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Quantum Computing

@ Uses qubits: 2 dimensional quantum systems
@ exploits entanglement

@ requires implementing precise
transformations on the qubits.
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The Trouble with Qubits

@ We need to be able to make exquisitely
delicate manipulations of qubits

@ while preserving entanglement and
@ ensuring absence of decoherence.

@ A tall order!
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@ Kitaevs great idea: use topologically
nontrivial configurations to represent qubits.
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We need stability

@ Kitaevs great idea: use topologically
nontrivial configurations to represent qubits.

@ The topology will keep the configuration
from coming apart.

@ Where do we find quantum braids or knots?
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particles that can each be in either box with
equal probability. What is the probability
that there is one particle in each box?
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Quantum Statistics

@ You have two boxes, A and B, and two
particles that can each be in either box with
equal probability. What is the probability
that there is one particle in each box?

@ If you answered 1/2 you are correct
classically,

@ Depending on the type of particle the
answer could be 1/3 (bosons) or O (fermions).
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@ A symmetry of a system is a transformation
that leaves the system looking unchanged.
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Symmetry

@ A symmetry of a system is a transformation
that leaves the system looking unchanged.

@ Symmeiries can be composed, there is an
identity, there is an inverse for every
symmetry and composition is associative.

@ Symmetries form a group.
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@ If a quantum system has a symmetry group
G, then applying elements of G to the state

space H must cause some transformation of
H.
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Symmetry in QM

@ If a quantum system has a symmetry group
G, then applying elements of G to the state

space H must cause some transformation of
H.

@ In short, the state space carries a
representation of the group.

o p:G— GL(H)
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@ In QM particles are identical. You
cannot label them and use arguments that
mention “the first particle” or “"the second
particle.’
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Identical particles

@ In QM particles are identical. You
cannot label them and use arguments that
mention “the first particle” or “"the second
particle.’

@ The permutation group is a symmetry of a
quantum system: the system looks the same
if you interchange particles of the same

type.
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@ the frivial representation: every permutation

is mapped onto the identity element of
GL(H),
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Representations of the
Permutation Group

@ The simplest two representations possible:

@ the frivial representation: every permutation

is mapped onto the identity element of
GL(H),

@ or the alternating representation: a
permutation P is mapped to +1 or -1
according to whether P is odd or even.
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What nature does

@ Nature has chosen to implement these basic
representations and no others, as far as we
Know.
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What nature does

@ Nature has chosen to implement these basic
representations and no others, as far as we
Know.

® The state vector of a system either changes
sign under an interchange of any pair of
identical particles (fermions) or does not
(bosons).
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@ If the state vector changes sign under an
interchange of identical particles but must
also look the same if they are in the same
state we have v = -v; where v is the state
vector describing two identical particles in
the same state.
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Consequences 1

@ If the state vector changes sign under an
interchange of identical particles but must
also look the same if they are in the same
state we have v = -v; where v is the state
vector describing two identical particles in
the same state.

@ In short v = 0!

@ With fermions two particles cannot be in
exactly the same state: Pauli exclusion
principle. The reason for chemistry!!
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Consequences 2

@ Bosons can indeed be packed into the same
state.
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Consequences 2

@ Bosons can indeed be packed into the same
state.

® The fundamental reason for early quantum
mechanics.

@ The explanation of lasers, superconductivity
and many other collective phenomena.
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e To describe a member of the group we need an angle
and a unit vector pointing along the axis of rotation.

e The group can be viewed as a solid ball of radius .
The angle of rotation is the distance from the centre.

e We have to identify a rotation of § and m — 6, so we
identify antipodal points on the surface of the ball.
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Spin in Quantum Mechanics

e (Quantum systems are rotationally symmetric.
e Therefore the rotation group must act on them.

e This group is called SO(3): the group of 3 x 3
orthogonal matrices with determinant +1.

e To describe a member of the group we need an angle
and a unit vector pointing along the axis of rotation.

e The group can be viewed as a solid ball of radius .
The angle of rotation is the distance from the centre.

e We have to identify a rotation of § and m — 6, so we
identify antipodal points on the surface of the ball.

e The resulting group is not simply connected: there
are loops that cannot be continuously deformed to a point.
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A picture of SO(3) showing a loop that can be shrunk to a point
and one that cannot.

SO(3) is not simply connected.
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There is another group SU(2): the group of unitary 2 x 2
matrices with determinant 1.

