topological spaces, open sets: OD

and OE. A predicate transformer is a strict, continuous and
multiplicative map p : OE → OD.

Relate predicate-transformer semantics to state-transformer
semantics: Jaco De Bakker (1978).
Duality: The category of state transformers is equivalent to the
(opposite of) the category of predicate transformers: Plotkin
(1979).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 23 / 75

Duality in semantics

Predicate transformers: Dijkstra

Predicate transformers: if after the execution of a command a
property P holds, what must have been true before?
Weakest precondition (wp).
Backward flow in wp semantics.
D and E domains, viewed as topological spaces, open sets: OD

and OE. A predicate transformer is a strict, continuous and
multiplicative map p : OE → OD.
Relate predicate-transformer semantics to state-transformer
semantics: Jaco De Bakker (1978).
Duality: The category of state transformers is equivalent to the
(opposite of) the category of predicate transformers: Plotkin
(1979).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 23 / 75

Duality in semantics

Duality for probabilistic programs: Kozen

Probabilistic programs and expectation transformers: Kozen (1981)

Logic Probability
States s Distributions µ

Formulas P Random variables f
Satisfaction s |= P Integration

∫
f dµ

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 24 / 75

Duality in semantics

Domain theory in logical form

Abramsky’s program based on Stone duality.

Metalanguage for types and terms (programs).
Usual denotational semantics: types are domains, terms are
elements.
DTLF: types are propositional theories, finite elements are
propositions.
Terms are described by axiomatizing satisfaction. A modal logic of
programs.
The two interpretations are Stone duals.
Ties together semantics, logic and verification.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 25 / 75

Duality in semantics

Domain theory in logical form

Abramsky’s program based on Stone duality.
Metalanguage for types and terms (programs).

Usual denotational semantics: types are domains, terms are
elements.
DTLF: types are propositional theories, finite elements are
propositions.
Terms are described by axiomatizing satisfaction. A modal logic of
programs.
The two interpretations are Stone duals.
Ties together semantics, logic and verification.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 25 / 75

Duality in semantics

Domain theory in logical form

Abramsky’s program based on Stone duality.
Metalanguage for types and terms (programs).
Usual denotational semantics: types are domains, terms are
elements.

DTLF: types are propositional theories, finite elements are
propositions.
Terms are described by axiomatizing satisfaction. A modal logic of
programs.
The two interpretations are Stone duals.
Ties together semantics, logic and verification.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 25 / 75

Duality in semantics

Domain theory in logical form

Abramsky’s program based on Stone duality.
Metalanguage for types and terms (programs).
Usual denotational semantics: types are domains, terms are
elements.
DTLF: types are propositional theories, finite elements are
propositions.

Terms are described by axiomatizing satisfaction. A modal logic of
programs.
The two interpretations are Stone duals.
Ties together semantics, logic and verification.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 25 / 75

Duality in semantics

Domain theory in logical form

Abramsky’s program based on Stone duality.
Metalanguage for types and terms (programs).
Usual denotational semantics: types are domains, terms are
elements.
DTLF: types are propositional theories, finite elements are
propositions.
Terms are described by axiomatizing satisfaction. A modal logic of
programs.

The two interpretations are Stone duals.
Ties together semantics, logic and verification.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 25 / 75

Duality in semantics

Domain theory in logical form

Abramsky’s program based on Stone duality.
Metalanguage for types and terms (programs).
Usual denotational semantics: types are domains, terms are
elements.
DTLF: types are propositional theories, finite elements are
propositions.
Terms are described by axiomatizing satisfaction. A modal logic of
programs.
The two interpretations are Stone duals.

Ties together semantics, logic and verification.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 25 / 75

Duality in semantics

Domain theory in logical form

Abramsky’s program based on Stone duality.
Metalanguage for types and terms (programs).
Usual denotational semantics: types are domains, terms are
elements.
DTLF: types are propositional theories, finite elements are
propositions.
Terms are described by axiomatizing satisfaction. A modal logic of
programs.
The two interpretations are Stone duals.
Ties together semantics, logic and verification.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 25 / 75

Duality in semantics

Chu spaces: Pratt

Chu spaces: general construction for ∗-autonomous categories.

Generalized matrices.
Pratt’s observation: many interesting categories embed in Chu
categories.
Stone duality is “transposition” of matrices.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 26 / 75

Duality in semantics

Chu spaces: Pratt

Chu spaces: general construction for ∗-autonomous categories.
Generalized matrices.

Pratt’s observation: many interesting categories embed in Chu
categories.
Stone duality is “transposition” of matrices.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 26 / 75

Duality in semantics

Chu spaces: Pratt

Chu spaces: general construction for ∗-autonomous categories.
Generalized matrices.
Pratt’s observation: many interesting categories embed in Chu
categories.

Stone duality is “transposition” of matrices.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 26 / 75

Duality in semantics

Chu spaces: Pratt

Chu spaces: general construction for ∗-autonomous categories.
Generalized matrices.
Pratt’s observation: many interesting categories embed in Chu
categories.
Stone duality is “transposition” of matrices.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 26 / 75

Duality in semantics

Many other contributors

Bart Jacobs,
Achim Jung and Drew Moshier
Mai Gehrke, Jean-Eric Pin, ...
Bezhanishvilis

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 27 / 75

Brzozowski’s strange algorithm

Brzozowski’s Algorithm 1964

Start with DFA.

Reverse transitions, interchange initial and final states.
Determinize the result.
Take the reachable states.
Repeat.
This gives the minimal DFA recognizing the same language!
The intermediate step can blow up the size of the automaton
exponentially before minimizing it.
But experimental results seem to indicate that it often works well
in practice.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 28 / 75

Brzozowski’s strange algorithm

Brzozowski’s Algorithm 1964

Start with DFA.
Reverse transitions, interchange initial and final states.

Determinize the result.
Take the reachable states.
Repeat.
This gives the minimal DFA recognizing the same language!
The intermediate step can blow up the size of the automaton
exponentially before minimizing it.
But experimental results seem to indicate that it often works well
in practice.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 28 / 75

Brzozowski’s strange algorithm

Brzozowski’s Algorithm 1964

Start with DFA.
Reverse transitions, interchange initial and final states.
Determinize the result.

