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What are basic themes in Computer Science?

What makes quantum mechanics so strange?

Why shouldn’t we leave it to physicists?

What does our expertise buy us?

What challenges are open to us?
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Some basic themes
Understanding structure: the fundamental theme.

• How are systems structured?

• How is behaviour described?

• How do behavioural descriptions compose?

• How do we verify systems?

• How do we design systems?

3Sunday, March 27, 2011



In the 1960s and 1970s it was understood that programs
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In the 1960s and 1970s it was understood that programs
should be structured: control flow structures, block structure,
type systems, modules etc.

After a struggle it was understood that sequential
deterministic programs denoted functions

and that when programs are combined, the functions
denoting their meanings are combined

according to ordinary function composition.

Soon after it was realized that concurrent programs
could not be modelled by functions or even by relations.
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The theory of processes was born to make sense of
systems featuring concurrency and nondeterminism.

It expanded to include real-time systems and
probabilistic systems and even continuous dynamics.

It is still active and is reaching a high level of
abstraction and internal mathematical beauty:
coalgebras, monads, presheaf models etc.

But quantum computation poses entirely new challenges!
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Quantum Statistics

You have two boxes, A and B, and two 
particles that can each be in either box with 
equal probability.  What is the probability 
that there is one particle in each box?

If you answered 1/2 you are correct 
classically, but this is not what happens in 
quantum mechanics!

Depending on the type of particle the 
answer could be 1/3 (bosons) or 1 (fermions).
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At lunch yesterday:

Holger: Quantum systems are just continuous-time

Markov chains!

Quantum systems do indeed have probabilistic features but

there are entire new aspects.

Indeed the probabilistic aspects are not what
makes quantum mechanics tricky.

There are complex numbers and interference which
blatantly violate basic commonsense rules of logic.
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The Setting

There are two distinct scenarios:

(1) using the power of quantum computation to achieve
algorithmic speed-ups and

(2) using the laws of quantum mechanics to guarantee
privacy in communication.

I would like to add a third: using the non-local
nature of quantum computation to achieve
distributed computing tasks.
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Whether we can build a quantum “computer”
is not important!!
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Whether we can build a quantum “computer”
is not important!!

Can we reason about quantum communication protocols?

Can we reason about security in the quantum setting?

Quantum devices are “out there” and communication
protocols have been implemented over tens of kilometers.

We need to get engaged in this enterprise because:

(a) it is of fundamental interest and we can contribute,

(b) if we don’t physics will take all the money and run!
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The first surprise: superposition.
Quantum systems can be in two “states” at the same time!

This is not the same as being in a probabilistic mixture.

Consider photons, they can be polarized in various ways:
vertically, horizontally and in linear combinations of these.

I write | �� to denote a vertically polarized photon
and | ↔� for a horizontally polarized photon.

There are polarizing filters that only let through
photons that are polarized the same way as the filters.

More precisely if the filter makes an angle θ
with the photon polarization then the photon
gets through with probability cos2 θ.

10Sunday, March 27, 2011



In the lab we can prepare photons that are in a superposed
state of horizontal and vertical polarization:

11Sunday, March 27, 2011



In the lab we can prepare photons that are in a superposed
state of horizontal and vertical polarization:

| ��� = 1√
2
[| ��+ | ↔�].

11Sunday, March 27, 2011



In the lab we can prepare photons that are in a superposed
state of horizontal and vertical polarization:

| ��� = 1√
2
[| ��+ | ↔�].

We can also prepare a 1
2 ,

1
2 mixture of | �� and | ↔� photons.

11Sunday, March 27, 2011



In the lab we can prepare photons that are in a superposed
state of horizontal and vertical polarization:

| ��� = 1√
2
[| ��+ | ↔�].

We can also prepare a 1
2 ,

1
2 mixture of | �� and | ↔� photons.

Is there a difference?

11Sunday, March 27, 2011



In the lab we can prepare photons that are in a superposed
state of horizontal and vertical polarization:

| ��� = 1√
2
[| ��+ | ↔�].

We can also prepare a 1
2 ,

1
2 mixture of | �� and | ↔� photons.

Is there a difference?

Yes! A filter aligned at 45◦ will let all the superposed
photons through, but only half of the mixture.

11Sunday, March 27, 2011



In the lab we can prepare photons that are in a superposed
state of horizontal and vertical polarization:

| ��� = 1√
2
[| ��+ | ↔�].

