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Viewpoint

Understand the role of order in analysing the causal
structure of spacetime.

Reconstruct spacetime topology from causal order:
obvious links with domain theory.

Not looking at the combinatorial aspects of order:
continuous posets play a vital role; Scott, Lawson and
interval topologies play a vital role.

Everything is about classical spacetime: we see this as a
step on Sorkin’s programme to understand quantum
gravity in terms of causets.
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Overview

The causal structure of globally hyperbolic spacetimes
defines a bicontinuous poset. The topology can be
recovered from the order and from the way-below relation
but with no appeal to smoothness. The order can be taken
to be fundamental.

The entire spacetime manifold can be reconstructed given
a countable dense subset with the induced order: no
metric information need be given.

Globally hyperbolic spacetimes can be seen as the
maximal elements of interval domains. There is an
equivalence of categories between globally hyperbolic
spacetimes and interval domains. The main theorem.
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Causality in Computer Science

In distributed systems one loses synchronization and
absolute global state just as in relativity. One works with
causal structure.

Causal precedence in distributed systems studied by Petri
(65) and Lamport (77): clever algorithms, but the
mathematics was elementary and combinatorial and did
not reveal the connections with general relativity.

Event structures studied by Winskel, Plotkin and others
(80-85): more sophisticated, invoked domain theory. The
mathematics comes closer to what we will see today.
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The layers of spacetime structure

Set of events: no structure

Topology: 4 dimensional real manifold

Differentiable structure: tangent spaces

Causal structure: light cones (defines metric up to
conformal transformations)

Lorentzian metric: gives a length scale.

Martin, Panangaden A domain of spacetime intervals for General Relativity



Introduction
Spacetime

Domain Theory
Domains and Causality

Conclusions

The layers of spacetime structure

Set of events: no structure

Topology: 4 dimensional real manifold

Differentiable structure: tangent spaces

Causal structure: light cones (defines metric up to
conformal transformations)

Lorentzian metric: gives a length scale.

Martin, Panangaden A domain of spacetime intervals for General Relativity



Introduction
Spacetime

Domain Theory
Domains and Causality

Conclusions

The layers of spacetime structure

Set of events: no structure

Topology: 4 dimensional real manifold

Differentiable structure: tangent spaces

Causal structure: light cones (defines metric up to
conformal transformations)

Lorentzian metric: gives a length scale.

Martin, Panangaden A domain of spacetime intervals for General Relativity



Introduction
Spacetime

Domain Theory
Domains and Causality

Conclusions

The layers of spacetime structure

Set of events: no structure

Topology: 4 dimensional real manifold

Differentiable structure: tangent spaces

Causal structure: light cones (defines metric up to
conformal transformations)

Lorentzian metric: gives a length scale.

Martin, Panangaden A domain of spacetime intervals for General Relativity



Introduction
Spacetime

Domain Theory
Domains and Causality

Conclusions

The layers of spacetime structure

Set of events: no structure

Topology: 4 dimensional real manifold

Differentiable structure: tangent spaces

Causal structure: light cones (defines metric up to
conformal transformations)

Lorentzian metric: gives a length scale.

Martin, Panangaden A domain of spacetime intervals for General Relativity



Introduction
Spacetime

Domain Theory
Domains and Causality

Conclusions

Causal Structure of Spacetime I

At every point a pair of “cones” is defined in the tangent
space: future and past light cone. A vector on the cone is
called null or lightlike and one inside the cone is called
timelike.

We assume that spacetime is time-orientable: there is a
global notion of future and past.

A timelike curve from x to y has a tangent vector that is
everywhere timelike: we write x � y . (We avoid x ≪ y for
now.) A causal curve has a tangent that, at every point, is
either timelike or null: we write x ≤ y .

A fundamental assumption is that ≤ is a partial order.
Penrose and Kronheimer give axioms for ≤ and �.
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Causal Structure of Spacetime II

I+(x) := {y ∈ M|x � y}; similarly I−

J+(x) := {y ∈ M|x ≤ y}; similarly J−.