Take the reachable states.
Repeat.
This gives the minimal DFA recognizing the same language!
The intermediate step can blow up the size of the automaton
exponentially before minimizing it.
But experimental results seem to indicate that it often works well
in practice.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 28 / 75

Brzozowski’s strange algorithm

Brzozowski’s Algorithm 1964

Start with DFA.
Reverse transitions, interchange initial and final states.
Determinize the result.
Take the reachable states.

Repeat.
This gives the minimal DFA recognizing the same language!
The intermediate step can blow up the size of the automaton
exponentially before minimizing it.
But experimental results seem to indicate that it often works well
in practice.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 28 / 75

Brzozowski’s strange algorithm

Brzozowski’s Algorithm 1964

Start with DFA.
Reverse transitions, interchange initial and final states.
Determinize the result.
Take the reachable states.
Repeat.
This gives the minimal DFA recognizing the same language!

The intermediate step can blow up the size of the automaton
exponentially before minimizing it.
But experimental results seem to indicate that it often works well
in practice.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 28 / 75

Brzozowski’s strange algorithm

Brzozowski’s Algorithm 1964

Start with DFA.
Reverse transitions, interchange initial and final states.
Determinize the result.
Take the reachable states.
Repeat.
This gives the minimal DFA recognizing the same language!
The intermediate step can blow up the size of the automaton
exponentially before minimizing it.

But experimental results seem to indicate that it often works well
in practice.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 28 / 75

Brzozowski’s strange algorithm

Brzozowski’s Algorithm 1964

Start with DFA.
Reverse transitions, interchange initial and final states.
Determinize the result.
Take the reachable states.
Repeat.
This gives the minimal DFA recognizing the same language!
The intermediate step can blow up the size of the automaton
exponentially before minimizing it.
But experimental results seem to indicate that it often works well
in practice.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 28 / 75

Thinking logically

Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite (Moore) automaton. S is
the set of states, A an input alphabet (actions), O is a set of
observations.
δ : S×A → S is the state transition function.
γ : S→ 2O or γ : S×O → 2 is a labeling function.

If O = {accept} we have ordinary deterministic finite automata,
except that we do not have a start state,
which means that reachability makes no sense.
We will worry about that in a minute.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 29 / 75

Thinking logically

Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite (Moore) automaton. S is
the set of states, A an input alphabet (actions), O is a set of
observations.
δ : S×A → S is the state transition function.
γ : S→ 2O or γ : S×O → 2 is a labeling function.
If O = {accept} we have ordinary deterministic finite automata,

except that we do not have a start state,
which means that reachability makes no sense.
We will worry about that in a minute.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 29 / 75

Thinking logically

Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite (Moore) automaton. S is
the set of states, A an input alphabet (actions), O is a set of
observations.
δ : S×A → S is the state transition function.
γ : S→ 2O or γ : S×O → 2 is a labeling function.
If O = {accept} we have ordinary deterministic finite automata,
except that we do not have a start state,

which means that reachability makes no sense.
We will worry about that in a minute.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 29 / 75

Thinking logically

Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite (Moore) automaton. S is
the set of states, A an input alphabet (actions), O is a set of
observations.
δ : S×A → S is the state transition function.
γ : S→ 2O or γ : S×O → 2 is a labeling function.
If O = {accept} we have ordinary deterministic finite automata,
except that we do not have a start state,
which means that reachability makes no sense.

We will worry about that in a minute.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 29 / 75

Thinking logically

Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite (Moore) automaton. S is
the set of states, A an input alphabet (actions), O is a set of
observations.
δ : S×A → S is the state transition function.
γ : S→ 2O or γ : S×O → 2 is a labeling function.
If O = {accept} we have ordinary deterministic finite automata,
except that we do not have a start state,
which means that reachability makes no sense.
We will worry about that in a minute.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 29 / 75

Thinking logically

A Simple Modal Logic

View O as propositions, define a simple modal logic. A formula ϕ
is:

ϕ ::== ω ∈ O | (a)ϕ

where a ∈ A.
We say s |= ω, if ω ∈ γ(s) (or γ(s, ω) = T).
We say s |= (a)ϕ if δ(s, a) |= ϕ.

Now we define [[ϕ]]M = {s ∈ S|s |= ϕ}.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 30 / 75

Thinking logically

An Equivalence Relation on Formulas

We write sa as shorthand for δ(s, a).
Define ∼M between formulas as ϕ ∼M ψ if [[ϕ]]M = [[ψ]]M.

Equivalence class for ϕ same as of states [[ϕ]]M that satisfy ϕ.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 31 / 75

Thinking logically

An Equivalence Relation on Formulas

We write sa as shorthand for δ(s, a).
Define ∼M between formulas as ϕ ∼M ψ if [[ϕ]]M = [[ψ]]M.
Equivalence class for ϕ same as of states [[ϕ]]M that satisfy ϕ.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 31 / 75

Thinking logically

A Dual Automaton

Given a finite automatonM = (S,A,O, δ, γ).
Let T be the set of ∼M-equivalence classes of formulas onM.
We defineM′ = (S′,A,O′, δ′, γ′) as follows:
S′ = T = {[[ϕ]]M}
O′ = S

δ′([[ϕ]]M, a) = [[(a)ϕ]]M
γ′([[ϕ]]M) = [[ϕ]]M or γ′([[ϕ]]A, s) = (s |= ϕ).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 32 / 75

Thinking logically

The intuition

Interchange states and observations.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 33 / 75

Thinking logically

Minimality Properties

In general, the double dual is the minimal machine with the same
behaviour!

For deterministic machines bisimulation is the same as trace
equivalence.
This gives an intuition for why Brzozowski’s algorithm works,
but it does not really address the role of reachability properly.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 34 / 75

Thinking logically

Minimality Properties

In general, the double dual is the minimal machine with the same
behaviour!
For deterministic machines bisimulation is the same as trace
equivalence.

