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Quantum Computing

Uses qubits: 2 dimensional quantum systems

exploits entanglement 

requires implementing precise 
transformations on the qubits. 
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The Trouble with Qubits

We need to be able to make exquisitely 
delicate manipulations of qubits

while preserving entanglement and 

ensuring absence of decoherence.

A tall order!
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We need stability

Kitaev’s great idea: use topologically 
nontrivial configurations to represent qubits.

The topology will keep the configuration 
from coming apart.

Where do we find quantum braids or knots?
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classically, but this is not what happens in 
quantum mechanics!
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Quantum Statistics

You have two boxes, A and B, and two 
particles that can each be in either box with 
equal probability.  What is the probability 
that there is one particle in each box?

If you answered 1/2 you are correct 
classically, but this is not what happens in 
quantum mechanics!

Depending on the type of particle the 
answer could be 1/3 (bosons) or 0 (fermions).
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Symmetry 

A symmetry of a system is a transformation 
that leaves the system looking unchanged.

Symmetries can be composed, there is an 
identity, there is an inverse for every 
symmetry and composition is associative.

Symmetries form a group.
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space H must cause some transformation of 
H.
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Symmetry in QM

If a quantum system has a symmetry group 
G, then applying elements of G to the state 
space H must cause some transformation of 
H.

In short, the state space carries a 
representation of the group.  

ρ : G→ GL(H)
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Identical particles

In QM particles are absolutely identical.  You 
cannot label them and use arguments that 
mention “the first particle” or “the second 
particle.”

The permutation group is a symmetry of a 
quantum system: the system looks the same 
if you interchange particles of the same 
type.
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Representations of the 
Permutation Group

The simplest two representations possible:

the trivial representation: every permutation 
is mapped onto the identity element of 
GL(H),

or the alternating representation: a 
permutation P is mapped to +1 or -1 
according to whether P is odd or even.
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What nature does

Nature has chosen to implement these basic 
representations and no others, as far as we 
know.

The state vector of a system either changes 
sign under an interchange of any pair of 
identical particles (fermions) or does not 
(bosons).
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If the state vector changes sign under an 
interchange of identical particles but must 
also look the same if they are in the same 
state we have v = -v; where v is the state 
vector describing two identical particles in 
the same state.
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Consequences 1

If the state vector changes sign under an 
interchange of identical particles but must 
also look the same if they are in the same 
state we have v = -v; where v is the state 
vector describing two identical particles in 
the same state.

In short v = 0!

With fermions two particles cannot be in 
exactly the same state: Pauli exclusion 
principle.  The reason for chemistry!!
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Consequences 2

Bosons can indeed be packed into the same 
state.

The fundamental reason for early quantum 
mechanics.

The explanation of lasers, superconductivity 
and many other collective phenomena.
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identify antipodal points on the surface of the ball.
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Spin in Quantum Mechanics

• Quantum systems are rotationally symmetric.

• Therefore the rotation group must act on them.

• This group is called SO(3): the group of 3× 3
orthogonal matrices with determinant +1.

• To describe a member of the group we need an angle
and a unit vector pointing along the axis of rotation.

• The group can be viewed as a solid ball of radius π.
The angle of rotation is the distance from the centre.

• We have to identify a rotation of θ and π − θ, so we
identify antipodal points on the surface of the ball.

• The resulting group is not simply connected: there
are loops that cannot be continuously deformed to a point.
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A picture of SO(3) showing a loop that can be shrunk to a point
and one that cannot.

SO(3) is not simply connected.
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There is another group SU(2): the group of unitary 2× 2
matrices with determinant 1.

There is a homomorphism from SU(2) to SO(3) which is
onto and 2 to 1 and which locally looks just like SO(3)
but globally is simply connected.
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Now which is the relevant
symmetry group for quantum mechanics?
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The representations of SU(2) can be classified by
a number j which can be either an integer
or half an integer.
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Some representations of SU(2) behave like representations
of SO(3) but others behave strangely.

The representations of SU(2) can be classified by
a number j which can be either an integer
or half an integer.

The second type of representations correspond to objects
that change sign under rotation of 2π: they are called spinors.

The quantity j is called the spin of the particle.
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Nature implements the representations of SU(2).

Some representations of SU(2) behave like representations
of SO(3) but others behave strangely.

The representations of SU(2) can be classified by
a number j which can be either an integer
or half an integer.

The second type of representations correspond to objects
that change sign under rotation of 2π: they are called spinors.

Nature has two types of particles: those for which a 2π rotation
is the identity and those for which a 4π rotation is the identity.