I± are always open sets in the manifold topology; J± are
not always closed sets.

Chronology: x � y ⇒ y 6� x .

Causality: x ≤ y and y ≤ x implies x = y .
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Causality Conditions

I±(p) = I±(q) ⇒ p = q.

Strong causality at p: Every neighbourhood O of p
contains a neighbourhood U ⊂ O such that no causal
curve can enter U , leave it and then re-enter it.

Stable causality: perturbations of the metric do not cause
violations of causality.

Causal simplicity: for all x ∈ M, J±(x) are closed.

Global hyperbolicity: M is strongly causal and for each p, q
in M, [p, q] := J+(p) ∩ J−(q) is compact.
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The Alexandrov Topology

Define
〈x , y〉 := I+(x) ∩ I−(y).

The sets of the form 〈x , y〉 form a base for a topology on M
called the Alexandrov topology.
Theorem (Penrose): TFAE:
(M, g) is strongly causal.
The Alexandrov topology agrees with the manifold topology.
The Alexandrov topology is Hausdorff.
The proof is geometric in nature.
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The Way-below relation

In domain theory, in addition to ≤ there is an additional,
(often) irreflexive, transitive relation written ≪: x ≪ y
means that x has a “finite” piece of information about y or
x is a “finite approximation” to y . If x ≪ x we say that x is
finite.

The relation x ≪ y - pronounced x is “way below” y - is
directly defined from ≤.

Official definition of x ≪ y : If X ⊂ D is directed and
y ≤ (⊔X ) then there exists u ∈ X such that x ≤ u. If a limit
gets past y then, at some finite stage of the limiting
process it already got past x .
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Continuous Domains and Topology

A continuous domain D has a basis of elements B ⊂ D
such that for every x in D the set x↓↓ := {u ∈ B|u ≪ x} is
directed and ⊔(x↓↓) = x .
The Scott topology: the open sets of D are upwards closed
and if O is open, then if X ⊂ D, directed and ⊔X ∈ O it
must be the case that some x ∈ X is in O.
The Lawson topology: basis of the form

O \ [∪i(xi ↑)]

where O is Scott open. This topology is metrizable if the
domain is ω-continuous.
The interval topology: basis sets of the form
(x , y) := {u|x ≪ u ≪ y}.
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Global Hyperbolicity
Interval Domains
Globally Hyperbolic Posets are Domains

The role of way below in spacetime structure

Theorem: Let (M, g) be a spacetime with Lorentzian
signature. Define x ≪ y as the way-below relation of the
causal order. If (M, g) is globally hyperbolic then x ≪ y iff
y ∈ I+(x).

One can recover I from J without knowing what smooth or
timelike means.

Intuition: any way of approaching y must involve getting
into the timelike future of x .

We can stop being coy about notational clashes:
henceforth ≪ is way-below and the timelike order.
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Global Hyperbolicity
Interval Domains
Globally Hyperbolic Posets are Domains

Bicontinuity and Global Hyperbolicity

The definition of continuous domain - or poset - is biased
towards approximation from below. If we symmetrize the
definitions we get bicontinuity (details in the paper).

Theorem: If (M, g) is globally hyperbolic then (M,≤) is a
bicontinuous poset. In this case the interval topology is the
manifold topology.

We feel that bicontinuity is a significant causality condition
in its own right; perhaps it sits between globally hyperbolic
and causally simple.

Topological property of causally simple spacetimes: If
(M, g) is causally simple then the Lawson topology is
contained in the interval topology.
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An “abstract” version of globally hyperbolic

We define a globally hyperbolic poset (X ,≤) to be
1 bicontinuous and,
2 all segments [a, b] := {x : a ≤ x ≤ b} are compact in the

interval topology on X .
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Properties of globally hyperbolic posets

A globally hyperbolic poset is locally compact and
Hausdorff.