This gives an intuition for why Brzozowski’s algorithm works,
but it does not really address the role of reachability properly.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 34 / 75

Thinking logically

Minimality Properties

In general, the double dual is the minimal machine with the same
behaviour!
For deterministic machines bisimulation is the same as trace
equivalence.
This gives an intuition for why Brzozowski’s algorithm works,

but it does not really address the role of reachability properly.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 34 / 75

Thinking logically

Minimality Properties

In general, the double dual is the minimal machine with the same
behaviour!
For deterministic machines bisimulation is the same as trace
equivalence.
This gives an intuition for why Brzozowski’s algorithm works,
but it does not really address the role of reachability properly.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 34 / 75

Thinking logically

Probabilistic systems

In joint work with Chris Hundt, Joelle Pineau and Doina Precup
(AAAI 2006): duals for various kinds of probabilistic transition
systems like probabilistic Moore automata and partially
observable Markov decision processes.

Dual automaton from tests: probabilistic analogues of modal
formulas.
Main point: not minimization, but can learn systems from data
even when the state is not directly observable
because the double-dual serves as a substitute for the original
machine.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 35 / 75

Thinking logically

Probabilistic systems

In joint work with Chris Hundt, Joelle Pineau and Doina Precup
(AAAI 2006): duals for various kinds of probabilistic transition
systems like probabilistic Moore automata and partially
observable Markov decision processes.
Dual automaton from tests: probabilistic analogues of modal
formulas.

Main point: not minimization, but can learn systems from data
even when the state is not directly observable
because the double-dual serves as a substitute for the original
machine.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 35 / 75

Thinking logically

Probabilistic systems

In joint work with Chris Hundt, Joelle Pineau and Doina Precup
(AAAI 2006): duals for various kinds of probabilistic transition
systems like probabilistic Moore automata and partially
observable Markov decision processes.
Dual automaton from tests: probabilistic analogues of modal
formulas.
Main point: not minimization, but can learn systems from data
even when the state is not directly observable

because the double-dual serves as a substitute for the original
machine.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 35 / 75

Thinking logically

Probabilistic systems

In joint work with Chris Hundt, Joelle Pineau and Doina Precup
(AAAI 2006): duals for various kinds of probabilistic transition
systems like probabilistic Moore automata and partially
observable Markov decision processes.
Dual automaton from tests: probabilistic analogues of modal
formulas.
Main point: not minimization, but can learn systems from data
even when the state is not directly observable
because the double-dual serves as a substitute for the original
machine.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 35 / 75

Thinking logically

Application to learning

One can plan when one has the model: value iteration etc.,

but quite often one does not have the model.
In the absence of a model, one is forced to learn from data.
Learning is hopeless when one has no idea what the state space
is.
There should be no such thing as absolute state!
State is just a summary of past observations that can be used to
make predictions.
Double dual: state can be regarded as the summary of the
outcomes of experiments.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 36 / 75

Thinking logically

Application to learning

One can plan when one has the model: value iteration etc.,
but quite often one does not have the model.

In the absence of a model, one is forced to learn from data.
Learning is hopeless when one has no idea what the state space
is.
There should be no such thing as absolute state!
State is just a summary of past observations that can be used to
make predictions.
Double dual: state can be regarded as the summary of the
outcomes of experiments.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 36 / 75

Thinking logically

Application to learning

One can plan when one has the model: value iteration etc.,
but quite often one does not have the model.
In the absence of a model, one is forced to learn from data.

Learning is hopeless when one has no idea what the state space
is.
There should be no such thing as absolute state!
State is just a summary of past observations that can be used to
make predictions.
Double dual: state can be regarded as the summary of the
outcomes of experiments.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 36 / 75

Thinking logically

Application to learning

One can plan when one has the model: value iteration etc.,
but quite often one does not have the model.
In the absence of a model, one is forced to learn from data.
Learning is hopeless when one has no idea what the state space
is.

There should be no such thing as absolute state!
State is just a summary of past observations that can be used to
make predictions.
Double dual: state can be regarded as the summary of the
outcomes of experiments.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 36 / 75

Thinking logically

Application to learning

One can plan when one has the model: value iteration etc.,
but quite often one does not have the model.
In the absence of a model, one is forced to learn from data.
Learning is hopeless when one has no idea what the state space
is.
There should be no such thing as absolute state!

State is just a summary of past observations that can be used to
make predictions.
Double dual: state can be regarded as the summary of the
outcomes of experiments.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 36 / 75

Thinking logically

Application to learning

One can plan when one has the model: value iteration etc.,
but quite often one does not have the model.
In the absence of a model, one is forced to learn from data.
Learning is hopeless when one has no idea what the state space
is.
There should be no such thing as absolute state!
State is just a summary of past observations that can be used to
make predictions.

Double dual: state can be regarded as the summary of the
outcomes of experiments.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 36 / 75

Thinking logically

Application to learning

One can plan when one has the model: value iteration etc.,
but quite often one does not have the model.
In the absence of a model, one is forced to learn from data.
Learning is hopeless when one has no idea what the state space
is.
There should be no such thing as absolute state!
State is just a summary of past observations that can be used to
make predictions.
Double dual: state can be regarded as the summary of the
outcomes of experiments.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 36 / 75

The categorical picture of automata duality

What is the right categorical description?

Is this is any kind of familiar Stone-type duality?

We know that machines are co-algebras and logics are algebras
but
why is the dual another automaton?

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 37 / 75

The categorical picture of automata duality

What is the right categorical description?

Is this is any kind of familiar Stone-type duality?
We know that machines are co-algebras and logics are algebras
but

why is the dual another automaton?

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 37 / 75

The categorical picture of automata duality

What is the right categorical description?

Is this is any kind of familiar Stone-type duality?
We know that machines are co-algebras and logics are algebras
but
why is the dual another automaton?

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 37 / 75

The categorical picture of automata duality

Automata as Coalgebras

Our automata are coalgebras of the following functor:

F(S) = SA × 2O, F(f : S→ S′) = λ〈α : A → S, O ⊆ O〉.〈f ◦ α, O〉.

The category of these coalgebras is called PODFA.
In ordinary language they are quintuples

(S,A,O, δ : S×A → S, γ : S→ O)

with S: states, A: actions, O: observations, δ is a transition
function and γ is an observation function.
They are well known as Moore machines.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 38 / 75

The categorical picture of automata duality

Automata as Coalgebras

Our automata are coalgebras of the following functor:

F(S) = SA × 2O, F(f : S→ S′) = λ〈α : A → S, O ⊆ O〉.〈f ◦ α, O〉.