The quantity j is called the spin of the particle.
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The Spin-Statistics Theorem

In any relativistic quantum field theory particles have half-integer spin
if and only if they are fermions and have integer spin iff they are bosons.
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Note that this is a general theorem.
No truly topological proof exists.

All this is true in three dimensions.
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The Spin-Statistics Theorem

In any relativistic quantum field theory particles have half-integer spin
if and only if they are fermions and have integer spin iff they are bosons.

Note that this is a general theorem.
No truly topological proof exists.

All this is true in three dimensions.

What happens in two dimensions?
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So a rotation by 4π is not necessarily the identity and a
rotation by 2π is not necessarily a multiplication by ±1.
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So a rotation by 4π is not necessarily the identity and a
rotation by 2π is not necessarily a multiplication by ±1.

A rotation of 2π may result in a phase change eiθ that could
be anything.
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Two dimensional physics

Now the rotation group is SO(2), which is just a circle.

Though a simpler group, the topology is much more complicated.

There are infinitely many classes of loops (homotopy classes).
So a rotation by 4π is not necessarily the identity and a
rotation by 2π is not necessarily a multiplication by ±1.

A rotation of 2π may result in a phase change eiθ that could
be anything.

Such entities are called anyons.
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What happened to the Spin-Statistics theorem?

It still holds in two dimensions! The relevant group
is no longer the permutation group but the braid group.

To understand why we need to think about the physics of
two dimensional entities.

In the laboratory we get 2D physics with a thin gas of free
electrons trapped between two semiconductor layers.

A strong magnetic field is applied in the perpendicular direction
confining the “gas” to a 2D layer.

Excited states of this system are not electrons but
virtual particles with strange properties.
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Imagine some (5 in the picture) particles and consider what happens when some
of them are exchanged.

Here 1 !→ 4, 2 !→ 1, 3 !→ 3, 4 !→ 5 and 5 !→ 2

In 3D the strands can always be disentangled;
the only thing that matters is the start and end
point. So we can describe the effect just by giving
a permutation.

In 2D the entangling matters. One has to
distinguish between different braidings.

Friday, July 10, 2009



T

:t,t,i

lr,l
.:d
-T
1q
:.{
't

:'

Here the permutations are the same but the braiding is different.
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The Braid Group
Fix n and consider n points on a line with another n points on a line below.
We connect them with strands. The generators of the group are interchanges
of adjacent strands.

This is an element of B6.

Much richer theory than the permutation group.
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8 P. Panangaden and É. O. Paquette

are a much richer collection and we have the possibility of many more kinds
of statistics in two dimensions: these particles are the anyons.

There is still a spin-statistics connection, however, it is now more compli-
cated. As we have seen there are more than two possibilities for the “statis-
tics”: interchanging particles can cause arbitrary phase shifts. The rotation
group in two dimensions is SO(2). This group has the same homotopy group
as a circle so it has an infinite family of types of “spin.”

There is another new feature to be considered. As we have mentioned
before, the physical quasi-particles that arise in the fractional quantum Hall
effect are extended objects with charge and tubes of magnetic flux. Not only
is there braiding but also twisting. Later, when we formalize the theory cat-
egorically we will introduce additional algebraic structure: the aptly named
ribbon structure to capture this. For the moment we confine our attention to
braiding.

The braid group can be described by giving generators and relations. We
think of there being a fixed set of n points along a line segment and we
visualize an element of the braid group as a set of strands connecting two
such collections of n points. Each strand must go from one of the lower points
to one of the upper points. The generators are interchanges of two adjacent
strands: this can happen in two ways, the strand of particle i crosses over the
strand of particle i+1 – we call this bi – or it can cross under, we call this b−1

i .
For n points the generators are b1 to bn−1 and their inverses. The generators
obey the following equations:

bibj = bjbi for |i − j| ≥ 2 (1)

bibi+1bi = bi+1bibi+1 for 1 ≤ i ≤ n − 1. (2)

which respectively depicts as:

=

i i + 1 j j + 1

...... ...

i i + 1 j j + 1

...... ...

and

=

i i + 1

... ...

i + 2i i + 1

... ...

i + 2
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Generalized Spin-Statistics theorem holds in dimensions 2 and 3.

See the paper by Froelich and Gabbiani : Local Quantum Theory and Braid
Group Statistics.

There is a lot more to be said about knots, braids, physics and related things
but we need to get on with the main story.
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an exchange.
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Consider the exchange process. If we exchange two clusters of n anyons (of type
θ) each, we get a phase change of n2θ. Thus we have a particle of type n2θ.
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Combining Anyons

We can associate a type with anyons according to the phase they pick up during
an exchange.

