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PODC and CONCUR
Two communities with shared interests but 
very different methods.

CONCUR: Emphasis on algebraic laws, 
equivalence, compositionality and modal 
logics.

PODC: Algorithms, combinatorial arguments, 
expressiveness, complexity and impossibility 
results.

BOTH care about interaction between agents.
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Knowledge

Usually modelled with an equivalence relation 
on the set of states (possible worlds), which 
represents what the agents thinks is 
possible.

If St is the set of states then the agent 
knows phi in state s if for all states t with 
s~t, phi is true in t.
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A Lamport spacetime diagram
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Agents: {1, . . . , n}

Propositions: p, q, . . .

Modal formulas: Kiφ, where i is an agent

States: (a, c), a is a run, c is a consistent cut

(a, c) ∼i (a′, c′) if the local states of i match

(a, c) |= Kiφ if
∀(a′, c′) ∼i (a, c) (a′, c′) |= φ



Axioms for Knowledge

1. All propositional tautologies

2. (Kiφ) ∧ (Ki(φ⇒ ψ))⇒ Kiψ

3. Kiφ⇒ φ

4. Kiφ⇒ KiKiφ

5. ¬Kiφ⇒ Ki(¬Kiφ)

6. Modus Ponens

7. From φ infer Kiφ
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Some Remarks

There are variant axiomatizations possible.

The axioms given correspond to assuming 
that the possibility relation is an equivalence 
relation.

The axioms given are for a static situation.

Many combinations are possible: time, 
probability, dynamic update.



Co-algebras

Intimately tied to transition systems and to 
modal logics.

An algebra: op: A x A ---> A

A co-algebra: co-op: A ---> A x A

Split instead of combine.
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Labelled Transition 
Systems as Coalgebras

Consider a map t : S → P(S).

This defines a transition system over S.

With labels: t : S × L→ P(S).

Which is the same as: t ⊆ S × L× S.

The usual notion of labelled transition system.



Bisimulation
An equivalence relation that is intimately related to transition systems.

s ∼ t means:
∀a ∈ L, s

a→ s′ implies
∃t′ such that t

a→ t′ with s′ ∼ t′

and vice versa.

May not be the most useful equivalence relation (far too fine) but it is mathe-
matically natural and is intimately tied to the transition system.
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Logic and Bisimulation

Intimate tie-up between bisimulation and
modal logic: van Bentham, Hennessy & Milner.

φ ::== T |¬φ|φ ∧ φ|〈a〉φ
Two states are bisimilar if and only if they
satisfy the same formulas of the modal logic.

The modal formulas are the maximal set of first-order
formulas invariant under bisimulation.



The trinity

There is a close relation between 

transition systems and bisimulation

modal logic and

coalgebras.



Combining Modalities

Combine coalgebras in a suitable way.

Purely mathematical; one still needs a 
conceptual understanding.

May have formidable technical difficulties: 
e.g. combining probability and 
nondeterminism.
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How does Epistemic 
Logic Fit In?

Epistemic logic is a modal logic.

It concerns the behaviour of interacting 
agents.

How does it relate, if at all?
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Epistemic Ideas in 
Concurrency

Security: information flow, anonymity.

Suppose we model a protocol intended to 
maintain anonymity using a process algebra.

Nondeterminism is resolved by a “scheduler”; 
in the end we quantify over all schedulers.

But this includes schedulers that could leak 
information.
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Example: Voting

Two candidates: a,b.  Two voters: v,w.

The system must reveal the list of people 
who actually voted (in any order) and the 
total votes for the candidate.

It must not reveal who voted for whom; 
unless the vote is unanimous.

A scheduler can leak the votes!



Figure 1: A scheduler that leaks the voting preferences. The relevant choices are represented by tick arrows.

This problem emerges dramatically in security, where some of the choices may be intended to be secret, but
they are bound to be revealed if the notion of scheduler is unrestricted. Consider for instance a voting system
which collects the votes (a or b) of a set of candidates, and also output in some arbitrary order the list of
the people who have voted (in some countries this has to be done because voting is mandatory). Among
the possible schedulers, there is the one which lists first all the people who have voted for a. (See Figure 1.)
Clearly, such scheduler would break completely the desired anonymity property. Usually when we want a
correctness property to hold for a nondeterministic system we require that it holds for all choices of the
scheduler: there is no way such universally quantified statements will be true if we permit such unrestricted
schedulers.

