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Markov decision processes

(S,A,∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

where
S : the state space, we will take it to be a finite set.
A : the actions, a finite set
Pa : the transition function; D(S) denotes distributions over S
R : the reward, could readily make it stochastic.
Will write Pa(s,C) for Pa(s)(C).
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Policies

MDP

(S,A,∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

Policy

π : S −→ D(A)

The goal is choose the best policy: numerous algorithms to find or
approximate the optimal policy.

Panangaden Bisimulation and Logic Lecture 2 3 / 30



Policies

MDP

(S,A,∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

Policy

π : S −→ D(A)

The goal is choose the best policy: numerous algorithms to find or
approximate the optimal policy.

Panangaden Bisimulation and Logic Lecture 2 3 / 30



Policies

MDP

(S,A,∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

Policy

π : S −→ D(A)

The goal is choose the best policy: numerous algorithms to find or
approximate the optimal policy.

Panangaden Bisimulation and Logic Lecture 2 3 / 30



Policies

MDP

(S,A,∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

Policy

π : S −→ D(A)

The goal is choose the best policy: numerous algorithms to find or
approximate the optimal policy.

Panangaden Bisimulation and Logic Lecture 2 3 / 30



Value functions

What is the value of a state?

Immediate gratification: reward, for given a, s it is R(a, s).
But what of the future?
Take immediate reward plus discounted future reward.
Only makes sense if we have a policy π.
Vπ(s) =

∑
a π(s)(a)[R(a, s) + γ

∑
s′∈S Pa(s, s′)Vπ(s′)]

Notice this is a fixed-point equation, solution exists by Banach’s
fixed point theorem.
One can define an optimal value function.
V∗(s) = maxa[R(a, s) + γ

∑
s′∈S Pa(s, s′)V∗(s′)]

These are the celebrated Bellman equations.
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Bisimulation

Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a)
and all equivalence classes C of R:

(i) R(a, s) = R(a, t)
(ii) Pa(s,C) = Pa(t,C)

s, t are bisimilar if there is a bisimulation relation R with sRt them.
Basic pattern: immediate rewards match (initiation), stay related
after the transition (coinduction).
Bisimulation can be defined as the greatest fixed point of a
relation transformer.
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The bisimulation metric

Let M be the space of 1-bounded pseudometrics over S, ordered
by d1 ≤ d2 if ∀x, y; d2(x, y) ≤ d1(x, y).

This is a complete lattice.
We define TK : M −→ M by
TK(d)(x, y) = maxa[|R(x, a)−R(y, a)|+ γWd(Pa(x),Pa(y))]

This is a monotone function on M.
We can find the bisimulation as the fixed point of TK by iteration:
d∼.
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Ferns et al.’s theorem

Ferns et al. - 2004,2005
|V∗(x)− V∗(y)| ≤ d∼(x, y).

So bisimulation metrics have an important connection with value
functions in MDPs.
Ferns and Precup showed that bisimulation metrics are value
functions for a suitably defined MDP.
Pablo Castro has adapted bisimulation metrics to deal with
specific policies.

Panangaden Bisimulation and Logic Lecture 2 7 / 30



Ferns et al.’s theorem

Ferns et al. - 2004,2005
|V∗(x)− V∗(y)| ≤ d∼(x, y).

So bisimulation metrics have an important connection with value
functions in MDPs.

Ferns and Precup showed that bisimulation metrics are value
functions for a suitably defined MDP.
Pablo Castro has adapted bisimulation metrics to deal with
specific policies.

Panangaden Bisimulation and Logic Lecture 2 7 / 30



Ferns et al.’s theorem

Ferns et al. - 2004,2005
|V∗(x)− V∗(y)| ≤ d∼(x, y).

So bisimulation metrics have an important connection with value
functions in MDPs.
Ferns and Precup showed that bisimulation metrics are value
functions for a suitably defined MDP.

Pablo Castro has adapted bisimulation metrics to deal with
specific policies.

Panangaden Bisimulation and Logic Lecture 2 7 / 30



Ferns et al.’s theorem

Ferns et al. - 2004,2005
|V∗(x)− V∗(y)| ≤ d∼(x, y).

So bisimulation metrics have an important connection with value
functions in MDPs.
Ferns and Precup showed that bisimulation metrics are value
functions for a suitably defined MDP.
Pablo Castro has adapted bisimulation metrics to deal with
specific policies.

Panangaden Bisimulation and Logic Lecture 2 7 / 30



Basic goals in RL

We are often dealing with large or infinite transition systems
whose behaviour is probabilistic.