The category of these coalgebras is called PODFA.

In ordinary language they are quintuples

(S,A,O, δ : S×A → S, γ : S→ O)

with S: states, A: actions, O: observations, δ is a transition
function and γ is an observation function.
They are well known as Moore machines.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 38 / 75

The categorical picture of automata duality

Automata as Coalgebras

Our automata are coalgebras of the following functor:

F(S) = SA × 2O, F(f : S→ S′) = λ〈α : A → S, O ⊆ O〉.〈f ◦ α, O〉.

The category of these coalgebras is called PODFA.
In ordinary language they are quintuples

(S,A,O, δ : S×A → S, γ : S→ O)

with S: states, A: actions, O: observations, δ is a transition
function and γ is an observation function.
They are well known as Moore machines.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 38 / 75

The categorical picture of automata duality

Automata as Coalgebras

Our automata are coalgebras of the following functor:

F(S) = SA × 2O, F(f : S→ S′) = λ〈α : A → S, O ⊆ O〉.〈f ◦ α, O〉.

The category of these coalgebras is called PODFA.
In ordinary language they are quintuples

(S,A,O, δ : S×A → S, γ : S→ O)

with S: states, A: actions, O: observations, δ is a transition
function and γ is an observation function.

They are well known as Moore machines.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 38 / 75

The categorical picture of automata duality

Automata as Coalgebras

Our automata are coalgebras of the following functor:

F(S) = SA × 2O, F(f : S→ S′) = λ〈α : A → S, O ⊆ O〉.〈f ◦ α, O〉.

The category of these coalgebras is called PODFA.
In ordinary language they are quintuples

(S,A,O, δ : S×A → S, γ : S→ O)

with S: states, A: actions, O: observations, δ is a transition
function and γ is an observation function.
They are well known as Moore machines.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 38 / 75

The categorical picture of automata duality

Homomorphisms

A homomorphism for these coalgebras is a function f : S→ S′ such
that the following diagram commutes:

S
f //

〈δ, γ〉
��

S′

〈δ′, γ′〉
��

SA × 2O
fA×id

// S′A × 2O

where fA(α) = f ◦ α.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 39 / 75

The categorical picture of automata duality

This translates to the following conditions:

∀s ∈ S, ω ∈ O, ω ∈ γ(s) ⇐⇒ ω ∈ γ′(f (s)) (1)

and
∀s ∈ S, a ∈ A, f (δ(s, a)) = δ′(f (s), a). (2)

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 40 / 75

The categorical picture of automata duality

The Dual Category

The category of finite boolean algebras with operators (FBAO)
has as objects finite boolean algebras B with

the usual operations ∧, ¬ and constants T and ⊥ and, in addition,
together with unary operators (a) and constants ω.
We denote an object by B = (B, {(a)|a ∈ A}, {ω|ω ∈ O},T,∧,¬).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 41 / 75

The categorical picture of automata duality

The Dual Category

The category of finite boolean algebras with operators (FBAO)
has as objects finite boolean algebras B with
the usual operations ∧, ¬ and constants T and ⊥ and, in addition,

together with unary operators (a) and constants ω.
We denote an object by B = (B, {(a)|a ∈ A}, {ω|ω ∈ O},T,∧,¬).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 41 / 75

The categorical picture of automata duality

The Dual Category

The category of finite boolean algebras with operators (FBAO)
has as objects finite boolean algebras B with
the usual operations ∧, ¬ and constants T and ⊥ and, in addition,
together with unary operators (a) and constants ω.

We denote an object by B = (B, {(a)|a ∈ A}, {ω|ω ∈ O},T,∧,¬).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 41 / 75

The categorical picture of automata duality

The Dual Category

The category of finite boolean algebras with operators (FBAO)
has as objects finite boolean algebras B with
the usual operations ∧, ¬ and constants T and ⊥ and, in addition,
together with unary operators (a) and constants ω.
We denote an object by B = (B, {(a)|a ∈ A}, {ω|ω ∈ O},T,∧,¬).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 41 / 75

The categorical picture of automata duality

Equations

The following three equations hold:

(a)(b1 ∧ b2) = (a)b1 ∧ (a)b2, (3a)
(a)T = T, (3b)

¬(a)¬b = (a)b. (3c)

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 42 / 75

The categorical picture of automata duality

Morphisms

The morphisms are the usual boolean homomorphisms preserving, in
addition, the constants and the unary operators.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 43 / 75

The categorical picture of automata duality

Duality Theorem

There is a dual equivalence of categories

PODFAop ∼= FBAO.

One functor P is just the contravariant power set functor and the other
one H maps a boolean algebra to its set of atoms.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 44 / 75

The categorical picture of automata duality

Minimization?

Obviously, if we have an equivalence of categories we get the
same machine back when we go back and forth.

So how do we explain the minimization?

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 45 / 75

The categorical picture of automata duality

Minimization?

Obviously, if we have an equivalence of categories we get the
same machine back when we go back and forth.
So how do we explain the minimization?

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 45 / 75

The categorical picture of automata duality

Definable Subsets

Define a logic L by

φ ::== T|⊥|φ1 ∧ φ2|¬φ|(a)φ|ω

and define the definable subsets D(S) of a machineM = (S, δ, γ) as
sets of the form JφK.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 46 / 75

The categorical picture of automata duality

D(S) is a subobject of P(M)

in fact it is the smallest possible subalgebra and
any other subalgebra must contain D(S).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 47 / 75

The categorical picture of automata duality

D(S) is a subobject of P(M)

in fact it is the smallest possible subalgebra and

any other subalgebra must contain D(S).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 47 / 75

The categorical picture of automata duality

D(S) is a subobject of P(M)

in fact it is the smallest possible subalgebra and
any other subalgebra must contain D(S).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 47 / 75

The categorical picture of automata duality

In Pictures

M // P(M)

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 48 / 75

The categorical picture of automata duality

M // P(M)

