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What am I trying to do?

1 Present a “new” view of Markov processes as function
transformers

2 Show a beautiful functorial presentation of expectation values
3 Make bisimulation and approximation live in the same universe
4 Minimal realization theory
5 Approximation
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What I am not trying to do

Review all the previous work

Discuss metrics
Prove everything in detail
Deal with continuous time
Deal with nondeterminism
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What are labelled Markov processes?

Labelled Markov processes are probabilistic versions of labelled
transition systems. Labelled transition systems where the final
state is governed by a probability distribution - no other
indeterminacy.

All probabilistic data is internal - no probabilities associated with
environment behaviour.
We observe the interactions - not the internal states.
In general, the state space of a labelled Markov process may
be a continuum.
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Formal Definition of LMPs

An LMP is a tuple (S,Σ,L,∀α ∈ L.τα) where τα : S×Σ −→ [0, 1] is a
transition probability function such that

∀s : S.λA : Σ.τα(s,A) is a subprobability measure
and
∀A : Σ.λs : S.τα(s,A) is a measurable function.
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Logical Characterization

L0 ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s,A) > q).

Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
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State transformers and predicate transformers

A transition system (S,A,→) has a natural interpretation as a
state transformer.

Given s ∈ S and a ∈ A we have F(s)(a) = {s′ | s a−−→ s′}.
We can extend F to Q ⊂ S by direct image.
We can also define predicate transformers: given P ⊂ S we have
wp(a)(P) = {s′ | s′ a−−→ s}.
Here the flow is backward.
There is a duality between state-transformer and
predicate-transformer semantics.
Here one is thinking of a “predicate” as simply a subset of S, but
such a subset can be described by a logical formula.
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Logic and Probability

Classical logic Generalization
Truth values {0, 1} Probabilities [0, 1]

Predicate Random variable
State Distribution

The satisfaction relation |= Integration
∫
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The “predicate transformer” view of Markov processes

Recall, a Markov kernel τ from (X,Σ) to (Y,Λ) is a map τ : X × Λ
−→ [0, 1] which is measurable in its first argument and a
(subprobability) measure in the second argument.

Let f be a real-valued function on Y. We define
Bτ (f )(x) =

∫
Y f (y)τ(x, dy); this is playing the role analogous to a

predicate transformer. It is in fact an expectation transformer.
Bτ (f )(x) is the expectation value of f after a step given that one
was at x.
We can also define an analogue of the forward transformer.
Fτ (µ)(D ∈ Λ) =

∫
X τ(x,D)dµ(x).

If µ is the measure representing the “current” distribution on X
then after a τ -step, Fτ (µ) is the distribution on Y.
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The general plan

We are going to view Markov processes as function transformers
rather than as state transformers.

We will take the backward view; we could, perhaps equally well,
have developed a forward view but we have not spelled out the
details.
Measure theory works much better when one deals with
measurable functions rather than “points” and measures.
We never have to worry about “almost everywhere” and other
such nonsense.
Because of our backward view, bisimulation becomes a cospan
instead of a span. But this actually makes everything easier!
We can develop a theory of bisimulation, logical characterization,
approximation and minimal realization in this framework.
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Lp spaces

If (X,Σ, µ) is a measure space we can define integration on X: we
write

∫
X f dx. We say that f is integrable if this is finite.

If two functions agree everywhere except on a set of µ-measure 0
their integrals will be equal.
We define two functions to be equivalent if they are µ-almost
everywhere the same and we actually work with equivalence
classes.
The integral defines a norm on these equivalence classes and
gives the Banach space L1(X,Σ, µ) or just L1(µ).
The space Lp(µ) is the space obtained by defining the norm

‖f‖p = (
∫
| f |p dµ)

1
p , where 0 < p <∞.

The infinity norm of a measurable function f is
‖f‖∞ = inf {M > 0 || f (x) |≤ M for µ− almost all x}.
The collection of all equivalence classes of measurable functions f
with ‖f‖∞ <∞ with the norm just defined is the space L∞(µ).
These are all Banach spaces.
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Duality for Lp spaces

If 1 < p, q <∞ and 1
p + 1

q = 1 then Lp and Lq are duals of each
other!

