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What are Labelled Markov Processes?

Labelled Markov processes are probabilistic versions
of labelled transition systems. Labelled transition
systems where the final state is..

Wait!! What are Labelled Transition Systems?
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Labelled Transition Systems

Systems that can be in a state and have transitions
between states; these transitions are triggered by
actions. The transitions are annotated by labels that
name the action. [Invented by R. Keller 1976]

The transitions can be nondeterministic.

Intended to model communication and concurrency;
the notion of observation is very different from what
one uses in automata theory.

We do not see the states, we see the actions and we
observe when actions are rejected by the system.
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What are Labelled Markov Processes? II

Labelled Markov processes are probabilistic versions
of labelled transition systems. Labelled transition
systems where the final state is governed by a
probability distribution - no other indeterminacy.

All probabilistic data is internal - no probabilities
associated with environment behaviour.

We observe the interactions - not the internal states.

In general, the state space of a labelled Markov
process may be a continuum.
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Motivation

Model and reason about systems with continuous state
spaces or continuous time evolution or both.

probabilistic process algebra with recursion,

hybrid control systems; e.g. flight management
systems.

telecommunication systems with spatial variation;
e.g. cell phones

performance modelling,

population growth models, stock market

continuous time systems
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An Example
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a - turn left

b - turn right

c - straight
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Actions

a - turn left, b - turn right, c - keep on course

The actions move the craft sideways with some probability

distributions on how far it moves. The craft may “drift”

even with c. The action a (b) must be disabled when the

craft is too near the left (right) boundary.
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Schematic of Example

WVUTPQRSL

a,c
!! a,c

--WVUTPQRSM

a,b,c
==b,c

mm

a,c
--WVUTPQRSR

b,c
}}

b,c

mm

This picture is misleading: unless very special
conditions hold the process cannot be compressed
into an equivalent (?) finite-state model. In general,
the transition probabilities should depend on the
position.
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Some remarks on the use of this model

This is a toy model but exemplifies the issues.

Can be used for reasoning - much better if we could
have a finite-state version.

Why not discretize right away and never worry about
the continuous case? Because we lose the ability to
refine the model later.

A better model would be to base it on rewards and
think about finiding optimal policies as in AI literature.
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Probabilistic Transition Systems

A transition system with probabilities and actions
(labels) associated with the transitions.

(S, L,∀a ∈ L Ta : S × S −→ [0, 1])

The model is reactive: All probabilistic data is internal
- no probabilities associated with environment
behaviour.
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Examples of PTSs
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When can states be combined?

If two states behave in exactly the same way they
can be combined.

In queueing theory there was a notion of lumpability
of Markov chains (with no labels).

In process algebra (with no probabilities) Park and
Milner formulated a notion called bisimulation which
captures a very fine notion of process equivalence.
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Bisimulation for PTS: Larsen and Skou

Consider
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Should s0 and t0 be bisimilar?

Yes, but we need to add the probabilities.
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The Official Definition*

Let S = (S, L, Ta) be a PTS. An equivalence relation
R on S is a bisimulation if whenever sRs′, with
s, s′ ∈ S, we have that for all a ∈ A and every
R-equivalence class, A, Ta(s,A) = Ta(s

′, A).

The notation Ta(s,A) means “the probability of
starting from s and jumping to a state in the set A.”

Two states are bisimilar if there is some bisimulation
relation R relating them.
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The Need for Measure Theory*

Basic fact: There are subsets of R for which no
sensible notion of size can be defined.

More precisely, there is no translation-invariant
measure defined on all the subsets of the reals.
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Markov Chains

A discrete-time Markov chain is a finite set S (the
state space) together with a transition probability
function T : S × S −→ [0, 1].

A Markov chain is just a probabilistic automaton; if
we add labels we get a PTS.

The key property is that the transition probability from
s to s′ only depends on s and s′ and not on the past
history of how it got there. This is what allows the
probabilistic data to be given as a single matrix T .
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Stochastic Kernels*

A stochastic kernel (Markov kernel) is a function
h : S × Σ −→ [0, 1] with (a) h(s, ·) : Σ −→ [0, 1] a
(sub)probability measure and (b) h(·, A) : X −→ [0, 1] a
measurable function.

Though apparantly asymmetric, these are the
stochastic analogues of binary relations

and the uncountable generalization of a matrix.
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Formal Definition of LMPs*

An LMP is a tuple (S,Σ, L,∀α ∈ L.τα) where τα : S × Σ
−→ [0, 1] is a transition probability function such that

∀s : S.λA : Σ.τα(s,A) is a subprobability measure
and
∀A : Σ.λs : S.τα(s,A) is a measurable function.
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Larsen-Skou Bisimulation*

Let S = (S, i,Σ, τ) be a labelled Markov process. An
equivalence relation R on S is a bisimulation if
whenever sRs′, with s, s′ ∈ S, we have that for all
a ∈ A and every R-closed measurable set A ∈ Σ,
τa(s,A) = τa(s

′, A).
Two states are bisimilar if they are related by a
bisimulation relation.

Can be extended to bisimulation between two
different LMPs.

Essentially the same as the version that we had
before with zigzag morphisms but much closer in
spirit to the Larsen-Skou version.
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Logical Characterization

L ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s,A) > q).

Two systems are bisimilar iff they obey the same
formulas of L. [DEP 1998 LICS, I and C 2002]
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That Cannot be Right?
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Two processes that cannot be distinguished without
negation.

The formula that distinguishes them is 〈a〉(¬〈b〉>).
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But it is!
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We add probabilities to the transitions.