An approach to solve the above problem has been suggested in [CP07]: the interplay between the secret
choices of the process and the choices of the scheduler is expressed by introducing two kinds of schedulers
and a framework that allows one to switch between them.

A related issue arises in formalisms which allow one to express probabilistic choice (in addition to nonde-
terministic choice). In that case, the scheduler can leak the result of the probabilistic choices. Again, this
is a problem for security protocols that use randomization to achieve, for instance, anonymity or privacy. A
more detailed discussion of this phenomenon can be found in [CP07].

In this paper we propose a semantic analysis of the information flow between the processes and the schedulers.
We introduce a turn-based game that is played between two agents and define strategies for the agents. The
game is played with the process as the “playing field” and the effect of the players’ moves is to resolve the
choices that appear as nondeterministic choices in the process description. Now the information to which
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A scheduler that leaks voting preferences.
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The scheduler that resolves the 
nondeterminism in the order in which voters 
names are output should not “know” who 
voted for whom.

Chatzikokolakis and Palamidessi [CONCUR 07] 
described schedulers with an explicit syntax 
and operational semantics and used syntactic 
restrictions to control what scheduler knew.

They had two schedulers to resolve different 
choices.
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epistemic concepts.

Economists have been particularly active in 
developing these ideas.
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Many types of games

Games for verification: Luca de Alfaro, 
Henzinger, Chatterjee, Abramsky, Ong, 
Murawski,...

Games in economics: see, e.g. Adam 
Brandenburger’s review on epistemic games.

Game semantics: Abramsky, Jagadeesan, 
Malacaria, Hyland, Ong, Nickau, Laird, 
McCusker...

Games in logic: model theory, EF, Lorenzen,...
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In order to make the epistemic aspects more 
explicit we can think of schedulers as playing 
games.

The concurrent process is the “board” and 
the moves end up choosing the action.

We control what the schedulers “know” by 
putting restrictions on the allowed 
strategies.
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Restricting Strategies
What can an agent “see” in formulating its 
strategy?  This controls what it “knows.”

One possible restriction: an agent knows 
what choices are available to it and what 
choices were available to it in the past.

This corresponds exactly to the CP syntactic 
restrictions [C,Knight, P 08].

Easy to impose epistemic restrictions on 
strategies.  
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Games and Concurrency

New direction in concurrency: Process 
algebras as defining interacting agents.

Games are already used in many ways in 
concurrency, semantics, logic and economics.

But we still do not have a systematic way of 
describing and reasoning about interacting 
agents algebraically.
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Some specific goals

Develop a process algebra for agents playing 
games.

Use epistemic logic to control what agents 
know.

Tie this logic to strategies in a way 
analogous to the relation between 
bisimulation and modal logic.

Use this to reason about information flow.
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Probability

What happens when we add probability to 
the mix?

There is a beautiful relation between 
probability, bisimulation and logic.

We shall review this quickly.
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Fully Probabilistic Transition Systems

• A transition system with probabilities and actions (labels) associated with
the transitions.

•
(S,L,∀a ∈ L Ta : S × S → [0, 1])

• The model is reactive: All probabilistic data is internal - no probabilities
associated with environment behaviour.

Extended to systems with arbitrary measurable state spaces
in LICS’97 by Blute, Desharnais, Edalat and P. We called them
Labelled Markov Processes, very similar to Markov Decision Processes
without the rewards.
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• Let S = (S,L, Ta) be a probabilistic transition system.

• An equivalence relation R on S is a bisimulation if whenever sRs′, with
s, s′ ∈ S, we have that for all a ∈ L and every R-equivalence class, A,
Ta(s,A) = Ta(s′, A).

• The notation Ta(s,A) means “the probability of starting from s and jump-
ing to a state in the set A.”

• Two states are bisimilar if there is some bisimulation relation R relating
them.