What happens if we combine n anyons of type θ? What is the resulting type?

Consider the exchange process. If we exchange two clusters of n anyons (of type
θ) each, we get a phase change of n2θ. Thus we have a particle of type n2θ.

This is an example of what is called a fusion rule.

Thus if we have a cluster of n anyons and another cluster of m anyons (all
the basic anyons are type θ) when we combine them we get a cluster of type
(n + m)2θ.
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Combining Anyons

We can associate a type with anyons according to the phase they pick up during
an exchange.

What happens if we combine n anyons of type θ? What is the resulting type?

Consider the exchange process. If we exchange two clusters of n anyons (of type
θ) each, we get a phase change of n2θ. Thus we have a particle of type n2θ.

This is an example of what is called a fusion rule.

Thus if we have a cluster of n anyons and another cluster of m anyons (all
the basic anyons are type θ) when we combine them we get a cluster of type
(n + m)2θ.

Not all anyons are so simple!
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Physical systems in 2D have to carry representations of the braid group. What
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The braid groups are infinite and there are infinitely many irreducible represen-
tations.

Let us consider 1D representations. A 1D vector space is just a copy of C. So
every linear map on C is just a complex number. So every generator bj of the
braid group looks like eiθj in a 1D rep.
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Physical systems in 2D have to carry representations of the braid group. What
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tations.

Let us consider 1D representations. A 1D vector space is just a copy of C. So
every linear map on C is just a complex number. So every generator bj of the
braid group looks like eiθj in a 1D rep.

One of the basic equations in the braid group is:
bjbj+1bj = bj+1bjbj+1

The Yang-Baxter equation.

Applying this we get that eiθj+iθj+1+iθj = eiθj+1+iθj+iθj+1

Friday, July 10, 2009



Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What
do they look like?

The braid groups are infinite and there are infinitely many irreducible represen-
tations.

Let us consider 1D representations. A 1D vector space is just a copy of C. So
every linear map on C is just a complex number. So every generator bj of the
braid group looks like eiθj in a 1D rep.

One of the basic equations in the braid group is:
bjbj+1bj = bj+1bjbj+1

The Yang-Baxter equation.

Applying this we get that eiθj+iθj+1+iθj = eiθj+1+iθj+iθj+1

or θj = θj+1. All the generators of the group produce the same phase shift.
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Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What
do they look like?

The braid groups are infinite and there are infinitely many irreducible represen-
tations.

Let us consider 1D representations. A 1D vector space is just a copy of C. So
every linear map on C is just a complex number. So every generator bj of the
braid group looks like eiθj in a 1D rep.

One of the basic equations in the braid group is:
bjbj+1bj = bj+1bjbj+1

The Yang-Baxter equation.

Applying this we get that eiθj+iθj+1+iθj = eiθj+1+iθj+iθj+1

or θj = θj+1. All the generators of the group produce the same phase shift.

However, there are more interesting representations.

Friday, July 10, 2009



Non-abelian anyons

Friday, July 10, 2009



Non-abelian anyons
There are (we hope!) anyons that transform according to higher-dimensional
representations of the braid group. This happens when the ground state of the
system is degenerate and the actions of the braid group elements are given by
matrices.
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Now we can hope to implement non-trivial unitary transformations by braiding
these anyons together.
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Non-abelian anyons
There are (we hope!) anyons that transform according to higher-dimensional
representations of the braid group. This happens when the ground state of the
system is degenerate and the actions of the braid group elements are given by
matrices.

Now we can hope to implement non-trivial unitary transformations by braiding
these anyons together.

We have got to have non-abelian anyons in order to use them for quantum
computation.

There are candidates but there are no definite laboratory demonstrations of
non-abelian anyons.

Friday, July 10, 2009



Fusing non-abelian anyons
Now the type of an anyon is not just a complex number but a matrix.
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We get general fusion rules of the form [a, b] =
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c N c
abc; where the Ns are just

natural numbers.
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Now the type of an anyon is not just a complex number but a matrix.

What happens when we combine anyons of different types? Write [a, b] for the
combination of a type-a anyon and a type-b anyon.

We get general fusion rules of the form [a, b] =
∑

c N c
abc; where the Ns are just

natural numbers.

Thus a rule like [a, b] = 2a + b + 3c means that fusing an a and a b produces
either an a – and this can happen in two ways – or a b or a c, which last can
happen in 3 ways.
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Fusing non-abelian anyons
Now the type of an anyon is not just a complex number but a matrix.

What happens when we combine anyons of different types? Write [a, b] for the
combination of a type-a anyon and a type-b anyon.