However, L1 and L∞ are not duals.
The dual of L1 is L∞ but not the other way around!
We will switch to a cone view and the situation will be much
improved.
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What are cones?

Want to combine linear structure with order structure.

If we have a vector space with an order ≤ we have a natural
notion of positive and negative vectors: x ≥ 0 is positive.
What properties do the positive vectors have? Say P ⊂ V are the
positive vectors, we include 0.
Then for any positive v ∈ P and positive real r, rv ∈ P. For u, v ∈ P
we have u + v ∈ P and if v ∈ P and −v ∈ P then v = 0.
We define a cone C in a vector space V to be a set with exactly
these conditions.
Any cone defines a order by u ≤ v if v− u ∈ C.
Unfortunately for us, many of the structures that we want to look at
are cones but are not part of any obvious vector space: e.g. the
measures on a space.
We could artificially embed them in a vector space, for example,
by introducing signed measures.
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Abstract cones d’après Selinger

Definition of Cones

A cone is a commutative monoid (V,+, 0) with an action of R≥0. Multi-
plication by reals distributes over addition and the following cancellation
law holds:

∀u, v,w ∈ V, v + u = w + u⇒ v = w.

The following strictness property also holds:

v + w = 0⇒ v = w = 0.

Note that every cone comes with a natural order.

An order on a cone
If u, v ∈ V, a cone, one says u ≤ v if and only if there is an element
w ∈ V such that u + w = v.
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Normed cones

Definition of a normed cone
A normed cone C is a cone with a function
|| · || : C −→ R≥0 satisfying the usual conditions:
||v|| = 0 if and only if v = 0
∀r ∈ R≥0, v ∈ C, ||r · v|| = r||v||
||u + v|| ≤ ||u||+ ||v||
u ≤ v⇒ ||u|| ≤ ||v||.

Normally one uses norms to talk about convergence of Cauchy
sequences. But without negation how can we talk about Cuchy
sequences?
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Completeness

However, order-theoretic concepts can be used instead.

Complete normed cones
An ω-complete normed cone is a normed cone such that if {ai | i ∈ I}
is an increasing sequence with {||ai||} bounded then the lub

∨
i∈I ai

exists and
∨

i∈I ||ai|| = ||
∨

i∈I ai||.

Convergence in the sense of norm and in the order theory sense
match.

Selinger’s lemma
Suppose that ui is an ω-chain with a l.u.b. in an ω-complete normed
cone and u is an upper bound of the ui. Suppose furthermore that
limi−→∞ ‖u− ui‖ = 0. Then u =

∨
i ui.

Here we are writing u− ui informally
We really mean wi where ui + wi = u.
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Maps between cones

Continuous maps
An ω-continuous linear map between two cones is one that preserves
least upper bounds of countable chains.

Bounded maps
A bounded linear map of normed cones f : C −→ D is one such that for
all u in C, ||f (u)|| ≤ K||u|| for some real number K. Any linear
continuous map of complete normed cones is bounded.

Norm of a bounded map
The norm of a bounded linear map f : C −→ D is defined as
||f || = sup{||f (u)|| : u ∈ C, ||u|| ≤ 1}.
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A category of normed cones

The ambient category
The ω-complete normed cones, along with ω-continuous linear maps,
form a category which we shall denote ωCC.

The subcategory of interest
we define the subcategory ωCC1: the norms of the maps are all
bounded by 1. Isomorphisms in this category are always isometries.
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Dual cones

Dual cone
Given an ω-complete normed cone C, its dual C∗ is the set of all
ω-continuous linear maps from C to R+. We define the norm on C∗ to
be the operator norm.

Basic facts
C∗ is an ω-complete normed cone as well, and the cone order
corresponds to the point wise order.
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The duality functor

In ωCC, the dual operation becomes a contravariant functor.
If f : C −→ D is a map of cones, we define f ∗ : D∗ −→ C∗ as follows:
given a map L in D∗, we define a map f ∗L in C∗ as f ∗L(u) = L(f (u)).
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How does this compare with Banach spaces?