Some painful technical problems had to be overcome to extend this to LMPs.
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Logical Characterization of Bisimulation

φ ::== T|φ1 ∧ φ2|〈a〉qφ
s |= 〈a〉qφ iff ∃A ∈ Σ(∀s′ ∈ A, s′ |= φ) ∧ (τa(s,A) > q).

Two systems are bisimilar iff they obey the same formulas
of this logic
[Desharnais, Edalat, P 1998,2002]

Notice that there is no negation not even any negative propositions!
Simpler than the non-probabilistic case.
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Kozen’s Analogy

Logic Probability
State : s Distribution : µ

Formula : φ Random Variable : X
Satisfaction : s |= φ Integration :

∫
Xdµ

Probability theory as a kind of “logic.”
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The main goal : reasoning under uncertainty. 
Classic texts available by Pearl and by 
Halpern.

What is the right logic?  

For “pure” probability conditioning serves as 
an analogue of logical implication.
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Probabilistic Epistemic 
Logic

One can combine modalities for probability 
and knowledge.

Interpret them using epistemic probability 
frames.

Can be generalized to non measure-theoretic 
formalisms for modelling uncertainty.  

See “Reasoning About Uncertainty” by J. 
Halpern



Information vs 
Knowledge

Information theory measures information in 
bits.  No attempt to say which bits are 
important.

Information theory gives “inference rules” 
for reasoning about how information is 
updated.

Is information theory a kind of logic?
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What is information?

A measure of uncertainty.

Can we really analyze it quantitatively?

What do the numerical values mean?

Is it tied to “knowledge”?

Is it subjective?
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What do we want?
We want a definition that satisfies the following conditions:

For a point distribution the uncertainty is 0
For a uniform distribution the uncertainty is maximized.

When we combine systems the uncertainty is additive

As we vary the probabilities the uncertainty changes

continuously
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Entropy

H(p1, . . . , pn) = −
∑

i

pi log2 pi

• H(0, 0, . . . , 1, 0, . . . , 0) = 0

• H( 1
n , . . . , 1

n ) = log2 n.

• Clearly continuous.
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Are there other candidates?

Entropy is the unique continuous function that is:

• maximized by the uniform distribution

• minimized by the point distribution

• additive when you combine systems

• and ....



What does it tell us?
If you have a distribution p(s) on a set S,
you can define a code such that it takes H(p)
bits on the average to encode the members of the set.



How far apart are 
distributions ?

We want a “distance” between distributions.



How far apart are 
distributions ?

We want a “distance” between distributions.

KL(p !→ q) = n
∑

s∈S

p(s)[log2 p(s)− log2 q(s).



How far apart are 
distributions ?

We want a “distance” between distributions.

KL(p !→ q) = n
∑

s∈S

p(s)[log2 p(s)− log2 q(s).

Recall that it takes H(p) bits to describe a set
distributed according to p. What if we used q instead?



How far apart are 
distributions ?

We want a “distance” between distributions.

KL(p !→ q) = n
∑

s∈S

p(s)[log2 p(s)− log2 q(s).

Recall that it takes H(p) bits to describe a set
distributed according to p. What if we used q instead?

It would require H(p) + KL(p !→ q) bits.
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Relative Entropy 

The Kullback-Leibler distance is often called
relative entropy.

Suppose S = {a, b} and p(a) = 1
2 = p(b)

while q(a) = 1
4 and q(b) = 3

4 .

KL(p !→ q) = 0.2075 and KL(q !→ p) = 0.1887.
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Mutual Information

A measure of how much one “knows” about 
one distribution given another distribution.

More precisely, given a correlated pair of 
random variables, given the outcome of one 
of them what do you “know” about the other 
one.  

Written I(X;Y) = I(Y;X).

Clearly an epistemic concept.



Channels

Message
Encoder

Channel

p(y|x)
Decoder

Xn Y n

Estimate of
the message.

A typical channel.
How well can we estimate the intended
message if the channel is noisy?
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Channel Capacity
We want some way of measuring how

well we can estimate the message
based on what we receive.

How about I(X;Y )?

But this depends on the input distribution!

C = max
p(x)

I(X;Y ).
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Anonymity

Define a protocol that keeps the identity of 
an agent secret.