We get general fusion rules of the form [a, b] =
∑

c N c
abc; where the Ns are just

natural numbers.

Thus a rule like [a, b] = 2a + b + 3c means that fusing an a and a b produces
either an a – and this can happen in two ways – or a b or a c, which last can
happen in 3 ways.

It is the space of fusion possibilities that describes the qubits! If [a, b] = 2c we
use the 2D fusion space of the resulting c anyon to encode a qubit.
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Fusing non-abelian anyons
Now the type of an anyon is not just a complex number but a matrix.

What happens when we combine anyons of different types? Write [a, b] for the
combination of a type-a anyon and a type-b anyon.

We get general fusion rules of the form [a, b] =
∑

c N c
abc; where the Ns are just

natural numbers.

Thus a rule like [a, b] = 2a + b + 3c means that fusing an a and a b produces
either an a – and this can happen in two ways – or a b or a c, which last can
happen in 3 ways.

It is the space of fusion possibilities that describes the qubits! If [a, b] = 2c we
use the 2D fusion space of the resulting c anyon to encode a qubit.

How do we describe all this complicated algebra? There are different types of
things that combine in non-trivial ways. We have essentially an exotic type
theory.
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We need a system of types. Physicists call them “charges.”

We need to capture the idea of combining types and getting new types as a
result. We also need the idea of “putting together” and “or”.

We need to have the ability to describe braids.

In fact, the anyons are extended objects with more than “string-like” structure.
We need braided ribbons that may have twists in them.

We need braided monoidal categories. The tensor product structure gives the
fusion possibility. The additive structure gives the different possibilities.

To accomodate everything we use what are called modular tensor categories.
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4.12 Categorical epilogue

This complete our categorical presentation of the algebra of a family of anyons.
Note that even if in what follows we will use only the semisimple ribbon struc-
ture in our description of topological quantum computation, specifying com-
pletely the modular tensor category structure was worth the work: Indeed,
specifying the simple objects, the fusion rules, the pentagon and hexagon ax-
ioms, the twist and the S-matrix completely determine the topological prop-
erties of a species of anyons!

5 An example: Fibonacci anyons

Our intended model to illustrate quantum computation with anyons is the
formal semisimple modular tensor category Fib which captures the rules of
Fibonacci anyons:

• These anyons have only two charges: 1 and τ , where 1 is the trivial charge,
• Both are their own conjugated charge,
• They satisfies the following fusion rules:

1 ⊗ 1 " 1

1 ⊗ τ " τ ⊗ 1 " τ

τ ⊗ τ " 1 ⊕ τ

Categorically, this says that the semisimple modular tensor category Fib has

• Two simple objects 1 and τ where 1 is the tensor unit,
• That they are their own dual i.e.: 1∗ = 1 and τ∗ = τ and,
• That 1 and τ satisfy the fusion rules given above.

Let us inspect the fusion rules. While the two first trivially hold, the third
one says that the charge resulting of the fusion of two anyons of charge τ is
either 1 or τ . It is precisely this third rule that tells us that our anyons are
non-abelians as they can fuse in two distinct ways.

Now, back to our model, consider three anyons of charge τ all lined up
(τ ⊗ τ) ⊗ τ and let them fuse in the order fixed by the bracketing. Such a
process is algebraically described by:

(τ ⊗ τ) ⊗ τ " (1 ⊕ τ) ⊗ τ

" (1 ⊗ τ) ⊕ (τ ⊗ τ)

" τ ⊕ (1 ⊕ τ)

" 1 ⊕ 2 · τ.

Hence, the fusion process for three τ anyons yields a final charge τ in 2 different
ways or 1 in a single way. These three scenarios depict as

Two basic types: 1 and τ .
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Here are the fusion rules.

Friday, July 10, 2009



A categorical presentation of quantum computation with anyons 31

4.12 Categorical epilogue

This complete our categorical presentation of the algebra of a family of anyons.
Note that even if in what follows we will use only the semisimple ribbon struc-
ture in our description of topological quantum computation, specifying com-
pletely the modular tensor category structure was worth the work: Indeed,
specifying the simple objects, the fusion rules, the pentagon and hexagon ax-
ioms, the twist and the S-matrix completely determine the topological prop-
erties of a species of anyons!