The system responds to stimuli (actions) and moves to a new
state probabilistically and outputs a (possibly) random reward.
We seek optimal policies for extracting the largest possible reward
in expectation.
Vπ(s) = Ea∼π(s)[Ra

s + γEx∼Pa
s
[Vπ(x)]]

This optimisation problem above appears to have multiple
objectives (one for each coordinate of V) there is a policy that
simultaneously maximises all coordinates.
This policy can be taken to be deterministic!
In reinforcement learning, we are often interested in finding, or
approximating, from direct interaction with the MDP in question via
sample trajectories, without knowledge of the explicit form of the
transition probabilities.
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Algorithms

Algorithms to learn from samples are called stochastic
approximation algorithms.

The basic algorithm to learn the value function is called value
iteration. From this we can greedily extract an optimal policy.
An algorithm that directly works by improving the policies is called
policy iteration.
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Representation learning

For large state spaces, learning value functions S ×A −→ R is not
feasible.

Instead we define a new space of features M and try to come up
with an embedding ϕ : S −→ RM.
Then we can try to use this to predict values associated with
state,action pairs.
Representation learning means learning such a ϕ.
The elements of M are the “features” that are chosen. They can
be based on any kind of knowledge or experience about the task
at hand.
Can we learn representations of the state space that accelerate
the learning process?
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How to learn representations

Force the agent to make additional predictions: auxiliary tasks.

Typically, one uses extra network parameters: implicit
representation shaping.
More likely to learn useful features if it has to solve several related
tasks.
What is a good auxiliary task if the ultimate goal is to learn value
functions?
The bisimulation metric!
This was done by several groups (Gelada et al. 2019, Zhang et al.
2021, Agarwal et al. 2021).
All required some additional assumptions on the MDP.
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Problems with bsimulation metrics 1: computational
complexity

We defined TK in Lecture 2. We can iterate this to compute the
bisimulation metric.

Contraction rate is γ, so to approximate it with error bounded by ε
we need O(log ε/ log γ) iterations.
Each iteration requires the computation of O(|S|2|A|) instances of
W-metric.
Each instance costs O(|S|3).
Total cost is O(|S|5|A| log(ε)/ log(γ).
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Problems 2: Bias in sampling

Computing TK requires access to Pa
s for each (s, a)-pair. We do not

have access to these things in many learning problems.

An unbiased sampling approach is one such that the mean gives
the correct value.
Sampling methods proposed for estimating the bisimulation metric
are biased.
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Problems 3: Lack of connection to non-optimal policies

The result of Ferns et al. gives a tight connection between the
bisimulation metric and the optimal value function.

But it does not give any connection to non-optimal policies.
May not be that useful for algorithms like policy iteration.
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A crude approximation to bisimulation

Castro et al. invented a version that is easy to estimate from
samples.

In spirit it is closely related to the bisimulation metric but it is a
crude approximation
and is not even technically a metric!
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The MICo distance

MICo: matching under independent couplings.

Do not try to find the optimal coupling use a simple known
coupling, the independent coupling.
We define a new update TM : RS×S −→ RS×S instead of TK .
We define rπ(x) := Ea∼π(s)[R(x, a)] and
Pπ(x) =

∑
a π(x)(a)P

a(x)
(Tπ

MU)(x, y) = |rπ(x)− rπ(y)|+ γEx′∼Pπ(x),y′∼ Pπ(y)[U(x′, y′)].
If we use the L∞ norm, TM is a contraction so we have a fixed
point by Banach’s fixed point theorem.
Call the fixed point Uπ.
For any policy π, we have |Vπ(x)− Vπ(y)| ≤ Uπ(x, y).
Of course this will not give us a metric!
But who knows, maybe it tells us something good.
Complexity is O(|S|4) still not good, but Google has fancy
hardware!
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What good is MICo?

Computational complexity down to O(|S|4), a bit better. Also no
factor of |A| since we are sticking to a particular policy.

We can use online updates rather than iterating the actual TM

operator.
If stepsizes (εt(x, y)) decrease according to some specific
conditions (Robbins-Munro) then we get convergence for the
following sequence of updates

Ut+1(x, y) → (1 − εt(x, y))Ut(x, y) + εt(x, y)(|r − r̃|+ γUt(x′, y′))

where we are updating using a pair of transitions (xt, at, rt, x′t) and
(yt, bt, r̃t, y′t).
|Vπ(x)− Vπ(y)| ≤ Uπ(x,y).
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A new type of distance

Diffuse metric

1 d(x, y) ≥ 0
2 d(x, y) = d(y, x)
3 d(x, y) ≤ d(x, z) + d(z, y)
4 Do not require d(x, x) = 0
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What is MICo?

Similar to, but not the same as, partial metrics (Matthews) or weak
partial pseudometrics (Heckmann). They require stronger conditions
than our triangle and they can then extract a real metric and something
like a “norm”. Our examples violate their conditions.