There is a homomorphism from SU(2) to SO(3) which is
onto and 2 to 1 and which locally looks just like SO(3)
but globally is simply connected.

e T,

o2
.

Now which is the relevant
symmetry group for quantum mechanics?
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Nature implements the representations of SU(2).

Friday, July 10, 2009



Nature implements the representations of SU(2).

Some representations of SU(2) behave like representations
of SO(3) but others behave strangely.

Friday, July 10, 2009



Nature implements the representations of SU(2).

Some representations of SU(2) behave like representations
of SO(3) but others behave strangely.

The representations of SU(2) can be classified by
a number 7 which can be either an integer
or half an integer.

Friday, July 10, 2009



Nature implements the representations of SU(2).

Some representations of SU(2) behave like representations
of SO(3) but others behave strangely.

The representations of SU(2) can be classified by
a number 7 which can be either an integer
or half an integer.

The quantity j5 is called the spin of the particle.

Friday, July 10, 2009
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Some representations of SU(2) behave like representations
of SO(3) but others behave strangely.

The representations of SU(2) can be classified by
a number 7 which can be either an integer
or half an integer.

The quantity j5 is called the spin of the particle.

The second type of representations correspond to objects
that change sign under rotation of 27: they are called spinors.
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Nature implements the representations of SU(2).

Some representations of SU(2) behave like representations
of SO(3) but others behave strangely.

The representations of SU(2) can be classified by
a number 7 which can be either an integer
or half an integer.

The quantity j5 is called the spin of the particle.

The second type of representations correspond to objects
that change sign under rotation of 27: they are called spinors.

Nature has two types of particles: those for which a 27 rotation
is the identity and those for which a 47 rotation is the identity.
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The Spin-Statistics Theorem

In any relativistic quantum field theory particles have half-integer spin
if and only if they are fermions and have integer spin iff they are bosons.
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The Spin-Statistics Theorem

In any relativistic quantum field theory particles have half-integer spin
if and only if they are fermions and have integer spin iff they are bosons.

Note that this is a general theorem.

No truly topological proof exists.

All this is true in three dimensions.

What happens in two dimensions?
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There are infinitely many classes of loops (homotopy classes).
S0 a rotation by 47 is not necessarily the identity and a
rotation by 27 is not necessarily a multiplication by 4-1.
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Though a simpler group, the topology is much more complicated.
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S0 a rotation by 47 is not necessarily the identity and a
rotation by 27 is not necessarily a multiplication by 4-1.

A rotation of 2 may result in a phase change e*’ that could
be anything.
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Two dimensional physics

Now the rotation group is SO(2), which is just a circle.

Though a simpler group, the topology is much more complicated.

There are infinitely many classes of loops (homotopy classes).
S0 a rotation by 47 is not necessarily the identity and a
rotation by 27 is not necessarily a multiplication by 4-1.

A rotation of 2 may result in a phase change e*’ that could
be anything.

Such entities are called anyons.
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What happened to the Spin-Statistics theorem?

It still holds in two dimensions! The relevant group
is no longer the permutation group but the braid group.

To understand why we need to think about the physics of
two dimensional entities.

In the laboratory we get 2D physics with a thin gas of free
electrons trapped between two semiconductor layers.

A strong magnetic field is applied in the perpendicular direction
confining the “gas” to a 2D layer.

Excited states of this system are not electrons but
virtual particles with strange properties.
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Imagine some (5 in the picture) particles and consider what happens when some
of them are exchanged.

Here 1—4,2+—1,3— 3,4+— 5 and 5+ 2

In 3D the strands can always be disentangled;

the only thing that matters is the start and end
point. So we can describe the effect just by giving
a permutation. |

In 2D the entangling matters. One has to
distinguish between different braidings.
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Here the permutations are the

same but the braiding is different
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The Braid Group

Fix n and consider n points on a line with another n points on a line below.
We connect them with strands. The generators of the group are interchanges

of adjacent strands.
Q This is an element of Bg.

Much richer theory than the permutation group.
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For n points the generators are by to b,_1 and their inverses. The generators

obey the following equations:

bibj = bjbz for |’L —]| Z 2

bibi+10; = bi11bibiq1 for

which respectively depicts as:

ii4 1 jji+1

—

and

i 1+1 142

1<i1<n—1.

A

11+ 1

\
\

\
)

—~
(NN
—_— —

—_—

77 +1
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Generalized Spin-Statistics theorem holds in dimensions 2 and 3.