5 An example: Fibonacci anyons

Our intended model to illustrate quantum computation with anyons is the
formal semisimple modular tensor category Fib which captures the rules of
Fibonacci anyons:

• These anyons have only two charges: 1 and τ , where 1 is the trivial charge,
• Both are their own conjugated charge,
• They satisfies the following fusion rules:

1 ⊗ 1 " 1

1 ⊗ τ " τ ⊗ 1 " τ

τ ⊗ τ " 1 ⊕ τ

Categorically, this says that the semisimple modular tensor category Fib has

• Two simple objects 1 and τ where 1 is the tensor unit,
• That they are their own dual i.e.: 1∗ = 1 and τ∗ = τ and,
• That 1 and τ satisfy the fusion rules given above.

Let us inspect the fusion rules. While the two first trivially hold, the third
one says that the charge resulting of the fusion of two anyons of charge τ is
either 1 or τ . It is precisely this third rule that tells us that our anyons are
non-abelians as they can fuse in two distinct ways.

Now, back to our model, consider three anyons of charge τ all lined up
(τ ⊗ τ) ⊗ τ and let them fuse in the order fixed by the bracketing. Such a
process is algebraically described by:

(τ ⊗ τ) ⊗ τ " (1 ⊕ τ) ⊗ τ

" (1 ⊗ τ) ⊕ (τ ⊗ τ)

" τ ⊕ (1 ⊕ τ)

" 1 ⊕ 2 · τ.

Hence, the fusion process for three τ anyons yields a final charge τ in 2 different
ways or 1 in a single way. These three scenarios depict as

Two basic types: 1 and τ .

A categorical presentation of quantum computation with anyons 31

4.12 Categorical epilogue

This complete our categorical presentation of the algebra of a family of anyons.
Note that even if in what follows we will use only the semisimple ribbon struc-
ture in our description of topological quantum computation, specifying com-
pletely the modular tensor category structure was worth the work: Indeed,
specifying the simple objects, the fusion rules, the pentagon and hexagon ax-
ioms, the twist and the S-matrix completely determine the topological prop-
erties of a species of anyons!

5 An example: Fibonacci anyons

Our intended model to illustrate quantum computation with anyons is the
formal semisimple modular tensor category Fib which captures the rules of
Fibonacci anyons:

• These anyons have only two charges: 1 and τ , where 1 is the trivial charge,
• Both are their own conjugated charge,
• They satisfies the following fusion rules:

1 ⊗ 1 " 1

1 ⊗ τ " τ ⊗ 1 " τ

τ ⊗ τ " 1 ⊕ τ

Categorically, this says that the semisimple modular tensor category Fib has

• Two simple objects 1 and τ where 1 is the tensor unit,
• That they are their own dual i.e.: 1∗ = 1 and τ∗ = τ and,
• That 1 and τ satisfy the fusion rules given above.

Let us inspect the fusion rules. While the two first trivially hold, the third
one says that the charge resulting of the fusion of two anyons of charge τ is
either 1 or τ . It is precisely this third rule that tells us that our anyons are
non-abelians as they can fuse in two distinct ways.

Now, back to our model, consider three anyons of charge τ all lined up
(τ ⊗ τ) ⊗ τ and let them fuse in the order fixed by the bracketing. Such a
process is algebraically described by:

(τ ⊗ τ) ⊗ τ " (1 ⊕ τ) ⊗ τ

" (1 ⊗ τ) ⊕ (τ ⊗ τ)

" τ ⊕ (1 ⊕ τ)

" 1 ⊕ 2 · τ.

Hence, the fusion process for three τ anyons yields a final charge τ in 2 different
ways or 1 in a single way. These three scenarios depict as

}
Here are the fusion rules.

Consider the following calculation:
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We now pass to the context of finite-dimensional complex vector spaces via
the splitting spaces whose basis vector are dual to the fusion states described
above. Consider

Hom(b, (τ ⊗ τ) ⊗ τ) " Hom(b,1 ⊕ 2 · τ)

" Hom(b,1) ⊕ Hom(b, 2 · τ) and as 2 · τ := τ ⊕ τ this is

" Hom(b,1) ⊕ 2 · Hom(b, τ).

Now, using lemma 1 in conjunction with the property that for any b ∈ {1, τ},
End(b) " C; if we set b = 1 the last expression is isomorphic to C ⊕ 2 · 0.
Conversely if b = τ , then it is isomorphic to 0 ⊕ 2 · C.

From this, we conclude that considering the space of states with global
charge b ∈ {1, τ} is the same as considering

Hom(b, (τ ⊗ τ) ⊗ τ).

In its turns, such a consideration fixes either of the splitting spaces C or
2 · C := C2 as orthogonal subspaces of C3, the topological space representing
our triple of anyons. It is within this two-dimensional complex vector space
that we will simulate our qubit. Indeed, if b = τ , we are left with two degrees
of freedom which are the two possible outputs of the second splitting.

