
Dexter Kozen’s Influence
on the Theory of

Markov Processes

Prakash Panangaden

Monday, 21 May, 12

Ithaca 1985

Department of Computer Science hired
two new profs that year:

Dexter Kozen and me.

Dexter was famous for the so-called
BKR algorithm but

Monday, 21 May, 12

Semantics and Logic

also for modal logic (PDL)

mu-calculus and

probabilistic programs.

Monday, 21 May, 12

Two key papers

Semantics of probabilistic programs,
JCSS, 1981

A probabilistic PDL, JCSS, 1985.

Monday, 21 May, 12

New ideas

Take probability theory on continuous
state spaces seriously.

Hence, work with sigma-algebras,
measure theory and integration.

A new Stone-type duality.

Monday, 21 May, 12

What is Stone duality?

Stone representation theorem: every
boolean algebra is isomorphic to a
concrete boolean algebra of sets.

But we know “elements are a hack!”

Monday, 21 May, 12

If we look at all the boolean algebras
and the maps between them then

it looks exactly like a certain collection
of topological spaces and the maps
between them

going backwards!

Monday, 21 May, 12

This kind of thing happens several times
in mathematics:

C* algebras and compact Hausdorff
spaces (Gelfand duality)

Finite-dimensional vector spaces and
themselves (self duality)

Monday, 21 May, 12

Happens in computer science too:

We can define what a program does by
going forwards: St x Act --> St

or backwards:

precondition <-- predicate x Act.

Monday, 21 May, 12

Dexter found that this works for
probabilistic programs too:

Forwards semantics: measure
transformers (Markov kernels)

Backward semantics: transformers of
random variables (value functions).

Monday, 21 May, 12

What is a probabilistic relation?

Monday, 21 May, 12

What is a probabilistic relation?

Answer: Markov kernels!

Monday, 21 May, 12

What is a probabilistic relation?

Answer: Markov kernels!

k(x,A): conditional probability of landing in a set A if one starts at x.

Monday, 21 May, 12

What is a probabilistic relation?

Answer: Markov kernels!

k(x,A): conditional probability of landing in a set A if one starts at x.

Crucial for dealing with continuous state spaces.

Monday, 21 May, 12

What is a probabilistic relation?

Answer: Markov kernels!

k(x,A): conditional probability of landing in a set A if one starts at x.

Crucial for dealing with continuous state spaces.

k(x, ·): a measure and k(·, A) is a measurable function.

Monday, 21 May, 12

What is a probabilistic relation?

Answer: Markov kernels!

k(x,A): conditional probability of landing in a set A if one starts at x.

Crucial for dealing with continuous state spaces.

k(x, ·): a measure and k(·, A) is a measurable function.

What does this have to do with relations?

Monday, 21 May, 12

How does one compose relations?

Monday, 21 May, 12

How does one compose relations?

x(R � S)y = 9z(xRz ^ zSy).

Monday, 21 May, 12

How does one compose relations?

x(R � S)y = 9z(xRz ^ zSy).

If we try to think of a “probabilistic relation” as a joint measure

on the product space we cannot compose them.

Monday, 21 May, 12

How does one compose relations?

x(R � S)y = 9z(xRz ^ zSy).

If we try to think of a “probabilistic relation” as a joint measure

on the product space we cannot compose them.

But Markov kernels are just the ticket!

Monday, 21 May, 12

How does one compose relations?

x(R � S)y = 9z(xRz ^ zSy).

If we try to think of a “probabilistic relation” as a joint measure

on the product space we cannot compose them.

But Markov kernels are just the ticket!

h : X ! Y and k : Y ! Z

Monday, 21 May, 12

How does one compose relations?

x(R � S)y = 9z(xRz ^ zSy).

If we try to think of a “probabilistic relation” as a joint measure

on the product space we cannot compose them.

But Markov kernels are just the ticket!

h : X ! Y and k : Y ! Z

(k � h)(x, C) =
Z

k(y, C)h(x, dy).