This dual is stronger than the dual in usual Banach spaces, where we
only require the maps to be bounded. For instance, it turns out that the
dual to L+

∞(X) (to be defined later) is isomorphic to L+
1 (X), which is not

the case with the Banach space L∞(X).
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Cones that we use I

If µ is a measure on X, then one has the well-known Banach
spaces L1 and L∞.

These can be restricted to cones by considering the µ-almost
everywhere positive functions.
We will denote these cones by L+

1 (X,Σ, µ) and L+
∞(X,Σ).

These are complete normed cones.
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Cones that we use II

Let (X,Σ, p) be a measure space with finite measure p. We denote
byM�p(X), the cone of all measures on (X,Σ, p) that are
absolutely continuous with respect to p

If q is such a measure, we define its norm to be q(X).
M�p(X) is also an ω-complete normed cone.
The conesM�p(X) and L+

1 (X,Σ, p) are isometrically isomorphic
in ωCC.
We writeMp

UB(X) for the cone of all measures on (X,Σ) that are
uniformly less than a multiple of the measure p: q ∈Mp

UB means
that for some real constant K > 0 we have q ≤ Kp.
The conesMp

UB(X) and L+
∞(X,Σ, p) are isomorphic.
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M�p(X) is also an ω-complete normed cone.
The conesM�p(X) and L+

1 (X,Σ, p) are isometrically isomorphic
in ωCC.
We writeMp

UB(X) for the cone of all measures on (X,Σ) that are
uniformly less than a multiple of the measure p: q ∈Mp

UB means
that for some real constant K > 0 we have q ≤ Kp.
The conesMp

UB(X) and L+
∞(X,Σ, p) are isomorphic.
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Duality for cones

A Reisz-like theorem
The dual of the cone L+

∞(X,Σ, p) is isometrically isomorphic to
M�p(X).

Corollary
SinceM�p(X) is isometrically isomorphic to L+

1 (X), an immediate
corollary is that L+,∗

∞ (X) is isometrically isomorphic to L+
1 (X), which is

of course false in general in the context of Banach spaces.
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The pairing

Pairing function

There is a map from the product of the cones L+
∞(X, p) and L+

1 (X, p) to
R+ defined as follows:

∀f ∈ L+
∞(X, p), g ∈ L+

1 (X, p) 〈f , g〉 =

∫
fgdp.

This map is bilinear and is continuous and ω-continuous in both
arguments; we refer to it as the pairing.
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Duality expressed via pairing

This pairing allows one to express the dualities in a very convenient
way. For example, the isomorphism between L+

∞(X, p) and L+
1 (X, p)

sends f ∈ L+
∞(X, p) to λg.〈f , g〉 = λg.

∫
fgdp.
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Summary of cones

We fix a probability triple (X,Σ, p) and focus on six spaces of cones
that are based on them. They break into two natural groups of three
isomorphic spaces. The first three spaces are:
A1 M�p(X) - the cone of all measures on (X,Σ, p) that are absolutely

continuous with respect to p,

A2 L+
1 (X, p) - the cone of integrable almost-everywhere positive

functions,
A3 L+,∗

∞ (X, p) - the dual cone of the the cone of almost-everywhere
positive bounded measurable functions.
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Summary of cones II

The next group of three isomorphic spaces are:
B1 Mp

UB(X) - the cone of all measures that are uniformly less than a
multiple of the measure p,

B2 L+
∞(X, p) - the cone of almost-everywhere positive functions in the

normed vector space L∞(X, p),
B3 L+,∗

1 (X, p) - the dual of the cone of almost-everywhere positive
functions in the normed vector space L1(X, p).
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Summary of dualities and isos

The spaces defined in A1, A2 and A3 are dual to the spaces defined in
B1, B2 and B3 respectively. The situation may be depicted in the
diagram

M�p(X)

��

∼ // L+
1 (X, p)oo

��

∼ // L+,∗
∞ (X, p)oo

��
Mp

UB

OO

∼ // L+
∞(X, p)oo ∼ //

OO

L+,∗
1 (X, p)