See the paper by Froelich and Gabbiani : Local Quantum Theory and Braid
Group Statistics.

There is a lot more to be said about knots, braids, physics and related things
but we need to get on with the main story.
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Consider the exchange process. If we exchange two clusters of n anyons (of type
0) each, we get a phase change of n?6. Thus we have a particle of type n?.
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Combining Anyons

We can associate a type with anyons according to the phase they pick up during
an exchange.

What happens if we combine n anyons of type 87 What is the resulting type?

Consider the exchange process. If we exchange two clusters of n anyons (of type
0) each, we get a phase change of n?6. Thus we have a particle of type n?.

This is an example of what is called a fusion rule.

Thus if we have a cluster of n anyons and another cluster of m anyons (all

the basic anyons are type #) when we combine them we get a cluster of type
(n +m)?0.
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Combining Anyons

We can associate a type with anyons according to the phase they pick up during
an exchange.

What happens if we combine n anyons of type 87 What is the resulting type?

Consider the exchange process. If we exchange two clusters of n anyons (of type
0) each, we get a phase change of n?6. Thus we have a particle of type n?.

This is an example of what is called a fusion rule.

Thus if we have a cluster of n anyons and another cluster of m anyons (all

the basic anyons are type #) when we combine them we get a cluster of type
(n +m)?0.

Not all anyons are so simple!
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Physical systems in 2D have to carry representations of the braid group. What
do they look like?

The braid groups are infinite and there are infinitely many irreducible represen-
tations.

Let us consider 1D representations. A 1D vector space is just a copy of C. So
every linear map on C is just a complex number. So every generator b; of the
braid group looks like €%/ in a 1D rep.

Friday, July 10, 2009



Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What
do they look like?

The braid groups are infinite and there are infinitely many irreducible represen-
tations.

Let us consider 1D representations. A 1D vector space is just a copy of C. So
every linear map on C is just a complex number. So every generator b; of the
braid group looks like €%/ in a 1D rep.

One of the basic equations in the braid group is:
bjbj+105 = bj110;b;j41
The Yang-Baxter equation.
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Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What
do they look like?

The braid groups are infinite and there are infinitely many irreducible represen-
tations.

Let us consider 1D representations. A 1D vector space is just a copy of C. So
every linear map on C is just a complex number. So every generator b; of the
braid group looks like €%/ in a 1D rep.

One of the basic equations in the braid group is:

b;bj+105 = bj4+1b5bj41
The Yang-Baxter equation.

Applying this we get that e*?i+1W0i+110; — ¢i0j+14i0;+i0;11
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Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What
do they look like?

The braid groups are infinite and there are infinitely many irreducible represen-
tations.

Let us consider 1D representations. A 1D vector space is just a copy of C. So
every linear map on C is just a complex number. So every generator b; of the
braid group looks like €%/ in a 1D rep.

One of the basic equations in the braid group is:
bjbj+105 = bj110;b;j41
The Yang-Baxter equation.

Applying this we get that e*?i+1W0i+110; — ¢i0j+14i0;+i0;11

or 0; = 0;11. All the generators of the group produce the same phase shift.
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Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What
do they look like?

The braid groups are infinite and there are infinitely many irreducible represen-
tations.

Let us consider 1D representations. A 1D vector space is just a copy of C. So
every linear map on C is just a complex number. So every generator b; of the
braid group looks like €%/ in a 1D rep.

One of the basic equations in the braid group is:
bjbj+105 = bj110;b;j41
The Yang-Baxter equation.

Applying this we get that e*?i+1W0i+110; — ¢i0j+14i0;+i0;11

or 0; = 0;11. All the generators of the group produce the same phase shift.

However, there are more interesting representations.
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Non-abelian anyons

There are (we hope!) anyons that transform according to higher-dimensional
representations of the braid group. This happens when the ground state of the
system is degenerate and the actions of the braid group elements are given by
matrices.
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system is degenerate and the actions of the braid group elements are given by

matrices.

Now we can hope to implement non-trivial unitary transformations by braiding
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computation.
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Non-abelian anyons

There are (we hope!) anyons that transform according to higher-dimensional
representations of the braid group. This happens when the ground state of the
system is degenerate and the actions of the braid group elements are given by

matrices.

Now we can hope to implement non-trivial unitary transformations by braiding
these anyons together.

We have got to have non-abelian anyons in order to use them for quantum
computation.