D(S)
?�

1

OO

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 49 / 75

The categorical picture of automata duality

M //

2
����

P(M)

H(D(S)) D(S)oo
?�

1

OO

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 50 / 75

The categorical picture of automata duality

M //

2
����

3

����

P(M)

H(D(S)) D(S)oo
?�

1

OO

S ′ //
4

// // P(S ′)

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 51 / 75

The categorical picture of automata duality

M //

2
����

3

����

P(M)

H(D(S)) D(S)oo
?�

1

OO

S ′ //
4

// // P(S ′)
L,

5

ZZ

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 52 / 75

The categorical picture of automata duality

M //

2
����

3

����

P(M)

H(D(S)) D(S)oo
?�

1

OO

� r

6 $$
S ′ //

4
// // P(S ′)

L,

5

ZZ

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 53 / 75

The categorical picture of automata duality

The Secret of Minimization

M //

2
����

3

����

P(M)

H(D(S)) D(S)oo
?�

1

OO

� r

6 $$
S ′

7

;; ;;

//
4

// // P(S ′)
L,

5

ZZ

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 54 / 75

The categorical picture of automata duality

A Simpler Logic

Why did the minimization work with just the logic

φ ::== ω|(a)φ?

With this logic the definable subsets E(S) do not form a boolean
algebra,
it is just a “set with operations”
in other words, it can be viewed as an automaton!

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 55 / 75

The categorical picture of automata duality

A Simpler Logic

Why did the minimization work with just the logic

φ ::== ω|(a)φ?

With this logic the definable subsets E(S) do not form a boolean
algebra,

it is just a “set with operations”
in other words, it can be viewed as an automaton!

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 55 / 75

The categorical picture of automata duality

A Simpler Logic

Why did the minimization work with just the logic

φ ::== ω|(a)φ?

With this logic the definable subsets E(S) do not form a boolean
algebra,
it is just a “set with operations”

in other words, it can be viewed as an automaton!

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 55 / 75

The categorical picture of automata duality

A Simpler Logic

Why did the minimization work with just the logic

φ ::== ω|(a)φ?

With this logic the definable subsets E(S) do not form a boolean
algebra,
it is just a “set with operations”
in other words, it can be viewed as an automaton!

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 55 / 75

The categorical picture of automata duality

Why the simpler logic works

For deterministic automata we can flatten formulas like
(a)(ω1 ∧ (b)ω2) to (a)ω1 ∧ (a)(b)ω2.

Thus for deterministic automata the boolean algebra generated
by E(S) is just the same as D(S) so the minimization picture works
with boolean algebra generated by E(S).
For nondeterministic automata the story is different.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 56 / 75

The categorical picture of automata duality

Why the simpler logic works

For deterministic automata we can flatten formulas like
(a)(ω1 ∧ (b)ω2) to (a)ω1 ∧ (a)(b)ω2.
Thus for deterministic automata the boolean algebra generated
by E(S) is just the same as D(S) so the minimization picture works
with boolean algebra generated by E(S).

For nondeterministic automata the story is different.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 56 / 75

The categorical picture of automata duality

Why the simpler logic works

For deterministic automata we can flatten formulas like
(a)(ω1 ∧ (b)ω2) to (a)ω1 ∧ (a)(b)ω2.
Thus for deterministic automata the boolean algebra generated
by E(S) is just the same as D(S) so the minimization picture works
with boolean algebra generated by E(S).
For nondeterministic automata the story is different.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 56 / 75

Duality of reachability and observability

Minimality = fewest states?

The minimal machines defined above are really the “most
quotiented versions” of a system.

To really get the system with the fewest states one needs to deal
with reachability.
The following discussion is a rapid version of what Jan Rutten
discussed in his beautiful MFPS talk on Monday.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 57 / 75

Duality of reachability and observability

Minimality = fewest states?

The minimal machines defined above are really the “most
quotiented versions” of a system.
To really get the system with the fewest states one needs to deal
with reachability.

The following discussion is a rapid version of what Jan Rutten
discussed in his beautiful MFPS talk on Monday.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 57 / 75

Duality of reachability and observability

Minimality = fewest states?

The minimal machines defined above are really the “most
quotiented versions” of a system.
To really get the system with the fewest states one needs to deal
with reachability.
The following discussion is a rapid version of what Jan Rutten
discussed in his beautiful MFPS talk on Monday.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 57 / 75

Duality of reachability and observability

An automaton in diagrams

1
i

""

2

S

f
<<

δ��
SA

Here S is the state space, A is the set of actions, 1 is the
one-element set and 2 is a two-element set.
The map i defines an initial state and f defines a set of final
states. I will write i for the map and for the initial state itself.
the transition function δ : S× A→ S has been written as δ : S→ SA.
There is a natural extension δ∗ : S→ SA∗ .

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 58 / 75

Duality of reachability and observability

A very special (infinite) automaton

1

ε
��

A∗

α
��

(A∗)A

This automaton has all words as its state space.
The initial state is the empty word ε.
The transition function α acts by α(w) = λa : A.w · a.
We do not bother to define “final” states in this machine.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 59 / 75

Duality of reachability and observability

Reachability

1

ε
��

i

##
A∗

α
��

r // S

δ
��

(A∗)A rA
// SA

Given any function between sets f : V → W, we have a map
f A : VA → WA, given by f A(φ) = λa : A.f (φ(a)) = f ◦ φ.

There is a unique map r : A∗ → S such that r(ε) = i and
δ(r(w))(a) = r(w · a), which can easily be defined inductively.
The image of A∗ under r is exactly the reachable subset of S.
The entire state space is reachable exactly when r is a surjection.
Note, final states play no role.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 60 / 75

Duality of reachability and observability

Reachability

1

ε
��

i

##
A∗

α
��

r // S

δ
��

(A∗)A rA
// SA

Given any function between sets f : V → W, we have a map
f A : VA → WA, given by f A(φ) = λa : A.f (φ(a)) = f ◦ φ.
There is a unique map r : A∗ → S such that r(ε) = i and
δ(r(w))(a) = r(w · a), which can easily be defined inductively.