Monday, 21 May, 12

How does one compose relations?

x(R � S)y = 9z(xRz ^ zSy).

If we try to think of a “probabilistic relation” as a joint measure

on the product space we cannot compose them.

But Markov kernels are just the ticket!

h : X ! Y and k : Y ! Z

(k � h)(x, C) =
Z

k(y, C)h(x, dy).

The category of Markov processes (1999), ENTCS, P.

Monday, 21 May, 12

In the last line I · B means the disjoint union of |I| many copies of B. From this calculation and
the fact that f is a morphism in SRel we see that the sum is indeed defined. To verify untying is
a very easy exercise.

5.4 Kozen semantics and duality

In this short section we explain the point of the long digression into partially additive categories.
Briefly, the point is to support a notion of iteration. We give a simple presentation of Kozen’s prob-
abilistic semantics for a language of while loops using the fact that SRel supports iteration simply
by being a partially additive category. We first prove that there is an iteration operation whenever
we have a partially additive category and then give the semantics. Kozen’s first presentation was
much more elaborate, but in a later paper he sketched essentially this semantics and described a
very nice duality theory which gives a notion of probabilistic predicate transformer.

Theorem 5.14 (Arbib-Manes) Given f : X −→ X + Y in a partially additive category, we can
find a unique f1 : X −→ X and f2 : X −→ Y such that f = ι1 ◦ f1 + ι2 ◦ f2. Furthermore there is a
morphism †f =df

∑∞
n=0 f2 ◦ f

n
1 : X −→ Y . The morphism †f is called the iterate of f .

Proof. The first assertion is trivial. We have f1 = PRX ◦ f and f2 = PRY ◦ f where the PR
maps are the ones associated with the coproduct X+Y . The second assertion is about the specific
family {f2 ◦ fn

1 |n ≥ 0} being summable. We first prove by induction on k that the finite families
{f2 ◦ fn

1 |k ≥ n ≥ 0} are summable and the result then follows from the limit axiom. The base case
is just the unary sum axiom applied to f2. For the inductive step we claim that if g : X −→ Y is
any morphism then g ◦ f1 and f2 are summable. The induction step then follows immediately from
the claim by using

∑k
n=0 f2 ◦ f

n
1 for g. To prove the claim we note

[g, IY] ◦ f = [g, IY] ◦ (ι1 ◦ f1 + ι2 ◦ f2)
= [g, IY] ◦ ι1 ◦ f1 + [g, IY] ◦ ι2 ◦ f2
= g ◦ f1 + f2

Thus the claim is proved.

More can be said about the iteration construct, in fact Bloom and Esik have written a monumental
treatise on this topic and compared various axiomatisations of iteration. Iteration is closely linked
to the notion of trace and is also the dual of a fixed-point combinator. We will not discuss the
various equational properties of iteration except to note the fixed point property: given any g : X
−→ X we have †([g, IY] ◦ f) = †(f ◦ g).

5.4.1 While Loops in a Probabilistic Framework

We define the syntax as follows:

S ::== xi := f("x)|S1;S2|if B then S1 else S2|while B do S.

We use the following conventions. We assume that the program has a fixed set of variables "x, say
there are n distinct variables, and that they each take values in some measure space (X,Σ). The

51

Dexter’s Probabilistic Language

Monday, 21 May, 12

In the last line I · B means the disjoint union of |I| many copies of B. From this calculation and
the fact that f is a morphism in SRel we see that the sum is indeed defined. To verify untying is
a very easy exercise.

5.4 Kozen semantics and duality

In this short section we explain the point of the long digression into partially additive categories.
Briefly, the point is to support a notion of iteration. We give a simple presentation of Kozen’s prob-
abilistic semantics for a language of while loops using the fact that SRel supports iteration simply
by being a partially additive category. We first prove that there is an iteration operation whenever
we have a partially additive category and then give the semantics. Kozen’s first presentation was
much more elaborate, but in a later paper he sketched essentially this semantics and described a
very nice duality theory which gives a notion of probabilistic predicate transformer.