There are candidates but there are no definite laboratory demonstrations of
non-abelian anyons.
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Fusing non-abelian anyons

Now the type of an anyon is not just a complex number but a matrix.
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combination of a type-a anyon and a type-b anyon.

Friday, July 10, 2009



Fusing non-abelian anyons
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Now the type of an anyon is not just a complex number but a matrix.

What happens when we combine anyons of different types? Write [a, b] for the
combination of a type-a anyon and a type-b anyon.

We get general fusion rules of the form [a,b] = > N¢ c; where the Ns are just
natural numbers.

Thus a rule like [a,b] = 2a 4+ b 4+ 3¢ means that fusing an a and a b produces
either an a — and this can happen in two ways — or a b or a ¢, which last can

happen in 3 ways.
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Fusing non-abelian anyons

Now the type of an anyon is not just a complex number but a matrix.

What happens when we combine anyons of different types? Write [a, b] for the
combination of a type-a anyon and a type-b anyon.

We get general fusion rules of the form [a,b] = > N¢ c; where the Ns are just
natural numbers.

Thus a rule like [a,b] = 2a 4+ b 4+ 3¢ means that fusing an a and a b produces
either an a — and this can happen in two ways — or a b or a ¢, which last can

happen in 3 ways.

It is the space of fusion possibilities that describes the qubits! If [a, b] = 2¢ we
use the 2D fusion space of the resulting ¢ anyon to encode a qubit.
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Fusing non-abelian anyons

Now the type of an anyon is not just a complex number but a matrix.

What happens when we combine anyons of different types? Write [a, b] for the
combination of a type-a anyon and a type-b anyon.

We get general fusion rules of the form [a,b] = > N¢ c; where the Ns are just
natural numbers.

Thus a rule like [a,b] = 2a 4+ b 4+ 3¢ means that fusing an a and a b produces
either an a — and this can happen in two ways — or a b or a ¢, which last can

happen in 3 ways.

It is the space of fusion possibilities that describes the qubits! If [a, b] = 2¢ we
use the 2D fusion space of the resulting ¢ anyon to encode a qubit.

How do we describe all this complicated algebra? There are different types of
things that combine in non-trivial ways. We have essentially an exotic type

theory.
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What do we need?

We need a system of types. Physicists call them “charges.”

We need to capture the idea of combining types and getting new types as a
result. We also need the idea of “putting together” and “or”.

We need to have the ability to describe braids.

In fact, the anyons are extended objects with more than “string-like” structure.
We need braided ribbons that may have twists in them.

We need braided monoidal categories. The tensor product structure gives the
fusion possibility. The additive structure gives the different possibilities.

To accomodate everything we use what are called modular tensor categories.
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An example: Fibonacci anyons

Two basic types: 1 and 7.

1®1~1
1Qr~7TR1~71 Here are the fusion rules.

TRXT~1DT
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An example: Fibonacci anyons

Two basic types: 1 and 7.

1®1~1
1Qr~7TR1~71 Here are the fusion rules.

TRXT~1DT

Consider the following calculation:

(TRT)RIT21ET)RT
~(1R7)D(TRT)
~ 7@ (1PT7)
~1H2-T.
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In pictures
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The basic idea to simulate quantum computation with anyons is given by the
following steps:

1. Consider a compound system of anyons. We initialise a state in the split-
ting space by fixing the charges the subsets of anyons according to the way
they will fuse. This determines the basis state in which the computation
starts.

2. We braid the anyons together, it will induce a unitary action on the chosen
splitting space.

3. Finally, we let the anyon fuse together and the way they fuse determines
which state is measured and this constitutes the output of our computa-
tion.
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The basic idea to simulate quantum computation with anyons is given by the
following steps:

1. Consider a compound system of anyons. We initialise a state in the split-
ting space by fixing the charges the subsets of anyons according to the way
they will fuse. This determines the basis state in which the computation
starts.

2. We braid the anyons together, it will induce a unitary action on the chosen
splitting space.

3. Finally, we let the anyon fuse together and the way they fuse determines
which state is measured and this constitutes the output of our computa-
tion.

In fact it is possible to show that the Fibonacci anyons are universal for quantum
computation.
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We also get a one-dimensional space corresponding
to the fusion outcome being 1.
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Simulating qubits

If we fuse 3 7s together we get

one two-dimensional space of possible 7 results

and we can label the basis vectors as:
(TRT)®T7;7,1) and |(T®T) @ T3 7, 2).