The image of A∗ under r is exactly the reachable subset of S.
The entire state space is reachable exactly when r is a surjection.
Note, final states play no role.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 60 / 75

Duality of reachability and observability

Reachability

1

ε
��

i

##
A∗

α
��

r // S

δ
��

(A∗)A rA
// SA

Given any function between sets f : V → W, we have a map
f A : VA → WA, given by f A(φ) = λa : A.f (φ(a)) = f ◦ φ.
There is a unique map r : A∗ → S such that r(ε) = i and
δ(r(w))(a) = r(w · a), which can easily be defined inductively.
The image of A∗ under r is exactly the reachable subset of S.

The entire state space is reachable exactly when r is a surjection.
Note, final states play no role.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 60 / 75

Duality of reachability and observability

Reachability

1

ε
��

i

##
A∗

α
��

r // S

δ
��

(A∗)A rA
// SA

Given any function between sets f : V → W, we have a map
f A : VA → WA, given by f A(φ) = λa : A.f (φ(a)) = f ◦ φ.
There is a unique map r : A∗ → S such that r(ε) = i and
δ(r(w))(a) = r(w · a), which can easily be defined inductively.
The image of A∗ under r is exactly the reachable subset of S.
The entire state space is reachable exactly when r is a surjection.

Note, final states play no role.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 60 / 75

Duality of reachability and observability

Reachability

1

ε
��

i

##
A∗

α
��

r // S

δ
��

(A∗)A rA
// SA

Given any function between sets f : V → W, we have a map
f A : VA → WA, given by f A(φ) = λa : A.f (φ(a)) = f ◦ φ.
There is a unique map r : A∗ → S such that r(ε) = i and
δ(r(w))(a) = r(w · a), which can easily be defined inductively.
The image of A∗ under r is exactly the reachable subset of S.
The entire state space is reachable exactly when r is a surjection.
Note, final states play no role.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 60 / 75

Duality of reachability and observability

Another very special infinite automaton

2

2A∗

ε?

OO

β
��

(2A∗)A

This automaton has all languages as its state space.

The final states contain the empty word ε.
The transition function β acts by β(L)(a) = {w ∈ A∗ | a · w ∈ L};
the (left) a-derivative of L.
We do not bother to define an “initial” state in this machine.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 61 / 75

Duality of reachability and observability

Another very special infinite automaton

2

2A∗

ε?

OO

β
��

(2A∗)A

This automaton has all languages as its state space.
The final states contain the empty word ε.

The transition function β acts by β(L)(a) = {w ∈ A∗ | a · w ∈ L};
the (left) a-derivative of L.
We do not bother to define an “initial” state in this machine.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 61 / 75

Duality of reachability and observability

Another very special infinite automaton

2

2A∗

ε?

OO

β
��

(2A∗)A

This automaton has all languages as its state space.
The final states contain the empty word ε.
The transition function β acts by β(L)(a) = {w ∈ A∗ | a · w ∈ L};
the (left) a-derivative of L.

We do not bother to define an “initial” state in this machine.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 61 / 75

Duality of reachability and observability

Another very special infinite automaton

2

2A∗

ε?

OO

β
��

(2A∗)A

This automaton has all languages as its state space.
The final states contain the empty word ε.
The transition function β acts by β(L)(a) = {w ∈ A∗ | a · w ∈ L};
the (left) a-derivative of L.
We do not bother to define an “initial” state in this machine.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 61 / 75

Duality of reachability and observability

Observability

2

S

f
;;

o //

δ
��

2A∗

β
��

ε?

OO

SA
oA
// (2A∗)A

Here o is the map that takes a state to the language recognized
starting from that state.

It is the unique map making the upper triangle and the lower
square commute.
Think of o as giving the observable behaviour of a state.
A machine is observable exactly when distinct states recognize
different languages, i.e. when o is an injection.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 62 / 75

Duality of reachability and observability

Observability

2

S

f
;;

o //

δ
��

2A∗

β
��

ε?

OO

SA
oA
// (2A∗)A

Here o is the map that takes a state to the language recognized
starting from that state.
It is the unique map making the upper triangle and the lower
square commute.

Think of o as giving the observable behaviour of a state.
A machine is observable exactly when distinct states recognize
different languages, i.e. when o is an injection.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 62 / 75

Duality of reachability and observability

Observability

2

S

f
;;

o //

δ
��

2A∗

β
��

ε?

OO

SA
oA
// (2A∗)A

Here o is the map that takes a state to the language recognized
starting from that state.
It is the unique map making the upper triangle and the lower
square commute.
Think of o as giving the observable behaviour of a state.

A machine is observable exactly when distinct states recognize
different languages, i.e. when o is an injection.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 62 / 75

Duality of reachability and observability

Observability

2

S

f
;;

o //

δ
��

2A∗

β
��

ε?

OO

SA
oA
// (2A∗)A

Here o is the map that takes a state to the language recognized
starting from that state.
It is the unique map making the upper triangle and the lower
square commute.
Think of o as giving the observable behaviour of a state.
A machine is observable exactly when distinct states recognize
different languages, i.e. when o is an injection.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 62 / 75

Duality of reachability and observability

The butterfly

1
ε
��

i

$$

2

A∗ r //

α
��

S

f
99

δ��

o // 2A∗

β��

ε?

OO

(A∗)A
rA
// SA

oA
// (2A∗)A

A deterministic automaton (S, δ, i, f) is minimal if it is both reachable
and observable.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 63 / 75

Duality of reachability and observability

The power-set functor

Given sets U,V and a function f : U → V we define

P(f) : P(V)→ P(U)

by
P(f)(P ⊆ V) = f−1(P).

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 64 / 75

Duality of reachability and observability

Reverse functorially

S

δ
��

SA

S× A

��
S

2S×A

2S

OO (2S)A

2S

2δ
OO

The power-set functor produces the reversed determinized
automaton.

Initial becomes final under powerset. The final state S→ 2
becomes the new initial state by observing that such a function is
the same thing as a subset.
It makes reachable into observable, but not vice versa.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 65 / 75

Duality of reachability and observability

Reverse functorially

S

δ
��

SA

S× A

��
S

2S×A

2S

OO (2S)A

2S

2δ
OO

The power-set functor produces the reversed determinized
automaton.
Initial becomes final under powerset. The final state S→ 2
becomes the new initial state by observing that such a function is
the same thing as a subset.