The Lawson topology is contained in the interval topology.

Its partial order ≤ is a closed subset of X 2.

Each directed set with an upper bound has a supremum.

Each filtered set with a lower bound has an infimum.
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Second countability

Globally hyperbolic posets share a remarkable property
with metric spaces, that separability (countable dense
subset) and second countability (countable base of opens)
are equivalent.
Let (X ,≤) be a bicontinuous poset. If C ⊆ X is a countable
dense subset in the interval topology, then:
(i) The collection

{(ai , bi) : ai , bi ∈ C, ai ≪ bi}

is a countable basis for the interval topology.
(ii) For all x ∈ X , ↓↓x ∩ C contains a directed set with
supremum x , and ↑↑x ∩ C contains a filtered set with
infimum x .

Martin, Panangaden A domain of spacetime intervals for General Relativity



Introduction
Spacetime

Domain Theory
Domains and Causality

Conclusions

Global Hyperbolicity
Interval Domains
Globally Hyperbolic Posets are Domains

Second countability

Globally hyperbolic posets share a remarkable property
with metric spaces, that separability (countable dense
subset) and second countability (countable base of opens)
are equivalent.
Let (X ,≤) be a bicontinuous poset. If C ⊆ X is a countable
dense subset in the interval topology, then:
(i) The collection

{(ai , bi) : ai , bi ∈ C, ai ≪ bi}

is a countable basis for the interval topology.
(ii) For all x ∈ X , ↓↓x ∩ C contains a directed set with
supremum x , and ↑↑x ∩ C contains a filtered set with
infimum x .

Martin, Panangaden A domain of spacetime intervals for General Relativity



Introduction
Spacetime

Domain Theory
Domains and Causality

Conclusions

Global Hyperbolicity
Interval Domains
Globally Hyperbolic Posets are Domains

An Important Example of a Domain: IR

The collection of compact intervals of the real line

IR = {[a, b] : a, b ∈ R & a ≤ b}

ordered under reverse inclusion

[a, b] ⊑ [c, d ] ⇔ [c, d ] ⊆ [a, b]

is an ω-continuous dcpo.
For directed S ⊆ IR,

⊔
S =

⋂
S,

I ≪ J ⇔ J ⊆ int(I), and
{[p, q] : p, q ∈ Q & p ≤ q} is a countable basis for IR.
The domain IR is called the interval domain.
We also have max(IR) ≃ R in the Scott topology.
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Generalizing IR

The closed segments of a globally hyperbolic poset X

IX := {[a, b] : a ≤ b & a, b ∈ X}

ordered by reverse inclusion form a continuous domain
with

[a, b] ≪ [c, d ] ≡ a ≪ c & d ≪ b.

X has a countable basis iff IX is ω-continuous.

max(IX ) ≃ X

where the set of maximal elements has the relative Scott
topology from IX .
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Spacetime from a discrete ordered set

If we have a countable dense subset C of M, a globally
hyperbolic spacetime, then we can view the induced
causal order on C as defining a discrete poset. An ideal
completion construction in domain theory, applied to a
poset constructed from C yields a domain IC with

max(IC) ≃ M

where the set of maximal elements have the Scott
topology. Thus from a countable subset of the manifold we
can reconstruct the whole manifold.
We do not know any conditions that allow us to look at a
given poset and say that it arises as a dense subset of a
manifold, globally hyperbolic or otherwise.
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Compactness of the space of causal curves

A fundamental result in relativity is that the space of causal
curves between points is compact on a globally hyperbolic
spacetime. We use domains as an aid in proving this fact
for any globally hyperbolic poset. This is the analogue of a
theorem of Sorkin and Woolgar: they proved it for K -causal
spacetimes; Keye did it for globally hyperbolic posets; the
paper is now published in Classical and Quantum Gravity.
The Vietoris topology on causal curves arises as the
natural counterpart to the manifold topology on events, so
we can understand that its use by Sorkin and Woolgar is
very natural.
The causal curves emerge as the maximal elements of a
natural domain; in fact a “powerdomain”: a
domain-theoretic analogue of a powerset.
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Globally Hyperbolic Posets and Interval Domains

One can define categories of globally hyperbolic posets
and an abstract notion of “interval domain”: these can also
be organized into a category.