We also get a one-dimensional space corresponding
to the fusion outcome being 1.

The two-dimensional space of fusion outcomes is our qubit

The one-dimensional space represents possible “leakage.”
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We can braid the anyons together. Recall that anyons carry representations of
the braid group.
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Where are the gates”

We can braid the anyons together. Recall that anyons carry representations of
the braid group.

Furthermore, these are nonabelian anyons so they carry a higher-dimensional
representation of the braid group.

Thus there are matrices which act on the space of the anyons when they are
braided. We physically drag the anyons around one another to create a braid
and then we have a unitary transformation of the qubit space.
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the braid group.

Furthermore, these are nonabelian anyons so they carry a higher-dimensional
representation of the braid group.

Thus there are matrices which act on the space of the anyons when they are
braided. We physically drag the anyons around one another to create a braid
and then we have a unitary transformation of the qubit space.

These turn out to be dense in SU(2). So we can come close to any one-qubit
unitary by braiding.
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Where are the gates”

We can braid the anyons together. Recall that anyons carry representations of
the braid group.

Furthermore, these are nonabelian anyons so they carry a higher-dimensional
representation of the braid group.

Thus there are matrices which act on the space of the anyons when they are
braided. We physically drag the anyons around one another to create a braid
and then we have a unitary transformation of the qubit space.

These turn out to be dense in SU(2). So we can come close to any one-qubit
unitary by braiding.

We are almost there, but we need at least one two-qubit gate.
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The CNOT gate

We need two triplets of 7 anyons to represent the two qubits and we need to
braid them together.

Friday, July 10, 2009



The CNOT gate

We need two triplets of 7 anyons to represent the two qubits and we need to
braid them together.

The first step is to insert an anyon from the control triplet into the target triplet
carefully producing a trivial unitary.
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The CNOT gate

We need two triplets of 7 anyons to represent the two qubits and we need to
braid them together.

The first step is to insert an anyon from the control triplet into the target triplet
carefully producing a trivial unitary.

,/—\‘_/, S UM
@q ” HAJI‘J f‘J\iV\LP A\ \
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The first step is to insert an anyon from the control triplet into the target triplet
carefully producing a trivial unitary.
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The above scheme (by Bonesteel et al.) does the trick.
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The dark dots are the anyons of the control triplet but after the braiding the
fusion space has one of the target anyons in it.
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The above scheme (by Bonesteel et al.) does the trick.

The dark dots are the anyons of the control triplet but after the braiding the
fusion space has one of the target anyons in it.

An explicit calculation shows that the unitary in this case is the identity:.
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The CNOT gate

We need two triplets of 7 anyons to represent the two qubits and we need to
braid them together.

The first step is to insert an anyon from the control triplet into the target triplet
carefully producing a trivial unitary.
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The above scheme (by Bonesteel et al.) does the trick.

The dark dots are the anyons of the control triplet but after the braiding the
fusion space has one of the target anyons in it.

An explicit calculation shows that the unitary in this case is the identity:.

How do they come up with this?
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The CNOT gate

We need two triplets of 7 anyons to represent the two qubits and we need to
braid them together.

The first step is to insert an anyon from the control triplet into the target triplet
carefully producing a trivial unitary.

,/—\‘_/, S UM
@q ” HAJI‘J f‘J\iV\LP A\ \

The above scheme (by Bonesteel et al.) does the trick.

The dark dots are the anyons of the control triplet but after the braiding the
fusion space has one of the target anyons in it.

An explicit calculation shows that the unitary in this case is the identity:.

How do they come up with this? By being clever!
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@ insert NOT extract ©

The above shows the general scheme.

A NNOT can be implemented as a one-qubit unitary. We insert a pair of test
anyons. They fuse to produce a 7 or a 1.

If the tfusion produces a 1 then any tensoring with the other anyons has no effect.
If it produces a 7 the NOT will have an effect. At the end we restore the state
of the control triplet.

Details are admittedly hairy and formalizing all this is daunting.
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Conclusions

New model of computation based on entirely new physics.

Lies at the crossroads of mathematics (representation theory of the braid group,
modular tensor categories), quantum computation (universality theorems) and

physics.

How does it relate to other models? Like the one-way model?

We need more structured “logical” ways of reasoning. This is where this com-
munity can help.

Tremendously exciting synergy between the three communities.
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