Well known examples: dining cryptographers, 
crowds, etc.

Randomization is a key resource used in 
these protocols

Need probabilistic notions of anonymity: 
Halpern and O’Neill; Bhargava and 
Palamidessi, Chatzikokolakis and Palamidessi
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Anonymity and Capacity

Anonymity protocols try to keep the identity 
of an agent secret.

One can view such a protocol as a 
communication channel.

The lack of anonymity is measured by the 
channel capacity.

Perfect anonymity corresponds to zero 
capacity.
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Krasucki, Parikh and Ndjatou:  How much 
common knowledge is there?  

What if there are two agents with slightly 
different partitions of the possible worlds?

Epistemic logic may tell us that nothing is 
common knowledge!

Intuitively, there should be high probability 
of one agent guessing what the other knows.
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Key point noted by Krasucki et al.: How much 
information is acquired when probabilities 
change as a result of new data?

They define information gain and develop its 
properties and its relations with mutual 
information and common knowledge.

Information gain turns out to be exactly the 
same as relative entropy!
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Approximate Reasoning
Orthodox logic is too sensitive to 
perturbations in quantitative data.

One needs metrics and metric reasoning 
principles: Jou and Smolka, DGJP, van Breugel 
and Worrell, ......

What are appropriate “approximate” concepts 
of knowledge?  Surely something information 
theoretic.

But, beware of applying information theory 
naively: there are many counter-examples.
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Develop a theory of probabilistic interacting 
agents: agents playing stochastic games.

This will lead to a mixture of probability and 
nondeterminism.

Additivity is lost: one has capacities instead. 
What information-theoretic concepts apply?

Relate the dynamics with an appropriate 
quantitative logic: perhaps a suitable multi-
agent generalization of information theory.

Some goals



Information Theory as a 
Logic

Why does it matter?

It would give us compositional ways of 
reasoning about information flow.

Perhaps a duality theory lurking underneath 
the surface.
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Quantum Information

Information is physical -- Landauer

but Physics is logical -- Abramsky

Entirely new phenomena are possible: 
entanglement and teleportation, knowing “less 
than nothing!” [Andreas Winter]

Can it do anything for standard distributed 
protocols?
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Leader election 

Using an appropriate shared quantum state 
(the W state) n agents can choose a leader in 
one step, with each agent using the same 
protocol and with every agent having the 
same probability of being elected.

With a GHZ state one can do distributed 
consensus.

Both these protocols are trivial: can we use 
these resources to do more clever things?
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Teleportation

If Alice and Bob share an entangled pair, 
Alice can send two classical bits to Bob which 
allows Bob to reconstruct a quantum state 
that Alice had.

At the end of the protocol Alice will not 
have the quantum state anymore.
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Quantum Knowledge

If one adapts the standard epistemic 
machinery of Kripke structures [van der 
Meyden et al.] you get wierd effects: Alice 
no longer knows -- even in a time stamped 
sense -- what she once knew.

Another approach [d’Hondt, P]: there is no 
such thing as quantum knowledge!

Measurements create classical knowledge.
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Goals

What is the logic of quantum information?  
Strange things happen: negative mutual 
information.

Reason compositionally about quantum 
protocols: process algebras, equivalences, 
resource inequalities [Devetak et al.]

Develop interesting protocols for distributed 
computing tasks.



Conclusions

Concurrency theory should incorporate the 
idea of games between agents and 
investigate richer modes of interaction than 
currently available: some key ideas due to 
Abramsky.

Epistemic ideas should come to the fore.

Information theory should be developed as a 
kind of quantitative epistemic logic.
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Wild ideas

What is information theory in a “relativistic” 
setting?  

Mutual information is very dependent on 
absolute time, what does it mean when we do 
not have absolute global states?

Believe it or not “relativistic quantum 
information theory” is alive and well!! 



Thanks for listening!

Thanks to Samson Abramsky, Vincent Danos, Josee 
Desharnais, Vineet Gupta, Radha Jagadeesan, 
Sophia Knight, Dexter Kozen, Keye Martin, 

Catuscia Palamidessi, Caitlin Phillips, Doina Precup 
and many others.


