Dexter Kozen's Influence on the Theory of Markov Processes

Prakash Panangaden

Ithaca 1985

Department of Computer Science hired two new profs that year:
Dexter Kozen and me.
Dexter was famous for the so-called BKR algorithm but

Semantics and Logic

also for modal logíc (PDL)
mu-calculus and
probabilistic programs.

Two key papers

Semantics of probabilistic programs, JCSS, 1981
A probabilistic PDL, JCSS, 1985.

New ideas

Take probability theory on continuous state spaces seriously.
Hence, work with sigma-algebras, measure theory and integration.
A new Stone-type duality.

What is Stone duality?

Stone representation theorem: every boolean algebra is isomorphic to a concrete boolean algebra of sets.
But we know "elements are a hack!"

 If we look at all the boolean algebras and the maps between them then

 it looks exactly like a certain collection of topological spaces and the maps between them

going backwards!

 This kind of thing happens several times in mathematics:

C* algebras and compact Hausdorff
 spaces (Gelfand dualíty)

 Fíníte-dímensíonal vector spaces and themselves (self dualíty) Happens in computer science too:
We can define what a program does by going forwards: St x Act --> St

• or backwards:

precondition <-- predicate x Act.

 Dexter found that this works for probabilistic programs too:

 Forwards semantícs: measure transformers (Markov kernels)

 Backward semantics: transformers of random variables (value functions).

Answer: Markov kernels!

Answer: Markov kernels!

k(x, A): conditional probability of landing in a set A if one starts at x.

Answer: Markov kernels!

k(x, A): conditional probability of landing in a set A if one starts at x.

Crucial for dealing with continuous state spaces.

Answer: Markov kernels!

k(x, A): conditional probability of landing in a set A if one starts at x.

Crucial for dealing with continuous state spaces.

 $k(x, \cdot)$: a measure and $k(\cdot, A)$ is a measurable function.

Answer: Markov kernels!

k(x, A): conditional probability of landing in a set A if one starts at x.

Crucial for dealing with continuous state spaces.

 $k(x, \cdot)$: a measure and $k(\cdot, A)$ is a measurable function.

What does this have to do with relations?

 $x(R \circ S)y = \exists z(xRz \wedge zSy).$

$$x(R \circ S)y = \exists z(xRz \wedge zSy).$$

If we try to think of a "probabilistic relation" as a joint measure on the product space we cannot compose them.

$$x(R \circ S)y = \exists z(xRz \wedge zSy).$$

If we try to think of a "probabilistic relation" as a joint measure on the product space we cannot compose them.

But Markov kernels are just the ticket!

$$x(R \circ S)y = \exists z(xRz \wedge zSy).$$

If we try to think of a "probabilistic relation" as a joint measure on the product space we cannot compose them.

But Markov kernels are just the ticket!

$$h: X \to Y \text{ and } k: Y \to Z$$

$$x(R \circ S)y = \exists z(xRz \wedge zSy).$$

If we try to think of a "probabilistic relation" as a joint measure on the product space we cannot compose them.

But Markov kernels are just the ticket!

$$h: X \to Y \text{ and } k: Y \to Z$$

$$(k \circ h)(x, C) = \int k(y, C)h(x, dy).$$

$$x(R \circ S)y = \exists z(xRz \wedge zSy).$$

If we try to think of a "probabilistic relation" as a joint measure on the product space we cannot compose them.

But Markov kernels are just the ticket!

$$h: X \to Y \text{ and } k: Y \to Z$$

$$(k \circ h)(x, C) = \int k(y, C)h(x, dy).$$

The category of Markov processes (1999), ENTCS, P.

 $S ::= x_i := f(\vec{x})|S_1; S_2|$ if **B** then S_1 else $S_2|$ while **B** do S.

 $S ::= x_i := f(\vec{x})|S_1; S_2|$ if **B** then S_1 else $S_2|$ while **B** do S.

Here f could be assigning a value randomly according to some distribution.

 $S ::= x_i := f(\vec{x})|S_1; S_2|$ if **B** then S_1 else $S_2|$ while **B** do S.

Here f could be assigning a value randomly according to some distribution.

Dexter gave measure transformer semantics in terms of Markov kernels.