Theorem 5.14 (Arbib-Manes) Given f : X −→ X + Y in a partially additive category, we can
find a unique f1 : X −→ X and f2 : X −→ Y such that f = ι1 ◦ f1 + ι2 ◦ f2. Furthermore there is a
morphism †f =df

∑∞
n=0 f2 ◦ f

n
1 : X −→ Y . The morphism †f is called the iterate of f .

Proof. The first assertion is trivial. We have f1 = PRX ◦ f and f2 = PRY ◦ f where the PR
maps are the ones associated with the coproduct X+Y . The second assertion is about the specific
family {f2 ◦ fn

1 |n ≥ 0} being summable. We first prove by induction on k that the finite families
{f2 ◦ fn

1 |k ≥ n ≥ 0} are summable and the result then follows from the limit axiom. The base case
is just the unary sum axiom applied to f2. For the inductive step we claim that if g : X −→ Y is
any morphism then g ◦ f1 and f2 are summable. The induction step then follows immediately from
the claim by using

∑k
n=0 f2 ◦ f

n
1 for g. To prove the claim we note

[g, IY] ◦ f = [g, IY] ◦ (ι1 ◦ f1 + ι2 ◦ f2)
= [g, IY] ◦ ι1 ◦ f1 + [g, IY] ◦ ι2 ◦ f2
= g ◦ f1 + f2

Thus the claim is proved.

More can be said about the iteration construct, in fact Bloom and Esik have written a monumental
treatise on this topic and compared various axiomatisations of iteration. Iteration is closely linked
to the notion of trace and is also the dual of a fixed-point combinator. We will not discuss the
various equational properties of iteration except to note the fixed point property: given any g : X
−→ X we have †([g, IY] ◦ f) = †(f ◦ g).

5.4.1 While Loops in a Probabilistic Framework

We define the syntax as follows:

S ::== xi := f("x)|S1;S2|if B then S1 else S2|while B do S.

We use the following conventions. We assume that the program has a fixed set of variables "x, say
there are n distinct variables, and that they each take values in some measure space (X,Σ). The

51

Dexter’s Probabilistic Language

Here f could be assigning a value randomly
according to some distribution.

Monday, 21 May, 12

In the last line I · B means the disjoint union of |I| many copies of B. From this calculation and
the fact that f is a morphism in SRel we see that the sum is indeed defined. To verify untying is
a very easy exercise.

5.4 Kozen semantics and duality

In this short section we explain the point of the long digression into partially additive categories.
Briefly, the point is to support a notion of iteration. We give a simple presentation of Kozen’s prob-
abilistic semantics for a language of while loops using the fact that SRel supports iteration simply
by being a partially additive category. We first prove that there is an iteration operation whenever
we have a partially additive category and then give the semantics. Kozen’s first presentation was
much more elaborate, but in a later paper he sketched essentially this semantics and described a
very nice duality theory which gives a notion of probabilistic predicate transformer.

Theorem 5.14 (Arbib-Manes) Given f : X −→ X + Y in a partially additive category, we can
find a unique f1 : X −→ X and f2 : X −→ Y such that f = ι1 ◦ f1 + ι2 ◦ f2. Furthermore there is a
morphism †f =df

∑∞
n=0 f2 ◦ f

n
1 : X −→ Y . The morphism †f is called the iterate of f .

Proof. The first assertion is trivial. We have f1 = PRX ◦ f and f2 = PRY ◦ f where the PR
maps are the ones associated with the coproduct X+Y . The second assertion is about the specific
family {f2 ◦ fn

1 |n ≥ 0} being summable. We first prove by induction on k that the finite families
{f2 ◦ fn

1 |k ≥ n ≥ 0} are summable and the result then follows from the limit axiom. The base case
is just the unary sum axiom applied to f2. For the inductive step we claim that if g : X −→ Y is
any morphism then g ◦ f1 and f2 are summable. The induction step then follows immediately from
the claim by using

∑k
n=0 f2 ◦ f

n
1 for g. To prove the claim we note

[g, IY] ◦ f = [g, IY] ◦ (ι1 ◦ f1 + ι2 ◦ f2)
= [g, IY] ◦ ι1 ◦ f1 + [g, IY] ◦ ι2 ◦ f2
= g ◦ f1 + f2

Thus the claim is proved.