If p + q < r or p + q > r we can easily distinguish
them.

If p + q = r and p > 0 then q < r so 〈a〉r〈b〉1>
distinguishes them.
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Proof Idea*

Show that the relation “s and s′ satisfy exactly the
same formulas” is a bisimulation.

Can easily show that τa(s,A) = τa(s
′, A) for A of the

form [[φ]].

Use Dynkin’s lemma to show that we get a well
defined measure on the σ-algebra generated by such
sets and the above equality holds.

Use special properties of analytic spaces to show
that this σ-algebra is the same as the original
σ-algebra.
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Simulation*

Let S = (S,Σ, τ) be a labelled Markov process. A
preorder R on S is a simulation if whenever sRs′, we
have that for all a ∈ A and every R-closed measurable
set A ∈ Σ, τa(s,A) ≤ τa(s

′, A). We say s is simulated by s′

if sRs′ for some simulation relation R.
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Logic for Simulation?

The logic used in the characterization has no
negation, not even a limited negative construct.

One can show that if s simulates s′ then s satisfies all
the formulas of L that s′ satisfies.

What about the converse?
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Counter Example!

In the following picture, t satisfies all formulas of L that s

satisfies but t does not simulate s.
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All transitions from s and t are labelled by a.
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Counter Example (contd.)

A formula of L that is satisfied by t but not by s.

〈a〉0(〈a〉0T ∧ 〈b〉0T).

A formula with disjunction that is satisfied by s but not
by t:

〈a〉 3

4

(〈a〉0T ∨ 〈b〉0T).
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A Logical Characterization for Simulation

The logic L does not characterize simulation. One
needs disjunction.

L∨ := L | φ1 ∨ φ2.

With this logic we have:
An LMP s1 simulates s2 if and only if for every
formula φ of L∨ we have

s1 |= φ ⇒ s2 |= φ.

The only proof we know uses domain theory.
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Are exact equivalences reasonable??

Exact reasoning is unstable under (small)
perturbations of probability numbers.

Probability numbers are to be viewed as coming with
some error estimate: reasoning principles based on
the exact value of numbers are of dubious value.

Probability arises in the modelling of physical
systems as an abstraction to specify incomplete
knowledge.

Approximation of probability distributions is often
used; e.g. in Monte Carlo schemes.
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A metric-based approximate viewpoint

Move from equality between processes to distances
between processes (Jou and Smolka).

Formalize distance as a metric:

d(s, s) = 0, d(s, t) = d(t, s), d(s, u) ≤ d(s, t) + d(t, u)

Quantitative measurement of the distinction between
processes.
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Criteria on metrics

Soundness:

d(s, t) = 0 ⇔ s, t are bisimilar

Stability of distance under temporal
evolution:“Nearby states stay close forever.”
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Results for Metrics

Results work for Markov chains, Labelled Markov
processes, Markov decision processes and Labelled
Concurrent Markov chains with τ -transitions.

Establishing closeness of states: Coinduction.

Distinguishing states: Real-valued modal logics.

Equational and logical views coincide: Metrics yield
same distances as real-valued modal logics.

Compositional reasoning by Non-Expansivity.
Process-combinators take closeby processes to
closeby processes.
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Approximation Results

Our main result is a systematic approximation
scheme for labeled Markov processes. The set of
LMPs is a Polish space. Furthermore, our
approximation results allow us to approximate
integrals of continuous functions by computing them
on finite approximants.

For any LMP, we explicitly provide a (countable)
sequence of approximants to it such that:
- For every logical property satisfied by a process,
there is an element of the chain that also satisfies the
property.
- The sequence of approximants converges – in a
certain metric – to the process that is being
approximated.
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Domain-theoretic Results*

we establish the following equivalence of categories:

LMP ' Proc

where LMP is the category with objects LMPs and
with morphisms simulations; and Proc is the solution
to the recursive domain equation

Proc '
∏

Labels

PJP(Proc).

We show that there is a perfect match between:
- bisimulation and equality in Proc,
- simulation and the partial order of Proc,
- strict simulation and way below in Proc.
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Consequences of the Domain results*

The sequence of approximants is a directed set in
the simulation ordering and the process being
approximated is the sup of this directed set.

The equivalence endows LMP with least upper
bounds of ω-chains (wrt the simulation ordering).
This shows that LMP can be used as the target of
interpretation of a syntax that includes recursion.

The internal logic of Proc is a logic complete for
reasoning about simulation of LMPs.
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Approximation Improved

We would like to “orient” the approximation process
so that they are tailored to some formulas of interest.

We do not get the original process in the limit, but a
bisimulation equivalent of it. Sometimes this is
“spectacularly” not what we want.

We can fix both the problems above but then we end
up with the situation that the approximants are not
LMPs. [DD, LICS03]

We can fix this too with a new approach to
approximation based on conditional expectations.
[DDP, CONCUR03]
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Conclusions

We have a rich theory of LMPs with lots of possible
directions for mathematical investigations.

We have also done weak bisimulation (probability
mixed with nondeterminism), a metric for weak
bisimulation and proved a logical characterization for
weak bisimulation in terms of pCTL*.

In early work on continuous time systems; we gave a
logical characterization result for CTMCs [JALP
2003]. Later we showed how to define metrics for a
very general class of systems (Generalized
Semi-Markov Processes [QEST 2004].

In more recent work we have shown how to
implement the approximation scheme using some
Monte Carlo techniques [QEST 2005].
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