These two categories are equivalent.

Thus globally hyperbolic spacetimes are domains - not just
posets - but

not with the causal order but, rather, with the order coming
from the notion of intervals; i.e. from notions of
approximation.
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Interval Posets

An interval poset D has two functions left : D → max(D)
and right : D → max(D) such that

(∀x ∈ D) x = left(x) ⊓ right(x).

The union of two intervals with a common endpoint is
another interval and

each point p ∈ max(D) above x determines two
subintervals left(x) ⊓ p and p ⊓ right(x) with evident
endpoints.
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Interval Domains

(D, left, right) with D a continuous dcpo

satisfying some reasonable conditions about how left and
right interact with sups and with ≪ and

intervals are compact: ↑x ∩ max(D) is Scott compact.
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Globally Hyperbolic Posets are an Example

For a globally hyperbolic (X ,≤), we define
left : IX → IX :: [a, b] 7→ [a] and
right : IX → IX :: [a, b] 7→ [b].

Lemma: If (X ,≤) is a globally hyperbolic poset, then
(IX , left, right) is an interval domain.

In essence, we now prove that this is the only example.
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From IN to GlobHyP

Given (D, left, right) we have a poset (max(D),≤) where
the order on the maximal elements is given by:

a ≤ b ≡ (∃ x ∈ D) a = left(x) & b = right(x).

After a five page long proof (due entirely to Keye!) it can be
shown that (max(D),≤) is always a globally hyperbolic
poset.

Showing that this gives an equivalence of categories is
easy.
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The category of Interval Domains

The category IN of interval domains and commutative maps is
given by

objects Interval domains (D, left, right).
arrows Scott continuous f : D → E that commute with left
and right, i.e., such that both

D
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commute.

identity 1 : D → D.

composition f ◦ g.
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The Category GlobHyP

The category GlobHyP is given by

objects Globally hyperbolic posets (X ,≤).

arrows Continuous in the interval topology, monotone.

identity 1 : X → X .

composition f ◦ g.
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From GlobHyP to IN

The correspondence I : GlobHyP → IN given by

(X ,≤) 7→ (IX , left, right)

(f : X → Y ) 7→ (f̄ : IX → IY )

is a functor between categories.
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Summary

We can recover the topology from the order.

We can reconstruct the spacetime from a countable dense
subset.

We can characterise causal simplicity order theoretically.

We can prove the Sorkin-woolgar theorem on
compactness of the space of causal curves.

We have shown that globally hyperbolic posets are
essentially a certain kind of domain.
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Observations

The fact that globally hyperbolic posets are interval
domains gives a sensible way of thinking of
“approximations” to spacetime points in terms of intervals.

This is “dual” to Sorkin’s approach: instead of sprinking
points (sampling spacetime) we divide it up (averaging
over regions).

In either case we do not have to go to the limit.
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Related Work

Malament (J. Math. Phys 1977) shows that the continuous
timelike curves determines the topology in any past and
future distinguishing spacetime but does not prove our
reconstruction theorems. He shows that a continuous
bijection preserving the class of timelike curves must be a
homeomorphism.

Seth Major, David Rideout, Sumati Surya On Recovering
Continuum Topology from a Causal Set: Recent paper
available at
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Causal Simplicity

For a spacetime (M, g), the following are equivalent:
(1) (M, g) is causally simple, every increasing sequence with a
sup is convergent, every decreasing sequence with an inf is
convergent.
(2) M is bicontinuous.
We need a spacetime that is not globally hyperbolic or causally
simple but satisfies (1). Ideas anyone?
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Conjecture

Every pair of points in a GH spacetime has an upper
bound.