OO

oo

(1)

where the vertical arrows represent dualities and the horizontal arrows
represent isomorphisms.
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Approximation via Averaging

1 Approximation of Markov processes should be based on
“averaging”.

2 Averages are computed by expectation values.
3 Beautiful functorial presentation of expectation values d’après

Vincent Danos.
4 Make bisimulation and approximation live in the same universe
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Duality is the Key

M�p(X)

��

∼ // L+
1 (X, p)oo

��

∼ // L+,∗
∞ (X, p)oo

��
Mp

UB

OO

∼ // L+
∞(X, p)oo ∼ //

OO

L+,∗
1 (X, p)

OO

oo

(2)

where the vertical arrows represent dualities and the horizontal arrows
represent isomorphisms.

Pairing function

There is a map from the product of the cones L+
∞(X, p) and L+

1 (X, p) to
R+ defined as follows:

∀f ∈ L+
∞(X, p), g ∈ L+

1 (X, p) 〈f , g〉 =

∫
fgdp.
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Some notation

1 Given (X,Σ, p) and (Y,Λ) and a measurable function f : X −→ Y we
obtain a measure q on Y by q(B) = p(f−1(B)). This is written Mf (p)
and is called the image measure of p under f .

2 We say that a measure ν is absolutely continuous with respect
to another measure µ if for any measurable set A, µ(A) = 0 implies
that ν(A) = 0. We write ν � µ.
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The Radon-Nikodym Theorem

The Radon-Nikodym theorem is a central result in measure theory
allowing one to define a “derivative” of a measure with respect to
another measure.

Radon-Nikodym
If ν � µ, where ν, µ are finite measures on a measurable space (X,Σ)
there is a positive measurable function h on X such that for every
measurable set B

ν(B) =

∫
B

h dµ.

The function h is defined uniquely up to a set of µ-measure 0. The
function h is called the Radon-Nikodym derivative of ν with respect to
µ; we denote it by dν

dµ . Since ν is finite, dν
dµ ∈ L+

1 (X, µ).
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Notation for Radon-Nikodym

1 Given an (almost-everywhere) positive function f ∈ L1(X, p), we let
f · p be the measure which has density f with respect to p.

2 Two identities that we get from the Radon-Nikodym theorem are:

given q� p, we have dq
dp · p = q.

given f ∈ L+
1 (X, p), df ·p

dp = f

3 These two identities just say that the operations (−) · p and d(−)
dp

are inverses of each other as maps between L+
1 (X, p) and

M�p(X) the space of finite measures on X that are absolutely
continuous with respect to p.
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Expectation and conditional expectation

1 The expectation Ep(f ) of a measurable function f is the average
computed by

∫
f dp and therefore it is just a number.

2 The conditional expectation is not a mere number but a random
variable.

3 It is meant to measure the expected value in the presence of
additional information.

4 The additional information takes the form of a sub-σ algebra, say
Λ, of Σ. The experimenter knows, for every B ∈ Λ, whether the
outcome is in B or not.

5 Now she can recompute the expectation values given this
information.

Panangaden (McGill University) Markov Processes as Function Transformers 37 / 59



Expectation and conditional expectation

1 The expectation Ep(f ) of a measurable function f is the average
computed by

∫
f dp and therefore it is just a number.

2 The conditional expectation is not a mere number but a random
variable.

3 It is meant to measure the expected value in the presence of
additional information.

4 The additional information takes the form of a sub-σ algebra, say
Λ, of Σ. The experimenter knows, for every B ∈ Λ, whether the
outcome is in B or not.

5 Now she can recompute the expectation values given this
information.

Panangaden (McGill University) Markov Processes as Function Transformers 37 / 59



Expectation and conditional expectation

1 The expectation Ep(f ) of a measurable function f is the average
computed by

∫
f dp and therefore it is just a number.

2 The conditional expectation is not a mere number but a random
variable.

3 It is meant to measure the expected value in the presence of
additional information.

4 The additional information takes the form of a sub-σ algebra, say
Λ, of Σ. The experimenter knows, for every B ∈ Λ, whether the
outcome is in B or not.