Remark 8. It is worth stressing that it takes three anyons of charge τ to sim-
ulate a single qubit. Moreover, we shall see later that braiding these anyons
together simulates a unitary transformation on such a simulated qubit.

Remark 9. Since Fib is rigid, we can apply proposition 1. We have

Hom(τ, (τ ⊗ τ) ⊗ τ) " Hom(1 ⊗ τ, (τ ⊗ τ) ⊗ τ)

" Hom(1, ((τ ⊗ τ) ⊗ τ) ⊗ τ).

Comparing this fact with what we got in example , we see that the two different
encoding are essentially the same. It is also because of this, some authors, for
instance J. Preskill in [31], prefer to encodes their qubit within a quadruple
of anyons of individual charge τ with global charge 1 instead. We choose the
former to align with the work of Bonesteel et al. [7] that we will explain in
section 6.

Now, consider a transformation f acting on a triple of anyons with total charge
b. This is:

In pictures
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The B-matrix

The R-matrix provided in the previous section give us a way to exchange the
two leftmost anyons in a set of three. We now need a way to find the matrix
that exchanges the two rightmost anyons, this will be the B-matrix and is
calculated from the R- and as

Hom(W, (S ⊗ T ) ⊗ U)
B !!

Hom(1W ,αS,T ;U )

""

Hom(W, (S ⊗ U) ⊗ T )

Hom(W,S ⊗ (T ⊗ U))
Hom(1W ,1S⊗σT,U )

!! Hom(W,S ⊗ (U ⊗ T ))

Hom(1W ,α−1
S,U;T )

##

As we found both the F and the R matrix in Fib, we can compute the B-
matrix as

B := F−1RF =





−e−2iπ/5 0 0

0 −φ−1e−iπ/5 −i
√

φ−1e−iπ/10

0 −i
√

φ−1e−iπ/10 −φ−1





6 Universal quantum computation with

Fibonacci anyons

The basic idea to simulate quantum computation with anyons is given by the
following steps:

1. Consider a compound system of anyons. We initialise a state in the split-
ting space by fixing the charges the subsets of anyons according to the way
they will fuse. This determines the basis state in which the computation
starts.

2. We braid the anyons together, it will induce a unitary action on the chosen
splitting space.

3. Finally, we let the anyon fuse together and the way they fuse determines
which state is measured and this constitutes the output of our computa-
tion.

Simulating qubits

First, the topological space for such a triple is a pair 〈C, C2〉 where the
2-dimensional space is spanned by the fusion states

|0〉 := |(τ ⊗ τ) ⊗ τ ; τ, 1〉 and |1〉 := |(τ ⊗ τ) ⊗ τ ; τ, 2〉,

and the space of dimension one is spanned by:

|NC〉 := |(τ ⊗ τ) ⊗ τ ;1, 1〉.Friday, July 10, 2009
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In fact it is possible to show that the Fibonacci anyons are universal for quantum
computation.
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If we fuse 3 τs together we get
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The R-matrix provided in the previous section give us a way to exchange the
two leftmost anyons in a set of three. We now need a way to find the matrix
that exchanges the two rightmost anyons, this will be the B-matrix and is
calculated from the R- and as

Hom(W, (S ⊗ T ) ⊗ U)
B !!

Hom(1W ,αS,T ;U )

""

Hom(W, (S ⊗ U) ⊗ T )

Hom(W,S ⊗ (T ⊗ U))
Hom(1W ,1S⊗σT,U )

!! Hom(W,S ⊗ (U ⊗ T ))

Hom(1W ,α−1
S,U;T )

##

As we found both the F and the R matrix in Fib, we can compute the B-
matrix as

B := F−1RF =





−e−2iπ/5 0 0

0 −φ−1e−iπ/5 −i
√

φ−1e−iπ/10

0 −i
√

φ−1e−iπ/10 −φ−1





6 Universal quantum computation with

Fibonacci anyons

The basic idea to simulate quantum computation with anyons is given by the
following steps:

1. Consider a compound system of anyons. We initialise a state in the split-
ting space by fixing the charges the subsets of anyons according to the way
they will fuse. This determines the basis state in which the computation
starts.

2. We braid the anyons together, it will induce a unitary action on the chosen
splitting space.

3. Finally, we let the anyon fuse together and the way they fuse determines
which state is measured and this constitutes the output of our computa-
tion.

Simulating qubits

First, the topological space for such a triple is a pair 〈C, C2〉 where the
2-dimensional space is spanned by the fusion states

|0〉 := |(τ ⊗ τ) ⊗ τ ; τ, 1〉 and |1〉 := |(τ ⊗ τ) ⊗ τ ; τ, 2〉,

and the space of dimension one is spanned by:

|NC〉 := |(τ ⊗ τ) ⊗ τ ;1, 1〉.

