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ithaca 1985

S Del:)artment of Coml:)uter Science hired

two new Pro?s tlﬁat year:
o Dexter Kozen and me.

o Dexter was famous for the so-called
BKR algorit‘qm but
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Semantics and Logic

* also for modal logic P
+ mu-calculus and

S Probabilistic programs.




Two keg papers

* Semantics of Probabilistic programs,
JCSS, 1981

o A Probabilistic PDL, JCSS, 1985.




New ideas

o Take Probability theory on continuous

state spaces seriouslg.

* Hence, work with sigma~algebras,

measure theorg and integration.

* A new Stone—-tgpe clualitg.
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What is Stone clualitg?

& Stone rePresentation theorem: every
boolean algebra 1S isomorl:)lﬁic e o

Capcicte ]DOOICBI"I algebra O‘F sets.

]))

o But we know “elements are a hack
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o Fwe |oo|< at a” the boolean a gebras

and the maps between them then

* itlooks exactlg like a certain collection
of toPological spaces and the maps
between them

* going backwards!
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o This kind of thing haPPens several times

in mathematics:

> algebras and compact Hausdortf
spaces (Geltand clualitg)

+ Finite-dimensional vector spaces and

themselves (self clualitg)
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° Happens 18 computer sclence too:

+ We can define what a program does 1:39
going forwards: Stx Act --> St

® Or backwarcls:

TS Precondition < o Preclicate AT
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o Dexter found that this works for
Probabilistic programs too:

o Forwards semantics: measure

transformers (Markov kernels)

2 f)éﬂCl(WEﬂf'Cl semantics: transFormers OF

ranclom variables (value FUHCtiOﬂS) 3
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What is a probabilistic relation?
Answer: Markov kernels!

k(x, A): conditional probability of landing in a set A if one starts at .
Crucial for dealing with continuous state spaces.

k(x,-): a measure and k(-, A) is a measurable function.

What does this have to do with relations?
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How does one compose relations?

r(RoS)y=dz(xRz A zSy).

If we try to think of a “probabilistic relation” as a joint measure
on the product space we cannot compose them.

But Markov kernels are just the ticket!

h: X -Yandk:Y — Z

(o h)(z,C) = / k(y, O)h(z. dy).

The category of Markov processes (1999), ENTCS, P.
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Dexter’s Probabilistic Language

S == ux; := f(X)|S1;S2|if B then S else Sy|while B do S.
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Dexter’s Probabilistic Language

S == ux; := f(X)|S1;S2|if B then S else Sy|while B do S.

Here f could be assigning a value randomly
according to some distribution.

Dexter gave measure transformer semantics in terms of
Markov kernels.

He also gave backward semantics in terms of how
random variables transform.
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Suppose that we want to describe the effect of x := 1729.
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Suppose that we want to describe the effect of x := 1729.

Forwards: modify the description of the state so that
x 1s now bound to 1729.

Backwards: If P is true after the command then P with
every x replaced by 1729 must have been true before.

In Dexter’s probabilistic setting:

If f is the value of a random variable atter a command described
by a Markov kernel h, then [ f(z')h(x,dz’) is the value before.
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In terms of categories

The category of Markov kernels is SRel.

The category of probabilistic predicate
transformers is called SPT.

Duality: SRel = SPT.




Why the categorical language”

After all, dealing with arrows can be painful!
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I was greatly influenced by a line from the famous song by Dexter:
Categories Uber Alles.
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I was greatly influenced by a line from the famous song by Dexter:
Categories Uber Alles.

We know that elements are just a hack.
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In the late 1990s I, working with Josée Desharnais, Abbas Edalat,

Radha Jagadeesan and Vineet Gupta were developing the theory
of Labelled Markov Processes (MDPs).

A key concept was bisimulation: when do two processes
behave exactly the same?

Logical characterization: when they agree on all the formulas
of a simple (modal) logic.

But equivalences are suspect, one should work with metrics.
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Intuition: processes are close if the shortest formula
distinguishing them is big.
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Intuition: processes are close if the shortest formula
distinguishing them is big.

How does one make this precise?
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The Kozen Analogy

Logic Probability
State s Distribution u
Predicate ¢ Random variable f
Satisfaction s = ¢ Pairing | fdu




We defined a class of functional expressions F
and interpreted them just like a logic.
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We defined a class of functional expressions F
and interpreted them just like a logic.

d(s,s’) = sup [f(s) = f(s')].

Jfer




We defined a class of functional expressions F
and interpreted them just like a logic.

d(s,s’) = sup [f(s) = f(s')].

Jfer

The study of behavioural metrics is now flourishing with
many papers every year in concurrency theory and also
in machine learning and algorithms.
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But it all started with a
random walk
through

Markov processes.




Happy Birthday Dexter!