5 Now she can recompute the expectation values given this
information.

Panangaden (McGill University) Markov Processes as Function Transformers 37 / 59



Expectation and conditional expectation

1 The expectation Ep(f ) of a measurable function f is the average
computed by

∫
f dp and therefore it is just a number.

2 The conditional expectation is not a mere number but a random
variable.

3 It is meant to measure the expected value in the presence of
additional information.

4 The additional information takes the form of a sub-σ algebra, say
Λ, of Σ. The experimenter knows, for every B ∈ Λ, whether the
outcome is in B or not.

5 Now she can recompute the expectation values given this
information.

Panangaden (McGill University) Markov Processes as Function Transformers 37 / 59



Expectation and conditional expectation

1 The expectation Ep(f ) of a measurable function f is the average
computed by

∫
f dp and therefore it is just a number.

2 The conditional expectation is not a mere number but a random
variable.

3 It is meant to measure the expected value in the presence of
additional information.

4 The additional information takes the form of a sub-σ algebra, say
Λ, of Σ. The experimenter knows, for every B ∈ Λ, whether the
outcome is in B or not.

5 Now she can recompute the expectation values given this
information.

Panangaden (McGill University) Markov Processes as Function Transformers 37 / 59



Where the action happens

We define two categories Rad∞ and Rad1 that will be needed for
the functorial definition of conditional expectation.

This will allow for L∞ and L1 versions of the theory.
Going between these versions by duality will be very useful.
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The “infinity” category

Rad∞
The category Rad∞ has as objects probability spaces, and as arrows
α : (X, p) −→ (Y, q), measurable maps such that Mα(p) ≤ Kq for some
real number K.

The reason for choosing the name Rad∞ is that α ∈ Rad∞ maps to
d/dqMα(p) ∈ L+

∞(Y, q).
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The “one” category

Rad1

The category Rad1 has as objects probability spaces and as arrows
α : (X, p) −→ (Y, q), measurable maps such that Mα(p)� q.

1 The reason for choosing the name Rad1 is that α ∈ Rad1 maps to
d/dqMα(p) ∈ L+

1 (Y, q).
2 The fact that the category Rad∞ embeds in Rad1 reflects the fact

that L+
∞ embeds in L+

1 .
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Pairing function revisited

Recall the isomorphism between L+
∞(X, p) and L+,∗

1 (X, p) mediated by
the pairing function:

f ∈ L+
∞(X, p) 7→ λg : L+

1 (X, p).〈f , g〉 =

∫
fgdp.
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Precomposition

1 Now, precomposition with α in Rad∞ gives a map P1(α) from
L+

1 (Y, q) to L+
1 (X, p).

2 Dually, given α ∈ Rad1 : (X, p) −→ (Y, q) and g ∈ L+
∞(Y, q) we have

that P∞(α)(g) ∈ L+
∞(X, p).

3 Thus the subscripts on the two precomposition functors describe
the target categories.

4 Using the ∗-functor we get a map (P1(α))∗ from L+,∗
1 (X, p) to

L+,∗
1 (Y, q) in the first case and

5 dually we get (P∞(α))∗ from L+,∗
∞ (X, p) to L+,∗

∞ (Y, q).
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Expectation value functor

The functor E∞(·) is a functor from Rad∞ to ωCC which, on
objects, maps (X, p) to L+

∞(X, p) and on maps is given as follows:

Given α : (X, p) −→ (Y, q) in Rad∞ the action of the functor is to
produce the map E∞(α) : L+

∞(X, p) −→ L+
∞(Y, q) obtained by

composing (P1(α))∗ with the isomorphisms between L+,∗
1 and L+

∞

L+,∗
1 (X, p)

(P1(α))
∗

��

L+
∞(X, p)oo

E∞(α)

��
L+,∗

1 (Y, q) // L+
∞(Y, q)
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∞(Y, q) obtained by

composing (P1(α))∗ with the isomorphisms between L+,∗
1 and L+

∞

L+,∗
1 (X, p)

(P1(α))
∗

��

L+
∞(X, p)oo

E∞(α)

��
L+,∗

1 (Y, q) // L+
∞(Y, q)
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Markov kernels as linear maps

1 Given τ a Markov kernel from (X,Σ) to (Y,Λ), we define
Tτ : L+(Y) −→ L+(X), for f ∈ L+(Y), x ∈ X, as
Tτ (f )(x) =

∫
Y f (z)τ(x, dz).