If this is hard we can call it Plotkin’s conjecture, but if it
turns out to be easy we can call it mine.
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Measurements

There is a notion of measurement (due to Keye) on a
domain; a way of adding quantitative information to a
domain. µ : P → E measures P if

∀x ∈ P and ∀ open U ⊆ P∃ǫ ∈ Ex ∈ {y |y ⊑ x , ǫ ≪ µ(y)}.

Usually E is [0,∞)rev and the number is the “degree of
uncertainity” of the element.

We are interested in seeing if there is a natural
measurement on a domain that corresponds to spacetime
volume of an interval or maximal geodesic length in an
interval from which the rest of the geometry (the metric)
may reappear.
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Differential Geometry

There is a notion of “informatic” derivative which could be
used to set up discrete differential geometry on domains
and ultimately to consider “fields” living on domains.

How does this link up with other approaches to discrete
differential geometry?

We should try to develop differential geometry on domains:
not just differential calculus.
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Topology Change and Dihomotopy

Sumati, Fay Dowker and others have studied topology
change in spacetime using Morse theory.

The theory of dihomotopy – developed by Fajstrup,
Raussen, Goubault, ... – seems wonderfully adapted to
this.

Martin, Panangaden A domain of spacetime intervals for General Relativity



Introduction
Spacetime

Domain Theory
Domains and Causality

Conclusions

Related Work
Future Work

Topology Change and Dihomotopy

Sumati, Fay Dowker and others have studied topology
change in spacetime using Morse theory.

The theory of dihomotopy – developed by Fajstrup,
Raussen, Goubault, ... – seems wonderfully adapted to
this.

Martin, Panangaden A domain of spacetime intervals for General Relativity



Introduction
Spacetime

Domain Theory
Domains and Causality

Conclusions

Related Work
Future Work

Global Issues

We would like to understand conditions that allow us to tell
if a given poset came from a manifold. The problem is that
we cannot tell the difference between a patch of – for
example – Minkowski space and the whole of it.

Can we look at a poset and discern a “dimension”? There
are combinatorial notions of dimension but do they say
anything about the dimension of the manifold that is
constructed by our ideal completion process?
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Compactification

Can we carry out compactification of spacetimes using the
machinery of domain theory so as to obtain Penrose’s past
and future null infinity (not the one-point compactification)?
Some work on this by Steve Vickers.

Can we do the Schmidt boundary construction to add
boundaries to “incomplete” spacetimes?

Will this give a new handle on asymptotics or a new way to
prove the Positive Energy Conjecture?

Martin, Panangaden A domain of spacetime intervals for General Relativity



Introduction
Spacetime

Domain Theory
Domains and Causality

Conclusions

Related Work
Future Work

Compactification

Can we carry out compactification of spacetimes using the
machinery of domain theory so as to obtain Penrose’s past
and future null infinity (not the one-point compactification)?
Some work on this by Steve Vickers.

Can we do the Schmidt boundary construction to add
boundaries to “incomplete” spacetimes?

Will this give a new handle on asymptotics or a new way to
prove the Positive Energy Conjecture?

Martin, Panangaden A domain of spacetime intervals for General Relativity



Introduction
Spacetime

Domain Theory
Domains and Causality

Conclusions

Related Work
Future Work

Compactification

Can we carry out compactification of spacetimes using the
machinery of domain theory so as to obtain Penrose’s past
and future null infinity (not the one-point compactification)?
Some work on this by Steve Vickers.

Can we do the Schmidt boundary construction to add
boundaries to “incomplete” spacetimes?

Will this give a new handle on asymptotics or a new way to
prove the Positive Energy Conjecture?

Martin, Panangaden A domain of spacetime intervals for General Relativity



Introduction
Spacetime

Domain Theory
Domains and Causality

Conclusions

Related Work
Future Work

Can anyone get me to Stop?

Stop babbling and do some of these things already!
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