We can also prepare a 1
2 ,

1
2 mixture of | �� and | ↔� photons.

Is there a difference?

Yes! A filter aligned at 45◦ will let all the superposed
photons through, but only half of the mixture.

Superposition is observably different from a mixture.

11Sunday, March 27, 2011



In the lab we can prepare photons that are in a superposed
state of horizontal and vertical polarization:

| ��� = 1√
2
[| ��+ | ↔�].

We can also prepare a 1
2 ,

1
2 mixture of | �� and | ↔� photons.

Is there a difference?

Yes! A filter aligned at 45◦ will let all the superposed
photons through, but only half of the mixture.

Superposition is observably different from a mixture.

Quantum systems are not “just” probabilistic.
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Non-locality and Entanglement

A key idea due to Einstein, Podolsky and Rosen
(1935) which was intended as an attack on
quantum mechanics. Turned out to be revo-
lutionary and led to the notion of non-locality
and entanglement.

A different manifestation of non locality was
discovered by Aharanov and Bohm in 1959 in
which electrons react to the presence of a mag-
netic field that is “far away.” [Don’t ask me
now!]

24
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EPR - Bohm’s version

Two-state quantum particle: | ↑� for spin up
and | ↓� for spin down.

Two-particle basis states written: | ↑↑�, | ↑↓
�, | ↓↑� and | ↓↓�.

Consider the state: 1√
2
[| ↑↓�− | ↓↑�]. This state

can be prepared in a laboratory. Measuring
the spin of one particle “makes” the other one
have the opposite spin.

This is action at a distance or non-locality.

25
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EPR - Consequences

Information is nonlocal, a quantum mechanical
state is nonlocal. We can substitute entangle-
ment for communication.

What EPR cannot be used for is superluminal
communication.

26
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Probability in quantum mechanics

The probabilistic behaviour of quantum mechanics is
inherent.

It is not possible to explain the probabilities as an
abstraction of some hidden deterministic behaviour.
More precisely: there is no theory that is

local,
causal,
based on a deterministic state.

next example illustrates this.

ICALP 13 July 2006 Venice – p.6/54
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Mermin’s example I

A simple version of Bell’s inequality that can be
understood easily.

1 2 3 123

R

G

R

G

Two detectors each with 3 settings and 2 indicators (Red
and Green). The detectors are set independently and
uniformly at random.
The detectors are not connected to each other or to the
source.
Source of correlated particles in the middle.
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Mermin’s Example II

1 2 3 123

R

G

R

G

Whatever the setting on a detector, the red or the green
lights flash with equal probability, but never both at the
same time.
When the settings are the same the two detectors
always agree.
When the settings are different the detectors agree 1

4 of
the time!
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Why is this strange?: 1

How could the detectors always agree when the
settings are the same, even though the actual colour
seems to be chosen at random?

There must be some “hidden” property of the
particles that determines which colour is chosen for
each setting; the two correlated particles must be
identical with respect to this property, whether or not
the switches are set the same way.
Let us write GGR mean that for the three settings,
1, 2, 3, the detectors flash green, green and red
respectively for a type GGR particle.
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We write GGR for a typical particle type: it means that
for the detector settings 1,2 and 3 respectively the light
flashes green, green and red respectively.
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Why is this strange?: 2

Suppose that the settings are different and we have
an RRG particle:
then for two of the possible settings (1, 2 and 2, 1) the
same colour flashes and for the other four settings
the colours are different. Thus 1

3 of the time the
colours must match.

This applies for any of the combinations:
RRG,RGR,GRR,GGR,GRG,RGG.
For particles of type RRR and GGG the colours
always match whatever the settings.
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The inescapable conclusion

Thus whatever the distribution of particle types the
probability that the lights match when the settings are
different is at least 1

3 !.
This just ain’t what we see in nature!

ICALP 13 July 2006 Venice – p.11/54

This experiment can be realized in the lab.

The data do not support the reasoning above: when the
settings are different the lights match only a 1

4 of the time!

What is wrong with the reasoning?
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Why did we assume that there was something that fixed
the outcome deterministically?
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Why did we assume that there was something that fixed
the outcome deterministically?

Because otherwise we cannot explain why the lights
always agree when the settings are the same when we
assume that what happens at each detector is
independent of what happens at the other.