2 This map is well-defined, linear and ω-continuous.
3 If we write 1B for the indicator function of the measurable set B we

have that Tτ (1B)(x) = τ(x,B).
4 It encodes all the transition probability information
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From linear maps to markov kernels

1 Conversely, any ω-continuous morphism L with L(1Y) ≤ 1X can be
cast as a Markov kernel by reversing the process on the last slide.

2 The interpretation of L is that L(1B) is a measurable function on X
such that L(1B)(x) is the probability of jumping from x to B.
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Backwards

1 We can also define an operator onM(X) by using τ the other way.

2 We define T̄τ :M(X) −→M(Y), for µ ∈M(X) and B ∈ Λ, as
T̄τ (µ)(B) =

∫
X τ(x,B) dµ(x).

3 It is easy to show that this map is linear and ω-continuous.
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What do they mean?

1 The operator T̄τ transforms measures “forwards in time”; if µ is a
measure on X representing the current state of the system, T̄τ (µ)
is the resulting measure on Y after a transition through τ .

2 The operator Tτ may be interpreted as a likelihood transformer
which propagates information “backwards”, just as we expect from
predicate transformers.

3 Tτ (f )(x) is just the expected value of f after one τ -step given that
one is at x.

Panangaden (McGill University) Markov Processes as Function Transformers 47 / 59



What do they mean?

1 The operator T̄τ transforms measures “forwards in time”; if µ is a
measure on X representing the current state of the system, T̄τ (µ)
is the resulting measure on Y after a transition through τ .

2 The operator Tτ may be interpreted as a likelihood transformer
which propagates information “backwards”, just as we expect from
predicate transformers.

3 Tτ (f )(x) is just the expected value of f after one τ -step given that
one is at x.

Panangaden (McGill University) Markov Processes as Function Transformers 47 / 59



What do they mean?

1 The operator T̄τ transforms measures “forwards in time”; if µ is a
measure on X representing the current state of the system, T̄τ (µ)
is the resulting measure on Y after a transition through τ .

2 The operator Tτ may be interpreted as a likelihood transformer
which propagates information “backwards”, just as we expect from
predicate transformers.

3 Tτ (f )(x) is just the expected value of f after one τ -step given that
one is at x.

Panangaden (McGill University) Markov Processes as Function Transformers 47 / 59



Labelled abstract Markov processes

The definition
An abstract Markov kernel from (X,Σ, p) to (Y,Λ, q) is an
ω-continuous linear map τ : L+

∞(Y) −→ L+
∞(X) with ‖τ‖ ≤ 1.

LAMPS
A labelled abstract Markov process on a probability space (X,Σ, p)
with a set of labels (or actions) A is a family of abstract Markov kernels
τa : L+

∞(X, p) −→ L+
∞(X, p) indexed by elements a of A.
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The approximation map

The expectation value functors project a probability space onto another
one with a possibly coarser σ-algebra.
Given an AMP on (X, p) and a map α : (X, p) −→ (Y, q) in Rad∞, we
have the following approximation scheme:

Approximation scheme

L+
∞(X, p)

τa // L+
∞(X, p)

E∞(α)
��

L+
∞(Y, q)

α(τa) //

P∞(α)

OO

L+
∞(Y, q)
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A special case

Take (X,Σ) and (X,Λ) with λ ⊂ Σ and use the measurable
function id : (X,Σ) −→ (X,Λ) as α.