If we fuse 3 τs together we get

one two-dimensional space of possible τ results
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If we fuse 3 τs together we get

one two-dimensional space of possible τ results

and we can label the basis vectors as:
|(τ ⊗ τ)⊗ τ ; τ, 1〉 and |(τ ⊗ τ)⊗ τ ; τ, 2〉.
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to the fusion outcome being 1.
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We also get a one-dimensional space corresponding
to the fusion outcome being 1.

The two-dimensional space of fusion outcomes is our qubit.
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Fibonacci anyons

The basic idea to simulate quantum computation with anyons is given by the
following steps:

1. Consider a compound system of anyons. We initialise a state in the split-
ting space by fixing the charges the subsets of anyons according to the way
they will fuse. This determines the basis state in which the computation
starts.

2. We braid the anyons together, it will induce a unitary action on the chosen
splitting space.

3. Finally, we let the anyon fuse together and the way they fuse determines
which state is measured and this constitutes the output of our computa-
tion.

Simulating qubits

First, the topological space for such a triple is a pair 〈C, C2〉 where the
2-dimensional space is spanned by the fusion states

|0〉 := |(τ ⊗ τ) ⊗ τ ; τ, 1〉 and |1〉 := |(τ ⊗ τ) ⊗ τ ; τ, 2〉,

and the space of dimension one is spanned by:

|NC〉 := |(τ ⊗ τ) ⊗ τ ;1, 1〉.

If we fuse 3 τs together we get

one two-dimensional space of possible τ results

and we can label the basis vectors as:
|(τ ⊗ τ)⊗ τ ; τ, 1〉 and |(τ ⊗ τ)⊗ τ ; τ, 2〉.

We also get a one-dimensional space corresponding
to the fusion outcome being 1.

The two-dimensional space of fusion outcomes is our qubit.

The one-dimensional space represents possible “leakage.”
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and then we have a unitary transformation of the qubit space.
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Where are the gates?
We can braid the anyons together. Recall that anyons carry representations of
the braid group.

Furthermore, these are nonabelian anyons so they carry a higher-dimensional
representation of the braid group.

Thus there are matrices which act on the space of the anyons when they are
braided. We physically drag the anyons around one another to create a braid
and then we have a unitary transformation of the qubit space.

These turn out to be dense in SU(2). So we can come close to any one-qubit
unitary by braiding.

We are almost there, but we need at least one two-qubit gate.
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The CNOT gate
We need two triplets of τ anyons to represent the two qubits and we need to
braid them together.

The first step is to insert an anyon from the control triplet into the target triplet
carefully producing a trivial unitary.

38 P. Panangaden and É. O. Paquette

Of course, the simulation of a qubit will occur on the 2-dimensional space
spanned by {|0〉, |1〉}. Compound system of two or more qubits will be given
by the compound system of such a triple of anyons. Note that even if we fix
the global charge of the triple as τ , in the real world, it is possible that we
may still measure 1. These errors are known as “leakage errors” as there is
some unexpected “leaks” into another splitting space.

Quantum computation

To perform actual quantum computation, it seems at first glance that we
have two problems:

1. First, we would like to apply any gate on our simulated qubits but we
have only the two braiding matrices and their inverse.

2. Second, even if we solve our first problem, it remains that this is not
enough to quantum compute. Indeed, we also need a two-qubit gate.

We answer these. First, a composition of length l of R- and B-matrices and
their inverses can get arbitrarily close to any element of SU(2) and that, with
l reasonably small. This is a consequence of the fact that our matrices together
with their inverse satisfies the Solovay-Kitaev theorem, see [28] pp. 617–624
for a precise statement and a proof.

We now address the second problem. Following the works of Bonesteel et
al. in [7], we explain how to build a CNOT gate for our anyons; for this we
will need two triplets of τ anyons; one of them will act as our test qubit while
the other will be the target qubit. The idea is relatively simple: we need to
intertwine a pair of quasi-particles from the first triplet – the control pair –
with the target triplet without disturbing it : As the braid operators are dense
in SU(2), we will arrange such an intertwining so that its representation in
SU(2) is close enough to to the identity. The next thing is to implement
a NOT – actually a i · NOT – by braiding our two anyons of the control
pair with those of the target triple. Finally, we extract the control pair from
the second triplet – again – without disturbing it. Now, the key point is the
following: braiding an anyon with charge 1 around anyons of arbitrary charge
does not change anything. Thus, when measuring the control pair, the i·NOT
will occur if and only if the two anyons from the control pair fuse as an anyon
of charge τ ; otherwise the control pair only induces a trivial change on the
system.

a) Consider the following braiding:
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Friday, July 10, 2009



The CNOT gate
We need two triplets of τ anyons to represent the two qubits and we need to
braid them together.