Something non-local is going on.

What kinds of transition systems are these?
We have studied all kinds of transition systems,
we should analyze from the perspective of
transition system theory the kinds of systems
that arise in quantum mechanics.
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Measurement
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MeasurementThe “Theory” of Measurement

• Measurement is an interaction between
system and apparatus.

• Measurements do not uncover some pre-
existing physical property of a system. There
is no objective property being measured.

• The record or result of a measurement is
an objective property.

• Quantum mechanics is nothing more than
a set of rules to compute the outcome of
physical tests to which a system may be
subjected.

7
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The Stern-Gerlach Experiment

• Send neutral atoms through a varying mag-
netic field.

• Observe two peaks - the beam is split into
an “up” and a “down.”

• Rotate the apparatus and still observe the
beam split in two.

Suppose that the atom has a magnetic mo-
ment �µ (a vector) then the observed compo-
nent of the moment about a unit vector e is
�µ·e which - according to the experiment - must
be ±µ. If we choose three vectors e1, e2, e3
at 120 degrees to each other then we have
e1 + e2 + e3 = 0. Hence if µi := �µ · ei we have
µ1 +µ2 +µ3 = 0 which is impossible if each µi
has value ±µ.

8

23Sunday, March 27, 2011



No Objective Values?
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No Objective Values?

The Stern-Gerlach experiment measures a component
of the magnetic moment: a vector quantity.

Along any axis the value is +1 or −1 (in some units).

What if we measured it along three axes, e1, e2, e3

at 120◦ to each other?

Note that e1 + e2 + e3 = 0. So the sum of the
measured components must add up to zero.

But 3 number chosen from the set {+1,−1}
cannot add up to zero!
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Contextuality
Some measurements interfere with each other.

Thus certain sets of measurements are compatible,
while others are not.

We have seen such ideas in computer science: e.g.
when we talk about conflict in event structures.

The sets of possible compatible measurements in which
a given measurement can appear are the contexts for the
given measurement.
One would hope that the possible measurement outcomes

would not depend on what else one chooses to measure.

This is called non-contextuality.
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Kochen-Specker Theorem
Quantum mechanics is not non-contextual
or, quantum mechanics is contextual.

There is a compatible family M of quantum
measurements such that the following statements
contradict each other:

If A,B,C are in M and C = A + B
then val(C) = val(A) + val(B)
and similarly for products,

all the members of M have definite values.
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Beautiful analysis due to Samson Abramsky
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Let S be a family of subsets of a finite set X. We say
that S is a KS family if card(S) is odd, and for each
x ∈ X, c(x) is even, where:

c(x) = card{S ∈ S|x ∈ S}.
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The usual proofs of Kochen-Specker are essentially
clever constructions of KS sets satisfying the
conditions of the proposition.

Why does say anything of interest?

The state space of a common quantum system is the set
of directions in 3-space.

If we measure it along three orthogonal directions we
should get a 1 for one direction and 0 for the other two.

In short we want the kind of φ mentioned in the proposition.

But people have constructed KS sets of
triples of orthogonal directions!

28Sunday, March 27, 2011



There is no consistent assignment of the values of a property.
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There is no consistent assignment of the values of a property.

The outcome is created by the measurement process,
there is no “value” that can be assigned before the
system is measured!
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Composing Systems

A fundamental difference between quantum systems
and classical systems is how we put subsystems together.
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Composing Systems

A fundamental difference between quantum systems
and classical systems is how we put subsystems together.

We combine systems by taking tensor products
of the state spaces: H = H1 ⊗H2.

To describe the state of n bits I have to specify
n boolean values.

To describe the state of n qubits I have to specify
2n complex numbers.
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If V and W are vector spaces with bases {vi} and {wj}
respectively then the tensor product is the vectors space
with basis {vi ⊗ wj}.
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If V and W are vector spaces with bases {vi} and {wj}
respectively then the tensor product is the vectors space
with basis {vi ⊗ wj}.

Note that there are vectors in the tensor product space
that cannot be decomposed into products.

For example v1 ⊗ w1 + v2 ⊗ w2. This is entanglement!

It gives quantum computation its power and is also
the key ingredient of phenomena like teleportation.

There are provably impossible classical distributed
computing tasks that can be done with suitable
entangled states.
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Categorical Quantum Mechanics

Abramsky, Coecke, Selinger, Landsman, Jacobs and others...

