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Intuitions

Domain theory formalizes notions of partial information and
computability as processing of finite pieces of information.

Standard domain theory tells us that Scott-continuous
functions on dcpos have least fixed points.

Some non-Scott-continuous functions, however, seem to
have fixed points anyway: zero-finding. Why?

A quantitative measure of the partiality is continuous.
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History

Invented by Keye Martin in his PhD thesis (2000).

Similar structure found in domains of classical and
quantum states (Coecke and Martin, 2001-2002).

Domains of communication channels were found to have
marvelous algebraic, geometric and informatic structure
which made impact on information theory (Martin, Allwein,
Moskowitz, Chatzikokolakis, 2005-2008)

Spacetime has domain theoretic structure which ties
causality and topology together (Martin and Panangaden,
2004-2006)

There are measurements that incorporate the geometry of
spacetime. (Martin and Panangaden 2007-??).
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Root finding 1

Given f : R −→ R continuous, define splitf : C(f ) −→ C(f )
by

splitf [a, b] =

{

left[a, b] if left[a, b] ∈ C(f )
right[a, b] otherwise.

C(f ) is the set of intervals where f changes sign and “left” and
“right” have the evident meanings. The fixed point of splitf is the
root of f .
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Root finding 2

Unfortunately, splitf is not Scott continuous

but, the length of the intervals decreases continuously.

The length of an interval measures how “partial” it is.
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Measuring the content of an x ∈ D

A Scott continuous map µ : D −→ E between posets D, E is
said to measure the content of x ∈ D if

x ∈ U ⇒ (∃ǫ ∈ σE )x ∈ µǫ ⊆ U,

whenever U ∈ σD is Scott open and

µǫ(x) := µ
−1(ǫ)∩ ↓ x

are the elements ǫ-close to x .
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An important special case

Take E to be [0,∞)∗. Then the definition of µ measuring x in D
is: for all Scott open sets U ⊆ D,

x ∈ U ⇒ (∃ǫ > 0)x ∈ µǫ(x) ⊆ U

where

µǫ(x) := {y ∈ D : y ⊑ x and |µx − µy | < ǫ}

are the ǫ-approximations of x .
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Measurement

A measurement µ : D −→ [0,∞)∗ is a Scott continuous map that
measures all the xs in ker(µ) := {x ∈ D : µx = 0}.
The fact that it is not required to measure all of D means that
measurements are more widely applicable than they would be
otherwise.
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Who cares?

Suppose that we have an approximating sequence (xn) for
x ∈ D and we want to know when we are “close enough”
according to some a≪x . The measurement tells us when we
are close enough.

(∃ǫ > 0)(∀n)(xn ⊑ x and |µx − µxn| < ǫ) ⇒ a≪xn.

Since ↑↑a forms a basis for the Scott topology one can work with
any Scott open.
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Measuring the whole domain

When does a measurement measure the whole domain?

There are several examples (information theory, entropy of
classical states) where one can show that one has a
measurement that measures the maximal elements

and that it is strictly monotone.

Showing that it measures the whole domain seemed hard
to prove.

Physical intuition suggests that in several examples we do
have a measurement that measures the whole domain.

Martin, Panangaden A Technique for Verifying Measurements



Introduction
Measurements on domains

Verifying measurements
Geometry of spacetime

Conclusions

Measuring the whole domain

When does a measurement measure the whole domain?

There are several examples (information theory, entropy of
classical states) where one can show that one has a
measurement that measures the maximal elements

and that it is strictly monotone.

Showing that it measures the whole domain seemed hard
to prove.

Physical intuition suggests that in several examples we do
have a measurement that measures the whole domain.

Martin, Panangaden A Technique for Verifying Measurements



Introduction
Measurements on domains

Verifying measurements
Geometry of spacetime

Conclusions

Measuring the whole domain

When does a measurement measure the whole domain?

There are several examples (information theory, entropy of
classical states) where one can show that one has a
measurement that measures the maximal elements

and that it is strictly monotone.

Showing that it measures the whole domain seemed hard
to prove.

Physical intuition suggests that in several examples we do
have a measurement that measures the whole domain.

Martin, Panangaden A Technique for Verifying Measurements



Introduction
Measurements on domains

Verifying measurements
Geometry of spacetime

Conclusions

Measuring the whole domain

When does a measurement measure the whole domain?

There are several examples (information theory, entropy of
classical states) where one can show that one has a
measurement that measures the maximal elements

and that it is strictly monotone.

Showing that it measures the whole domain seemed hard
to prove.

Physical intuition suggests that in several examples we do
have a measurement that measures the whole domain.

Martin, Panangaden A Technique for Verifying Measurements



Introduction
Measurements on domains

Verifying measurements
Geometry of spacetime

Conclusions

Measuring the whole domain

When does a measurement measure the whole domain?

There are several examples (information theory, entropy of
classical states) where one can show that one has a
measurement that measures the maximal elements

and that it is strictly monotone.

Showing that it measures the whole domain seemed hard
to prove.

Physical intuition suggests that in several examples we do
have a measurement that measures the whole domain.

Martin, Panangaden A Technique for Verifying Measurements



Introduction
Measurements on domains

Verifying measurements
Geometry of spacetime

Conclusions

Trivial Lemma

For a sequence (xn) in a compact Hausdorff space X , the
following are equivalent:
(i) The sequence (xi) converges to x .
(ii) For any convergent subsequence (xnk ) of (xn), we have that
(xnk ) −→ x .
Amazingly, this is a key step of the next proposition.
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Theorem: Let µ : D −→ [0,∞)∗ be a strictly monotone,
Scott-continuous function defined on a poset D. If τ is a
Hausdorff topology such that

1 τ contains the Scott topology,

2 every sequence (xn) in ↓ x with µxn −→ µx is contained in
some compact K ⊆↓ x ,

3 the function µ is continuous from (D, τ) to [0,∞) with the
Euclidean topology,

then µ measures all of D.
Corollary: one can drop (ii) if τ is compact since then ↓ x is
τ -compact.
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Global hyperbolicity

We showed that a certain class of posets – globally
hyperbolic – can be given the structure of interval domains.

These posets arise naturally in the study of causal
structure of spacetimes. In a GH spacetime the intervals
J+(a) ∩ J−(b) are compact. They are “approximations” to
points in spacetime.

Using a variation of ideal completion we can reconstruct
spacetime and its topology from a countable dense subset
and the causal order.

Can we reconstruct the geometry?
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Measuring spacetime intervals

We want a “size” for spacetime intervals.

We can try to use the volume or the length of the shortest
timelike geodesic as a measurement, but this does not
work!

There are non-maximal intervals that have zero value for
any Lorentz invariant quantity: the null intervals.

We are forced to use “global time,” a completely non
Lorentz-invariant quantity.

To show that one really gets a measurement we need the
theorem.

In fact the theorem was discovered while trying to prove
this fact.
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Can it be used in other places?

Yes! In the paper we show that capacity measures the whole
domain of binary channels and entropy measures the whole
domain of classical states. In both cases the main theorem is
the main tool.
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Can we always use it?

Yes!! (In principle).

Theorem If µ measures a poset D, then µ is strictly
monotone and there is a Hausdorff topology τ satisfying
the conditions (i)-(iii) of the previous theorem.

Take, for τ , the topology with the following basis:

B := {U ∩ V : UScottopen, VScottclosed}

This topology – the µ topology – is zero dimensional,
Hausdorff and contains the Scott topology.
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