
Causality and Order
Prakash Panangaden

Dedicated to Glynn WInskel

Thursday, 20 June, 13



Event Structures

Glynn Winskel’s 1981 thesis: Events in 
Computation was a landmark.

I saw it in 1982 just as I was moving from 
Physics (relativity) to Computer Science.

It, and Lamport’s earlier paper, influenced me 
greatly.
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Summary

The Spacetime canvas

Causality conditions

Axioms for causal orders

Differences between causal structure in 
spacetime and in computation
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What is causality?

The mathematical theory of alibis!

I did not do it!  I could not have done it, I 
was nowhere nearby!!

How far do you have to be for this to be a 
cast iron alibi?

Spacetime structure has this built in.
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Spacetime 

• Events

• Light cones

• World lines

• Spatial slices
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The Spacetime Canvas

Events: primitive “point like” — they form a set.

Topological space:

4-dimensional manifold;

Hausdor↵, locally compact, separable; these imply paracompact.

Smooth structure: now we can define tangent vectors.

Spacetime is now equipped with a “smoothly varying” collection of 4-dimensional

tangent vector spaces attached to each point: the tangent bundle.

Causal structure: light cones at each point.

A pair of cones at each tangent space. The paths of light rays.

A�ne connection: how to parallel transport vectors.

Now we can define geodesics. The paths of dust particles.
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Finishing touches

Now we know the trajectories of dust and light rays.

The only remaining ingredient: the metric.

Usually the metric is given up front and all the other

structures are derived from it.

But conceptually, physically and mathematically it

comes last.
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Causal structure: 
Newtonian view
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Einstein-Minkowski 
Causal Structure

Light cones delimit regions of causal influence.

Basic assumption: time-orientability, i.e. there

is a consistent distinction between future- and

past-pointing light cones.

A vector inside the light-cone is timelike.
A curve whose tangent vector is everywhere future pointing

and timelike is called a timelike curve.

A vector on the light cone is null.

A vector outside the light cone is spacelike.
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Material particles travel on timelike curves and light

travels on null curves.

A spacelike slice is a maximal 3-dimensional

hypersurface where every two points are spacelike related.

A decomposition of spacetime into a family of disjoint

spacelike slices is called a foliation.

In Newtonian spacetime there is a unique, canonical foliation.

In relativistic spacetimes, there are many possible foliations.
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Timelike curve

Spacelike slice
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Causal orders
Chronological order, x⌧ y: there is a smooth timelike

curve (with future-pointing tangent) from x to y.

Causal order, x  y: there is a piecewise-smooth curve

from x to y with a future-pointing tangent vector that is

timelike or null.

Fundamental assumption:  is a partial order.

J

+(x) := {y | x  y}, J�(x) := {y | y  x}

I

+(x) := {y | x⌧ y}, I�(x) := {y | y ⌧ x}
“open sets”

(Regarded as irreflexive.)
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Causality Assumptions
1. x⌧ y ) y 6⌧ x

Chronology condition

2. (x  y) & (y  x)) x = y

Causality condition

Usually, we think that this is enough to rule out causal anomalies.

But, in the continuum more complicated causal anomalies can occur.

There is a hierarchy of increasingly stringent causality conditions

that are imposed.

Causality ! . . .! Global hyperbolicity.
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Stricter Assumptions
I

±(x) = I

±(y)) x = y.

Future/Past distinguishing:

There are 3 possible conditions here; they are all di↵erent.
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This satisfies causality

and past distinguishability

but not future

distinguishability.

The light cones tip over,
become horizontal, and
tip back up. A small
vertical strip has been
removed to break the
closed null curve
that would otherwise occur.
Here I+(p) = I+(q).
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Stricter Assumptions
I

±(x) = I

±(y)) x = y.

Future/Past distinguishing:

There are 3 possible conditions here; they are all di↵erent.

Strong causality at p:

Every neighbourhood of p contains a sub-

neighbourhood such that no causal curve intersects it more than once.

Imposing strong causality on a compact set means that no causal

curve can get imprisoned in this set.

It is possible to have a spacetime satisfying the previous conditions

but violating strong causality.
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Picture taken from: The Large-Scale Structure of Spacetime

by Hawking and Ellis.
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Consequences of Strong 
Causality

Define ⌧ x, y �= I

+(x) \ I

�(y).

If ⌧ x, y � \ ⌧ p, q �6= ; then there are u, v such that
⌧ u, v �⇢⌧ x, y � \ ⌧ p, q � .

Use these sets as the base for a topology:

the Alexandrov topology.

Penrose discovered a strong link between strong causality

and the manifold topology.
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Penrose’s Theorem

Theorem(Penrose) The following are equivalent:

1. M is strongly causal,

2. The Alexandrov topology agrees with the manifold topology,

3. The Alexandrov topology is Hausdor↵.
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Even stricter assumptions
Stable causality: opening up the light cones “a bit” does not create

closed causal curves.

This implies the presence of a global time function.

Causal continuity: the volume of the past and future sets

should vary continuously. (Picture on next slide)

Causal simplicity: J

+
(x) and J

�
(x) are closed.

This means there are no holes in space-time.

Global hyperbolicity: J

+
(x) \ J

�
(y) is compact.
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Slide stolen from Sumati Surya.
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Topology from 
Causality

For causally simple space times Keye Martin and I showed that

the ⌧ order is the way-below relation of the causal order.

Thus one can reconstruct I± sets from .

Which allows one to reconstruct the topology from the order.

Malament had shown how to reconstruct the topology from the

class of continuous timelike curves.

Hawking and King had shown how to reconstruct the
topology from ⌧ and .
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Kronheimer-Penrose 
Axioms

A causal Space is a set X equipped

with two partial orders: ,⌧ satisfying:

•  is a partial order,

• ⌧ is transitive and irreflexive,

• ⌧⇢,

• if x  y and y ⌧ z then x ⌧ z,

• if x ⌧ y and y  z then x ⌧ z.
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The Horismos
Kronheimer and Penrose use three relations: ,⌧ and !,

the last is called the horismos.

Definition: x ! y if x  y but not x ⌧ y.

Is there an abstract definition?

A reflexive binary relation R is called horismotic

if whenever (xi)1in is a finite sequence with xiRxi+1

for 1  i  n, then for any 1  j  k  n:

(i) x1Rxn implies that xjRxk and

(ii) xnRx1 implies xj = xk.

Thursday, 20 June, 13



The horismos is 
horismotic

The ! relation of a causal space is horismotic.

Let x  y  z in a causal space.
If x ! z then x ! y ! z.
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Why does that matter?
Imagine a mirror at x2 which bounces a light ray from x1 to x

0
3.

The path from x1 to x

0
3 can be deformed into a timelike path by

smoothing the corner.

Anything on the path from x1 to x3 has to be ! related to x1.

It defines the horismos as the boundary of the causal future

without mentioning maximum speeds.
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Conclusions

Interesting interplay between causal order and topology.

Recently Martin and I have incorporated the metric using

his theory of measurements.

Where does di↵erential structure fit in?

Quantum space times? Perhaps event structure will give us a clue.

What we do not have in any of the computer science

models of causal structure that I have seen: the horismos!
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Glynn in 1987
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