More can be said about the iteration construct, in fact Bloom and Esik have written a monumental
treatise on this topic and compared various axiomatisations of iteration. Iteration is closely linked
to the notion of trace and is also the dual of a fixed-point combinator. We will not discuss the
various equational properties of iteration except to note the fixed point property: given any g : X
−→ X we have †([g, IY] ◦ f) = †(f ◦ g).

5.4.1 While Loops in a Probabilistic Framework

We define the syntax as follows:

S ::== xi := f("x)|S1;S2|if B then S1 else S2|while B do S.

We use the following conventions. We assume that the program has a fixed set of variables "x, say
there are n distinct variables, and that they each take values in some measure space (X,Σ). The

51

Dexter’s Probabilistic Language

Here f could be assigning a value randomly
according to some distribution.

Dexter gave measure transformer semantics in terms of

Markov kernels.

Monday, 21 May, 12

In the last line I · B means the disjoint union of |I| many copies of B. From this calculation and
the fact that f is a morphism in SRel we see that the sum is indeed defined. To verify untying is
a very easy exercise.

5.4 Kozen semantics and duality

In this short section we explain the point of the long digression into partially additive categories.
Briefly, the point is to support a notion of iteration. We give a simple presentation of Kozen’s prob-
abilistic semantics for a language of while loops using the fact that SRel supports iteration simply
by being a partially additive category. We first prove that there is an iteration operation whenever
we have a partially additive category and then give the semantics. Kozen’s first presentation was
much more elaborate, but in a later paper he sketched essentially this semantics and described a
very nice duality theory which gives a notion of probabilistic predicate transformer.

Theorem 5.14 (Arbib-Manes) Given f : X −→ X + Y in a partially additive category, we can
find a unique f1 : X −→ X and f2 : X −→ Y such that f = ι1 ◦ f1 + ι2 ◦ f2. Furthermore there is a
morphism †f =df

∑∞
n=0 f2 ◦ f

n
1 : X −→ Y . The morphism †f is called the iterate of f .

Proof. The first assertion is trivial. We have f1 = PRX ◦ f and f2 = PRY ◦ f where the PR
maps are the ones associated with the coproduct X+Y . The second assertion is about the specific
family {f2 ◦ fn

1 |n ≥ 0} being summable. We first prove by induction on k that the finite families
{f2 ◦ fn

1 |k ≥ n ≥ 0} are summable and the result then follows from the limit axiom. The base case
is just the unary sum axiom applied to f2. For the inductive step we claim that if g : X −→ Y is
any morphism then g ◦ f1 and f2 are summable. The induction step then follows immediately from
the claim by using

∑k
n=0 f2 ◦ f

n
1 for g. To prove the claim we note

[g, IY] ◦ f = [g, IY] ◦ (ι1 ◦ f1 + ι2 ◦ f2)
= [g, IY] ◦ ι1 ◦ f1 + [g, IY] ◦ ι2 ◦ f2
= g ◦ f1 + f2

Thus the claim is proved.

More can be said about the iteration construct, in fact Bloom and Esik have written a monumental
treatise on this topic and compared various axiomatisations of iteration. Iteration is closely linked
to the notion of trace and is also the dual of a fixed-point combinator. We will not discuss the
various equational properties of iteration except to note the fixed point property: given any g : X
−→ X we have †([g, IY] ◦ f) = †(f ◦ g).

5.4.1 While Loops in a Probabilistic Framework

We define the syntax as follows:

S ::== xi := f("x)|S1;S2|if B then S1 else S2|while B do S.