 $S ::= x_i := f(\vec{x})|S_1; S_2|if \mathbf{B} then S_1 else S_2|while \mathbf{B} do S.$

Here f could be assigning a value randomly according to some distribution.

Dexter gave measure transformer semantics in terms of Markov kernels.

He also gave *backward semantics* in terms of how random variables transform.

Forwards: modify the description of the state so that x is now bound to 1729.

Forwards: modify the description of the state so that x is now bound to 1729.

Backwards: If P is true *after* the command then P with every x replaced by 1729 must have been true *before*.

Forwards: modify the description of the state so that x is now bound to 1729.

Backwards: If P is true *after* the command then P with every x replaced by 1729 must have been true *before*.

In Dexter's probabilistic setting:

Forwards: modify the description of the state so that x is now bound to 1729.

Backwards: If P is true *after* the command then P with every x replaced by 1729 must have been true *before*.

In Dexter's probabilistic setting:

If f is the value of a random variable after a command described by a Markov kernel h, then $\int f(x')h(x, dx')$ is the value before.

In terms of categories

In terms of categories

The category of Markov kernels is **SRel**.

In terms of categories

The category of Markov kernels is **SRel**.

The category of probabilistic predicate transformers is called **SPT**.

In terms of categories

The category of Markov kernels is **SRel**.

The category of probabilistic predicate transformers is called **SPT**.

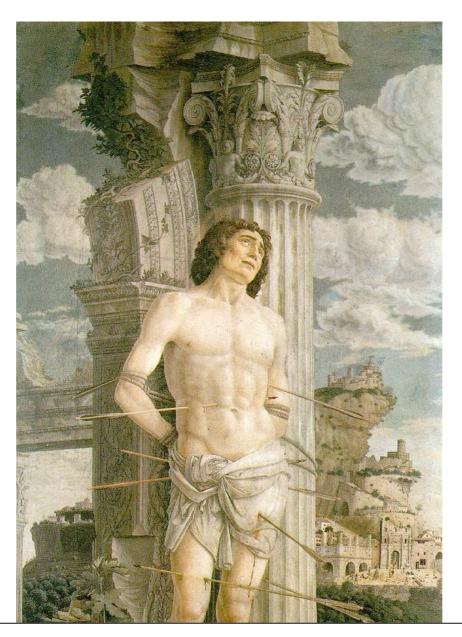
Duality: $\mathbf{SRel} \equiv \mathbf{SPT}^{op}$.

Why the categorical language?

After all, dealing with arrows can be painful!

Why the categorical language?

After all, dealing with arrows can be painful!



I was greatly influenced by a line from the famous song by Dexter: *Categories Uber Alles*. I was greatly influenced by a line from the famous song by Dexter: *Categories Uber Alles*.

We know that elements are just a hack.

In the late 1990s I, working with Josée Desharnais, Abbas Edalat, Radha Jagadeesan and Vineet Gupta were developing the theory of Labelled Markov Processes (MDPs).

A key concept was *bisimulation*: when do two processes behave *exactly* the same?

Logical characterization: when they agree on all the formulas of a simple (modal) logic.

But equivalences are suspect, one should work with metrics.

Intuition: processes are *close* if the *shortest* formula distinguishing them is big.

Intuition: processes are *close* if the *shortest* formula distinguishing them is big.

How does one make this precise?

The Kozen Analogy

Logic	Probability
State s	Distribution μ
$\begin{tabular}{ c c c c } \hline Predicate ϕ \\ \hline \end{tabular}$	Random variable f
Satisfaction $s \models \phi$	Pairing $\int f d\mu$

We defined a class of functional expressions \mathcal{F} and interpreted them just like a logic.

We defined a class of functional expressions \mathcal{F} and interpreted them just like a logic.

$d(s, s') = \sup_{f \in \mathcal{F}} |f(s) - f(s')|.$

We defined a class of functional expressions \mathcal{F} and interpreted them just like a logic.

$$d(s, s') = \sup_{f \in \mathcal{F}} |f(s) - f(s')|.$$

The study of behavioural metrics is now flourishing with many papers every year in concurrency theory and also in machine learning and algorithms.

But it all started with a random walk through Markov processes.