MICo distance is a diffuse metric.
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MICo loss

Nearly all machine learning algorithms are optimization
algorithms.

One often introduces extra terms into the objective function that
push the solution in a desired direction.
We defined a loss term based on the MICo distance.
We assume a value-based agent learning as estimate based on
two function approximators ψ, ϕ with their own sets of parameters.
We then define a loss term based on the MICo distance.
A crucial quantity that emerges is
ΠUπ := Uπ(x, y)− 1

2 Uπ(x, x)− 1
2 Uπ(y, y).

For details as well as implementation and experiments read
https://psc-g.github.io/posts/research/rl/mico/.
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Recap of Hilbert spaces

Hilbert to von Neumann: “What are these Hilbert spaces you keep
talking about?”

A Hilbert space H is a: (i) Vector space
with a (ii) inner product ⟨·, ·⟩ : H×H −→ R (or C),
satisfying the usual axioms (sesquilinear for C).
The inner product induces a norm which induces a metric.
The space H is complete with respect to this metric.
Examples: Rn with the euclidean inner product, ℓ2, L2(R).
Be careful of L2, its elements are not functions but equivalence
classes of almost everywhere equal functions.
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Duality and Riesz

A function between Hilbert spaces is continuous iff it is bounded.

The space of bounded linear functions from H to R is itself a
Hilbert space called H∗ which is isomorphic to H.
Given an element v ∈ H, we have a map λv : H −→ R given by
x 7→ ⟨v, x⟩; this is bounded and linear.
The Riesz representation theorem says: all bounded linear maps
arise this way.
For any bounded linear function λ : H −→ R ∃!l ∈ H such that
⟨l, x⟩ = λ(x).
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Definition of RKHS

RKHS is “reproducing kernel Hilbert space”.

Let X be a set, no other structure assumed.
The vector space of all functions from X to R is written F(X,R) or
just F(X).
H is an RKHS on X if it is a vector subspace of F(X).
H has an inner product ⟨·, ·⟩ making it into a Hilbert space.
For every x ∈ X, the function evx : H −→ R given by f 7→ f (x) is
bounded (hence continuous).
By Riesz, ∀x ∈ X,∃!kx ∈ H such that ∀f ∈ H, ⟨kx, f ⟩ = f (x).
Note that L2(R) is not an RKHS.
It is easy to construct a sequence of functions fn such that
limn−→∞ ||fn|| = 0 but there is a point x such that
limn−→∞ fn(x) = ∞.
ℓ2(N) is an RKHS.
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Why this strange name?

Note that kx is a function of type X −→ R.

So we can apply it to y ∈ X.
We define K(x, y) = kx(y) = ⟨kx, ky⟩.
K is called the kernel of the RKHS.
We often think of ⟨kx, f ⟩ as

∫
K(x, y)f (y)dy.

So we get ⟨kx, ky⟩ =
∫

K(x, z)K(z, y)dz = K(x, y).

K convolved with K reproduces K!
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Constructing RKHS on finite sets

Let X be a finite set.

We call k : X × X −→ R a positive-definite kernel if it is symmetric
and
for any x1, x2, . . . , xn ∈ X and any c1, . . . , cn ∈ R we have

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0.

We can construct an RKHS Hk of functions on X with k as its
reproducing kernel.
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Embeddings

We can embed X in H naturally: x 7→ kx =: φ(x).

We can think of this as embedding a “state space” into a “feature
space.”
Given a probability measure µ on X we define
Φ(µ) :=

∫
X φ(x)dµ ∈ H.

We can show ⟨f , Φ(µ)⟩ =
∫

X f dµ.
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Metrics on probability distributions

Gretton et al. define a metric on probability distributions using the
last embedding.

MMD(k)(µ, ν) := ||Φ(µ)− Φ(ν)||Hk .

MMD stands for “minimum mean discrepancy”.
This has a close connection with so-called “energy distances”
which are used in statistics and machine learning.
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Kernels instead of metrics

Instead of quantifying the difference between states through a
metric we quantify their “similarity” through a kernel.

Metrics like bisimulation have the following pattern:
d(x, y) = d1(x, y) + const · d2(P(x),P(y)).
Here d1 is some kind of “one-step” difference and d2 represents
what happens later.
We will follow a similar pattern with kernels.
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Outline of the approach

We make the space of kernels into a complete metric space.

We define an “update operator” on the space of kernels and show
that it is contractive, hence has a unique fixed point.
We use this kernel to construct an RKHS.
This gives a (semi)metric which we call the “kernel similarity
metric” (ksme).
This ksme distance is exactly the same as the reduced MICo
distance we defined earlier.
This approach gives many other interesting results: low-distortion
embeddings, bounds on value function differences etc.
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The End

Thank you for your attention.
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