We use the following conventions. We assume that the program has a fixed set of variables "x, say
there are n distinct variables, and that they each take values in some measure space (X,Σ). The

51

Dexter’s Probabilistic Language

Here f could be assigning a value randomly
according to some distribution.

Dexter gave measure transformer semantics in terms of

Markov kernels.

He also gave backward semantics in terms of how
random variables transform.

Monday, 21 May, 12

Monday, 21 May, 12

Suppose that we want to describe the e�ect of x := 1729.

Monday, 21 May, 12

Suppose that we want to describe the e�ect of x := 1729.

Forwards: modify the description of the state so that

x is now bound to 1729.

Monday, 21 May, 12

Suppose that we want to describe the e�ect of x := 1729.

Forwards: modify the description of the state so that

x is now bound to 1729.

Backwards: If P is true after the command then P with

every x replaced by 1729 must have been true before.

Monday, 21 May, 12

Suppose that we want to describe the e�ect of x := 1729.

Forwards: modify the description of the state so that

x is now bound to 1729.

Backwards: If P is true after the command then P with

every x replaced by 1729 must have been true before.

In Dexter’s probabilistic setting:

Monday, 21 May, 12

Suppose that we want to describe the e�ect of x := 1729.

Forwards: modify the description of the state so that

x is now bound to 1729.

Backwards: If P is true after the command then P with

every x replaced by 1729 must have been true before.

In Dexter’s probabilistic setting:

If f is the value of a random variable after a command described

by a Markov kernel h, then

R
f(x

0
)h(x, dx

0
) is the value before.

Monday, 21 May, 12

In terms of categories

Monday, 21 May, 12

In terms of categories

The category of Markov kernels is SRel.

Monday, 21 May, 12

In terms of categories

The category of Markov kernels is SRel.

The category of probabilistic predicate

transformers is called SPT.

Monday, 21 May, 12

In terms of categories

The category of Markov kernels is SRel.

The category of probabilistic predicate

transformers is called SPT.

Duality: SRel ⌘ SPTop.

Monday, 21 May, 12

Why the categorical language?

After all, dealing with arrows can be painful!

Monday, 21 May, 12

Why the categorical language?

After all, dealing with arrows can be painful!

Monday, 21 May, 12

I was greatly influenced by a line from the famous song by Dexter:

Categories Uber Alles.

Monday, 21 May, 12

We know that elements are just a hack.

I was greatly influenced by a line from the famous song by Dexter:

Categories Uber Alles.

Monday, 21 May, 12

In the late 1990s I, working with Josée Desharnais, Abbas Edalat,

Radha Jagadeesan and Vineet Gupta were developing the theory

of Labelled Markov Processes (MDPs).

A key concept was bisimulation: when do two processes

behave exactly the same?

Logical characterization: when they agree on all the formulas

of a simple (modal) logic.

But equivalences are suspect, one should work with metrics.

Monday, 21 May, 12

Intuition: processes are close if the shortest formula

distinguishing them is big.

Monday, 21 May, 12

Intuition: processes are close if the shortest formula

distinguishing them is big.

How does one make this precise?

Monday, 21 May, 12

The Kozen Analogy

Logic Probability

State s Distribution µ
Predicate � Random variable f

Satisfaction s |= � Pairing

R
fdµ

Monday, 21 May, 12

We defined a class of functional expressions F
and interpreted them just like a logic.

Monday, 21 May, 12

We defined a class of functional expressions F
and interpreted them just like a logic.

d(s, s�) = sup
f⇥F

|f(s)� f(s�)|.

Monday, 21 May, 12

We defined a class of functional expressions F
and interpreted them just like a logic.

d(s, s�) = sup
f⇥F

|f(s)� f(s�)|.

The study of behavioural metrics is now flourishing with

many papers every year in concurrency theory and also

in machine learning and algorithms.

Monday, 21 May, 12

But it all started with a
random walk

through
Markov processes.

Monday, 21 May, 12

Happy Birthday Dexter!

Monday, 21 May, 12