Coarsening the σ-algebra

L+
∞(X,Σ, p)

τa // L+
∞(X,Σ, p)

E∞(α)
��

L+
∞(X,Λ, p)

id(τa) //

P∞(α)

OO

L+
∞(X,Λ, p)

Thus id(τa) is the approximation of τa obtained by averaging over
the sets of the coarser σ-algebra Λ.
We now have the machinery to consider approximating along
arbitrary maps α.
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Bisimulation traditionally

Larsen-Skou definition
Given an LMP (S,Σ, τa) an equivalence relation R on S is called a
probabilistic bisimulation if sRt then for every measurable R-closed set
C we have for every a

τa(s,C) = τa(t,C).

This variation to the continuous case is due to Josée Desharnais and
her Indian friends.
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Event bisimulation

In measure theory one should focus on measurable sets rather
than on points.

Vincent Danos proposed the idea of event bisimulation, which was
developed by him and Desharnais, Laviolette and P.

Event Bisimulation
Given a LMP (X,Σ, τa), an event-bisimulation is a sub-σ-algebra Λ of
Σ such that (X,Λ, τa) is still an LMP.

This means τa sends the subspace L+
∞(X,Λ, p) to itself; where we

are now viewing τa as a map on L+
∞(X,Λ, p).
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The bisimulation diagram

L+
∞(X,Σ, p)

τa // L+
∞(X,Σ, p)

L+
∞(X,Λ, p)
?�

OO

τa // L+
∞(X,Λ, p)
?�

OO
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Zigzag maps

We can generalize the notion of event bisimulation by using maps
other than the identity map on the underlying sets. This would be a
map α from (X,Σ, p) to (Y,Λ, q), equipped with LMPs τa and ρa

respectively, such that the following commutes:

L+
∞(X,Σ, p)

τa // L+
∞(X,Σ, p)

L+
∞(Y,Λ, q)

P∞(α)

OO

ρa // L+
∞(Y,Λ, q)

P∞(α)

OO
(3)
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A key diagram

When we have a zigzag the following diagram commutes:

L+
∞(Y)

ρa //

P∞(α)

$$

L+
∞(Y)

E1(α)(1X)·(−)

��

P∞(α)

zz
L+
∞(X)

τa // L+
∞(X)

E∞(α) $$
L+
∞(Y)

α(τa) //
P∞(α)

::

L+
∞(Y)

(4)

The upper trapezium says we have a zigzag. The lower trapezium
says that we have an “approximation” and the triangle on the right
is an earlier lemma.

If we “approximate” along a zigzag we actually get the exact result.
Approximations are approximate bisimulations.
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Bisimulation as a cospan

Zigzags give a “functional” version of bisimulation; what is the
relational version.

Use co-spans of zigzags; it is usual to use spans but co-spans
give a smoother and more general theory.
With spans one can prove logical characterization of bisimulation
on analytic spaces.
With the cospan definition we get logical characterization on all
measurable spaces.
On analytic spaces the two concepts co-incide.
Recent results show that the theory cannot be made to work with
spans on general measurable spaces.
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The official definition of bisimulation

Bisimulation
We say that two objects of AMP, (X,Σ, p, τ) and (Y,Λ, q, ρ), are
bisimilar if there is a third object (Z,Γ, r, π) with a pair of zigzags

α : (X,Σ, p, τ) −→ (Z,Γ, r, π)
β : (Y,Λ, q, ρ) −→ (Z,Γ, r, π)

giving a cospan diagram

(X,Σ, p, τ)

α

''

(Y,Λ, q, ρ)

βww
(Z,Γ, r, π)

(5)

Note that the identity function on an AMP is a zigzag, and thus that any
zigzag between two AMPs X and Y implies that they are bisimilar.
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Bisimulation is an equivalence

X

α   

Y

β~~ δ ��

Z

γ��
W

ζ   

U

η
��

V

(6)

The pushouts of the zigzags β and δ yield two more zigzags ζ and η
(and the pushout object V). As the composition of two zigzags is a
zigzag, X and Z are bisimilar. Thus bisimulation is transitive.
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Results

Logical characterization of bisimulation holds for any measure
space; not just for analytic spaces.

We can construct a unique minimal (couniversal property) version
of any LAMP.
We can construct approximations using expectation values to
project a LAMP onto a finite sub-σ-algebra.
We can show that the projective limit of the finite approximations
give the minimal representation.
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