The first step is to insert an anyon from the control triplet into the target triplet
carefully producing a trivial unitary.

38 P. Panangaden and É. O. Paquette
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The above scheme (by Bonesteel et al.) does the trick.

The dark dots are the anyons of the control triplet but after the braiding the
fusion space has one of the target anyons in it.
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An explicit calculation shows that the unitary in this case is the identity.
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How do they come up with this?
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have only the two braiding matrices and their inverse.

2. Second, even if we solve our first problem, it remains that this is not
enough to quantum compute. Indeed, we also need a two-qubit gate.

We answer these. First, a composition of length l of R- and B-matrices and
their inverses can get arbitrarily close to any element of SU(2) and that, with
l reasonably small. This is a consequence of the fact that our matrices together
with their inverse satisfies the Solovay-Kitaev theorem, see [28] pp. 617–624
for a precise statement and a proof.

We now address the second problem. Following the works of Bonesteel et
al. in [7], we explain how to build a CNOT gate for our anyons; for this we
will need two triplets of τ anyons; one of them will act as our test qubit while
the other will be the target qubit. The idea is relatively simple: we need to
intertwine a pair of quasi-particles from the first triplet – the control pair –
with the target triplet without disturbing it : As the braid operators are dense
in SU(2), we will arrange such an intertwining so that its representation in
SU(2) is close enough to to the identity. The next thing is to implement
a NOT – actually a i · NOT – by braiding our two anyons of the control
pair with those of the target triple. Finally, we extract the control pair from
the second triplet – again – without disturbing it. Now, the key point is the
following: braiding an anyon with charge 1 around anyons of arbitrary charge
does not change anything. Thus, when measuring the control pair, the i·NOT
will occur if and only if the two anyons from the control pair fuse as an anyon
of charge τ ; otherwise the control pair only induces a trivial change on the
system.

a) Consider the following braiding:

The above scheme (by Bonesteel et al.) does the trick.

The dark dots are the anyons of the control triplet but after the braiding the
fusion space has one of the target anyons in it.

An explicit calculation shows that the unitary in this case is the identity.

How do they come up with this? By being clever!
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As an action on the fusion space of the three anyons involved, this is:

B3R−2B−4R2B4R2B−2R−2B−4R−4B−2R4B2R4B2R−2B2R2B−2R3 ∼





1 0 0
0 1 0
0 0 1





This tells us how the given combination of braid insert an anyon within a
triplet without disturbing it. In fact, this stresses the distinction between
the dynamics of the anyons and the consequences on the fusion space.
Indeed, even if we disturbed the initial configuration of anyons via multiple
braidings, the effect on the splitting space is approximately the identity.

b) Now, we implement an i · NOT as the following braid:

The unitary acting on the splitting space of the initial triple is given by:

R−2B−4R4B−2R2B2R−2B4R2B−4R2B−2R2R−2 ∼





0 i 0
i 0 0
0 0 1





This combination of braids tells us how to implements a i ·NOT gate on
the two dimensional fusion space of our triple of anyons. Again, this gate
is approximated.

c) Finally, the i ·CNOT gate acting on two topological qubits is realised as
follows:

insert NOT extract

First, instead of inserting 1 anyons, we insert a couple that will be used as
a test couple and that in the very same manner as described in a) – as these
two will fuse together yielding either 1 or τ , this is exactly what we want.
Secondly, we apply the i·NOT-gate computed in b). Finally, we extract the
control pair returning it to its original position by applying the insertion
procedure in reverse order. This is done, again, without disturbing the
triple at stance here.

The above shows the general scheme.

A NOT can be implemented as a one-qubit unitary. We insert a pair of test
anyons. They fuse to produce a τ or a 1.

If the fusion produces a 1 then any tensoring with the other anyons has no effect.
If it produces a τ the NOT will have an effect. At the end we restore the state
of the control triplet.

Details are admittedly hairy and formalizing all this is daunting.
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Conclusions

New model of computation based on entirely new physics.

Lies at the crossroads of mathematics (representation theory of the braid group,
modular tensor categories), quantum computation (universality theorems) and
physics.

How does it relate to other models? Like the one-way model?

Tremendously exciting synergy between the three communities.

We need more structured “logical” ways of reasoning. This is where this com-
munity can help.
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