It makes reachable into observable, but not vice versa.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 65 / 75

Duality of reachability and observability

Reverse functorially

S

δ
��

SA

S× A

��
S

2S×A

2S

OO (2S)A

2S

2δ
OO

The power-set functor produces the reversed determinized
automaton.
Initial becomes final under powerset. The final state S→ 2
becomes the new initial state by observing that such a function is
the same thing as a subset.
It makes reachable into observable, but not vice versa.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 65 / 75

Duality of reachability and observability

Why Brzozowski’s algorithm works

Theorem
If (S, δ, i, f) is a reachable deterministic automaton accepting L, then
(2S, 2δ, f , 2i) is an observable deterministic automaton accepting rev(L).

If, we take its reachable part again and reverse it again we again get
an observable automaton this time recognizing L. If we take the
reachable part we get a minimal automaton recognizing L.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 66 / 75

Duality of reachability and observability

Abstract nonsense?

Channeling my inner Moshe:

“Surely, this is categorical mumbo-jumbo for something that can
be explained simply!”

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 67 / 75

Duality of reachability and observability

Abstract nonsense?

Channeling my inner Moshe:
“Surely, this is categorical mumbo-jumbo for something that can
be explained simply!”

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 67 / 75

Duality of reachability and observability

No, it is generalized abstract nonsense!

Exactly the same construction can be used in other settings by
just changing the duality at work.

Moore automata work by changing the functor slightly.
Kleene algebra with tests.
Weighted automata (i.e. automata over vector spaces) can be
minimized by using the same idea with the self duality of vector
spaces.
Belief automata can be minimized using Gelfand duality.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 68 / 75

Duality of reachability and observability

No, it is generalized abstract nonsense!

Exactly the same construction can be used in other settings by
just changing the duality at work.
Moore automata work by changing the functor slightly.

Kleene algebra with tests.
Weighted automata (i.e. automata over vector spaces) can be
minimized by using the same idea with the self duality of vector
spaces.
Belief automata can be minimized using Gelfand duality.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 68 / 75

Duality of reachability and observability

No, it is generalized abstract nonsense!

Exactly the same construction can be used in other settings by
just changing the duality at work.
Moore automata work by changing the functor slightly.
Kleene algebra with tests.

Weighted automata (i.e. automata over vector spaces) can be
minimized by using the same idea with the self duality of vector
spaces.
Belief automata can be minimized using Gelfand duality.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 68 / 75

Duality of reachability and observability

No, it is generalized abstract nonsense!

Exactly the same construction can be used in other settings by
just changing the duality at work.
Moore automata work by changing the functor slightly.
Kleene algebra with tests.
Weighted automata (i.e. automata over vector spaces) can be
minimized by using the same idea with the self duality of vector
spaces.

Belief automata can be minimized using Gelfand duality.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 68 / 75

Duality of reachability and observability

No, it is generalized abstract nonsense!

Exactly the same construction can be used in other settings by
just changing the duality at work.
Moore automata work by changing the functor slightly.
Kleene algebra with tests.
Weighted automata (i.e. automata over vector spaces) can be
minimized by using the same idea with the self duality of vector
spaces.
Belief automata can be minimized using Gelfand duality.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 68 / 75

Gelfand duality

What is Gelfand duality?

Problem in undergrad algebra courses: Given the ring of
continuous real-valued functions defined on a compact Hausdorff
space X, call this C(X), show that for every maximal ideal M there
is an x ∈ X such that

M = {f ∈ C(X) | f (x) = 0}.

In short, the points of the space can be reconstructed from the
algebraic structure of the ring.
In fact, one can even get the topology.
C(X) is more than a ring it is a commutative, unital C∗-algebra.
Incidentally, this works just as well with complex-valued functions.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 69 / 75

Gelfand duality

What is Gelfand duality?

Problem in undergrad algebra courses: Given the ring of
continuous real-valued functions defined on a compact Hausdorff
space X, call this C(X), show that for every maximal ideal M there
is an x ∈ X such that

M = {f ∈ C(X) | f (x) = 0}.

In short, the points of the space can be reconstructed from the
algebraic structure of the ring.

In fact, one can even get the topology.
C(X) is more than a ring it is a commutative, unital C∗-algebra.
Incidentally, this works just as well with complex-valued functions.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 69 / 75

Gelfand duality

What is Gelfand duality?

Problem in undergrad algebra courses: Given the ring of
continuous real-valued functions defined on a compact Hausdorff
space X, call this C(X), show that for every maximal ideal M there
is an x ∈ X such that

M = {f ∈ C(X) | f (x) = 0}.

In short, the points of the space can be reconstructed from the
algebraic structure of the ring.
In fact, one can even get the topology.

C(X) is more than a ring it is a commutative, unital C∗-algebra.
Incidentally, this works just as well with complex-valued functions.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 69 / 75

Gelfand duality

What is Gelfand duality?

Problem in undergrad algebra courses: Given the ring of
continuous real-valued functions defined on a compact Hausdorff
space X, call this C(X), show that for every maximal ideal M there
is an x ∈ X such that

M = {f ∈ C(X) | f (x) = 0}.

In short, the points of the space can be reconstructed from the
algebraic structure of the ring.
In fact, one can even get the topology.
C(X) is more than a ring it is a commutative, unital C∗-algebra.

Incidentally, this works just as well with complex-valued functions.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 69 / 75

Gelfand duality

What is Gelfand duality?

Problem in undergrad algebra courses: Given the ring of
continuous real-valued functions defined on a compact Hausdorff
space X, call this C(X), show that for every maximal ideal M there
is an x ∈ X such that

M = {f ∈ C(X) | f (x) = 0}.