Axiomatize quantum mechanics in terms of
dagger-compact categories:

basic algebraic aspects of tensor product and reversibility
and duality.

Captures “abstract” quantum mechanics, one can explore
“toy” quantum mechanics and ask what is the minimal
structure needed to reveal key aspects of quantum mechanics.
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A number of significant results have appeared in this
field in the last couple of years:

A powerful diagrammatic notation for quantum
computation: Selinger, Coecke, Paquette, Duncan, Kissinger.

A theory of complementary observables: Coecke, Duncan.

A theory of classical structures: Coecke, Pavlovic, Vicary.

Quantum logic in dagger categories: Jacobs, Heunen.

A categorical view of topological quantum computation:
Paquette, P.

and more!
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The Point of Teleportation
The result of a measurement tells you what fix to apply

in order to get a determinate result.

It did not matter that the measurement outcome is indeterminate,
the whole procedure is determinate.

This is a computation - of the identity function (!) - that
is guided by measurement outcomes.

Can we compute more interesting functions?
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Measurements, followed by corrections, which may depend
on the measurement outcomes, can implement all possible
determinate quantum computations.
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The magic is that only one-qubit measurements and
corrections are needed
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The magic is that only one-qubit measurements and
corrections are needed provided that one has the right

type of entanglement.

Programs for computing in this model are called patterns.

Physicists described these patterns in terms of
explicit layout of qubits on a grid. Extremely
painful to follow.

Extremely hard to prove general results based
on example patterns. The physicists intuitions
are so good that they (almost) never make mistakes.

But their proofs tend to be example demonstrations.
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not worry about the geometrical layout but refer to
qubits by name.
The language comes with a natural compositional
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We give a precise operational semantics and
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We develop a calculus of patterns and using
rewriting theory arguments show that all patterns can
be put in a normal form.
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Benefits of Formalization

We give a precise textual syntax for patterns. We do
not worry about the geometrical layout but refer to
qubits by name.
The language comes with a natural compositional
structure: inductive definition of possible patterns.
We give a precise operational semantics and
denotational semantics for the patterns.
We develop a calculus of patterns and using
rewriting theory arguments show that all patterns can
be put in a normal form.

ICALP 13 July 2006 Venice – p.38/54
This allows one to program compositionally but in the
end the composed program is rewritten to a normal form
so that one never has to do on-the-fly entanglement.

A lot of work has been done since 2007 by Elham Kashefi
and her many collaborators using this framework.
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Verification of quantum protocols.

Yes, these are probabilistic systems, but a huge
amount of manual preprocessing has to be done
to extract some probabilistic model that can be
checked using existing tools.

A good concept of weak bisimulation for quantum systems

was only achieved this year [POPL 2011] by Yuan Feng,

Runyao Duan and Mingsheng Ying.

We have no clue what is the right modal logic

for quantum systems in the spirit of

van Benthem-Hennessy-Milner.
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How do we even write specifications?

Simply using probabilistic logics misses the point.

For example, how do you say in PCTL*
that entanglement is preserved?

In 2005 a weakest precondition semantics for quantum

programming was developed [D’Hondt and P.] with a

radically different notion of what is meant by a proposition.

Is this the right way to proceed?
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What is quantum knowledge?

We can write epistemic logics like the ones used in

distributed systems [Halpern, Moses etc.]

but strange things happen.

For example, in teleportation, Alice “knows” ψ
before she teleports it to Bob

but after teleporting it she no longer knows it

not even in the time-stamped sense, “before
I teleported I know I used to have ψ.”

She cannot “write it down”; that would violate
the no-cloning theorem.
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Topological Quantum Computing
Quantum systems are extremely unstable, how do we manipulate them
with the exquisite precision needed while maintaining entanglement?

Many ideas in the physics community (each more expensive than the last).

One brilliant idea (due to Kitaev): use topological configurations

like knots and braids that do not come apart easily.

Beautiful and interesting mathemtics and many opportunities
for us to formalize the appropriate methods for reasoning about
such systems. See tutorial slides on my web page.
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Nobody can drive us out of the paradise that Heisenberg

has created for us!

with apologies to David Hilbert.

44Sunday, March 27, 2011



Thanks!
45Sunday, March 27, 2011



and thanks again,
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and a final thank you!
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