In short, the points of the space can be reconstructed from the
algebraic structure of the ring.
In fact, one can even get the topology.
C(X) is more than a ring it is a commutative, unital C∗-algebra.
Incidentally, this works just as well with complex-valued functions.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 69 / 75

Gelfand duality

C∗-algebras

A (complex) C∗-algebra is a (complex) vector space with
an associative multiplication (satisfying obvious laws)
and a norm ‖·‖ with respect to which it is complete (hence a
Banach space).
The norm satisfies: ‖a · b‖ ≤ ‖a‖ · ‖b‖.
There is also an involution ∗ satisfying (ab)∗ = b∗a∗ and
(αa)∗ = αa∗.
The crucial property is:
‖a∗a‖ = ‖a‖2.
Morphisms are homomorphisms preserving the ∗.
We say that A is unital if there is a unit element for the
multiplication.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 70 / 75

Gelfand duality

Gelfand duality

The category of commutative unital C∗-algebras is dually equivalent to
the category of compact Hausdorff spaces.

It does not matter if the C∗ algebras are complex (Gelfand) or real
(Stone); though the proofs are very different.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 71 / 75

Gelfand duality

Belief automata

A probabilistic automaton with observations is

F = (S,A,O, δ : S×A× S→ [0, 1], γ : S×O → [0, 1]).

Given such an automaton one often works with an automaton
whose state space is the set of distributions over S: the so-called
belief automaton.
It is a deterministic automaton with probabilistic observations.
If S is finite then the space is distributions is compact Hausdorff.
So we are dealing with automata over compact Hausdorff spaces.
Minimization via Stone duality −→ minimization via Gelfand
duality.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 72 / 75

Gelfand duality

Belief automata

A probabilistic automaton with observations is

F = (S,A,O, δ : S×A× S→ [0, 1], γ : S×O → [0, 1]).

Given such an automaton one often works with an automaton
whose state space is the set of distributions over S: the so-called
belief automaton.

It is a deterministic automaton with probabilistic observations.
If S is finite then the space is distributions is compact Hausdorff.
So we are dealing with automata over compact Hausdorff spaces.
Minimization via Stone duality −→ minimization via Gelfand
duality.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 72 / 75

Gelfand duality

Belief automata

A probabilistic automaton with observations is

F = (S,A,O, δ : S×A× S→ [0, 1], γ : S×O → [0, 1]).

Given such an automaton one often works with an automaton
whose state space is the set of distributions over S: the so-called
belief automaton.
It is a deterministic automaton with probabilistic observations.

If S is finite then the space is distributions is compact Hausdorff.
So we are dealing with automata over compact Hausdorff spaces.
Minimization via Stone duality −→ minimization via Gelfand
duality.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 72 / 75

Gelfand duality

Belief automata

A probabilistic automaton with observations is

F = (S,A,O, δ : S×A× S→ [0, 1], γ : S×O → [0, 1]).

Given such an automaton one often works with an automaton
whose state space is the set of distributions over S: the so-called
belief automaton.
It is a deterministic automaton with probabilistic observations.
If S is finite then the space is distributions is compact Hausdorff.

So we are dealing with automata over compact Hausdorff spaces.
Minimization via Stone duality −→ minimization via Gelfand
duality.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 72 / 75

Gelfand duality

Belief automata

A probabilistic automaton with observations is

F = (S,A,O, δ : S×A× S→ [0, 1], γ : S×O → [0, 1]).

Given such an automaton one often works with an automaton
whose state space is the set of distributions over S: the so-called
belief automaton.
It is a deterministic automaton with probabilistic observations.
If S is finite then the space is distributions is compact Hausdorff.
So we are dealing with automata over compact Hausdorff spaces.

Minimization via Stone duality −→ minimization via Gelfand
duality.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 72 / 75

Gelfand duality

Belief automata

A probabilistic automaton with observations is

F = (S,A,O, δ : S×A× S→ [0, 1], γ : S×O → [0, 1]).

Given such an automaton one often works with an automaton
whose state space is the set of distributions over S: the so-called
belief automaton.
It is a deterministic automaton with probabilistic observations.
If S is finite then the space is distributions is compact Hausdorff.
So we are dealing with automata over compact Hausdorff spaces.
Minimization via Stone duality −→ minimization via Gelfand
duality.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 72 / 75

Conclusions

Conclusions

Duality tells one how to move between logics and transition
systems.

Completeness theorems, which typically work by constructing
transition systems from consistent sets of formulas embody a key
aspect of duality results but,
the arrow part of the duality is crucial for proving our minimization
results.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 73 / 75

Conclusions

Conclusions

Duality tells one how to move between logics and transition
systems.
Completeness theorems, which typically work by constructing
transition systems from consistent sets of formulas embody a key
aspect of duality results but,

the arrow part of the duality is crucial for proving our minimization
results.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 73 / 75

Conclusions

Conclusions

Duality tells one how to move between logics and transition
systems.
Completeness theorems, which typically work by constructing
transition systems from consistent sets of formulas embody a key
aspect of duality results but,
the arrow part of the duality is crucial for proving our minimization
results.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 73 / 75

Conclusions

Ongoing and Future Work

Unify the BKP picture with the BBHPRS picture: BBBHKKPRS
unified picture in progress.

Metric analogue of Stone duality: Mardare and Kozen.
Pressing research topic of great interest in quantum information
theory: what is the duality theory for non-commutative
C∗-algebras?: Tobias Fritz.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 74 / 75

Conclusions

Ongoing and Future Work

Unify the BKP picture with the BBHPRS picture: BBBHKKPRS
unified picture in progress.
Metric analogue of Stone duality: Mardare and Kozen.

Pressing research topic of great interest in quantum information
theory: what is the duality theory for non-commutative
C∗-algebras?: Tobias Fritz.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 74 / 75

Conclusions

Ongoing and Future Work

Unify the BKP picture with the BBHPRS picture: BBBHKKPRS
unified picture in progress.
Metric analogue of Stone duality: Mardare and Kozen.
Pressing research topic of great interest in quantum information
theory: what is the duality theory for non-commutative
C∗-algebras?: Tobias Fritz.

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 74 / 75

Conclusions

Thank you!

Panangaden (McGill University) Duality in Logic and Computation New Orleans, June 2013 75 / 75

	Introduction
	The need for Category Theory
	Vector space self-duality
	Classical Stone duality
	Duality in semantics
	Brzozowski's strange algorithm
	Thinking logically
	The categorical picture of automata duality
	Duality of reachability and observability
	Gelfand duality
	Conclusions

