FOPPS Lectures: Probabilistic Bisimulation Metrics and Their Applications to Representation Learning

Lecture 2: Bisimulation metrics

Prakash Panangaden

School of Computer Science, McGill University Montreal Institute of Learning Algorithms School of Informatics, The University of Edinburgh

February 2023, Bertinoro

Outline

(9) Introduction

Outline

(1) Introduction
(2) Metrics for bisimulation

Outline

(1) Introduction
(2) Metrics for bisimulation
(3) A logical view

Outline

(9) Introduction
(2) Metrics for bisimulation
(3) A logical view

4 MDPs and reinforcement learning

Collaborators and other contributors

Collaborators

Josée Desharnais, Vineet Gupta, Radha Jagadeesan, Norm Ferns, Doina Precup, Pablo Castro.

Collaborators and other contributors

Collaborators

Josée Desharnais, Vineet Gupta, Radha Jagadeesan, Norm Ferns, Doina Precup, Pablo Castro.

Collaborators and other contributors

Collaborators

Josée Desharnais, Vineet Gupta, Radha Jagadeesan, Norm Ferns, Doina Precup, Pablo Castro.

Important contributors

Franck van Breugel and James (Ben) Worrell.

Collaborators and other contributors

Collaborators

Josée Desharnais, Vineet Gupta, Radha Jagadeesan, Norm Ferns, Doina Precup, Pablo Castro.

Important contributors

Franck van Breugel and James (Ben) Worrell.

Collaborators and other contributors

Collaborators

Josée Desharnais, Vineet Gupta, Radha Jagadeesan, Norm Ferns, Doina Precup, Pablo Castro.

Important contributors

Franck van Breugel and James (Ben) Worrell.
Many others more recently.

Process equivalence is fundamental

- Markov chains:

Process equivalence is fundamental

- Markov chains:
- Lumpability

Process equivalence is fundamental

- Markov chains:
- Lumpability
- Labelled Markov processes: Bisimulation

Process equivalence is fundamental

- Markov chains:
- Lumpability
- Labelled Markov processes: Bisimulation
- Markov decision processes: Bisimulation

Process equivalence is fundamental

- Markov chains:
- Lumpability
- Labelled Markov processes: Bisimulation
- Markov decision processes: Bisimulation
- Labelled Concurrent Markov Chains with τ transitions: Weak Bisimulation

But...

- In the context of probability is exact equivalence reasonable?

But...

- In the context of probability is exact equivalence reasonable?
- We say "no". A small change in the probability distributions may result in bisimilar processes no longer being bisimilar though they may be very "close" in behaviour.

But...

- In the context of probability is exact equivalence reasonable?
- We say "no". A small change in the probability distributions may result in bisimilar processes no longer being bisimilar though they may be very "close" in behaviour.
- Instead one should have a (pseudo)metric for probabilistic processes.

Pseudometrics

- Function $d: X \times X \rightarrow \mathbb{R}^{\geq 0}$

Pseudometrics

- Function $d: X \times X \rightarrow \mathbb{R}^{\geq 0}$
- $\forall s, d(s, s)=0$; one can have $x \neq y$ and $d(x, y)=0$.

Pseudometrics

- Function $d: X \times X \rightarrow \mathbb{R}^{\geq 0}$
- $\forall s, d(s, s)=0$; one can have $x \neq y$ and $d(x, y)=0$.
- $\forall s, t, d(s, t)=d(t, s)$

Pseudometrics

- Function $d: X \times X \rightarrow \mathbb{R}^{\geq 0}$
- $\forall s, d(s, s)=0$; one can have $x \neq y$ and $d(x, y)=0$.
- $\forall s, t, d(s, t)=d(t, s)$
- $\forall s, t, u, d(s, u) \leq d(s, t)+d(t, u)$; triangle inequality.

Pseudometrics

- Function $d: X \times X \rightarrow \mathbb{R}^{\geq 0}$
- $\forall s, d(s, s)=0$; one can have $x \neq y$ and $d(x, y)=0$.
- $\forall s, t, d(s, t)=d(t, s)$
- $\forall s, t, u, d(s, u) \leq d(s, t)+d(t, u)$; triangle inequality.
- Quantitative analogue of an equivalence relation.

Pseudometrics

- Function $d: X \times X \rightarrow \mathbb{R}^{\geq 0}$
- $\forall s, d(s, s)=0$; one can have $x \neq y$ and $d(x, y)=0$.
- $\forall s, t, d(s, t)=d(t, s)$
- $\forall s, t, u, d(s, u) \leq d(s, t)+d(t, u)$; triangle inequality.
- Quantitative analogue of an equivalence relation.
- If we insist on $d(x, y)=0$ iff $x=y$ we get a metric.

Pseudometrics

- Function $d: X \times X \rightarrow \mathbb{R}^{\geq 0}$
- $\forall s, d(s, s)=0$; one can have $x \neq y$ and $d(x, y)=0$.
- $\forall s, t, d(s, t)=d(t, s)$
- $\forall s, t, u, d(s, u) \leq d(s, t)+d(t, u)$; triangle inequality.
- Quantitative analogue of an equivalence relation.
- If we insist on $d(x, y)=0$ iff $x=y$ we get a metric.
- A pseudometric defines an equivalence relation: $x \sim y$ if $d(x, y)=0$.

Pseudometrics

- Function $d: X \times X \rightarrow \mathbb{R}^{\geq 0}$
- $\forall s, d(s, s)=0$; one can have $x \neq y$ and $d(x, y)=0$.
- $\forall s, t, d(s, t)=d(t, s)$
- $\forall s, t, u, d(s, u) \leq d(s, t)+d(t, u)$; triangle inequality.
- Quantitative analogue of an equivalence relation.
- If we insist on $d(x, y)=0$ iff $x=y$ we get a metric.
- A pseudometric defines an equivalence relation: $x \sim y$ if $d(x, y)=0$.
- Define d^{\sim} on X / \sim by $d^{\sim}([x],[y])=d(x, y)$; well-defined by triangle. This is a proper metric.

Bisimulation

- Let R be an equivalence relation. R is a bisimulation if: $s R t$ if $(\forall a)$:

$$
\begin{aligned}
(s \xrightarrow{a} P) & \Rightarrow\left[t \xrightarrow{a} Q, P==_{R} Q\right] \\
(t \xrightarrow{a} Q) & \Rightarrow\left[s \xrightarrow{a} P, P==_{R} Q\right]
\end{aligned}
$$

Bisimulation

- Let R be an equivalence relation. R is a bisimulation if: $s R t$ if $(\forall a)$:

$$
\begin{aligned}
& (s \xrightarrow{a} P) \Rightarrow\left[t \xrightarrow{a} Q, P==_{R} Q\right] \\
& (t \xrightarrow{a} Q) \Rightarrow\left[s \xrightarrow{a} P, P==_{R} Q\right]
\end{aligned}
$$

- $=_{R}$ means that the measures P, Q agree on unions of R-equivalence classes.

Bisimulation

- Let R be an equivalence relation. R is a bisimulation if: $s R t$ if $(\forall a)$:

$$
\begin{aligned}
(s \xrightarrow{a} P) & \Rightarrow\left[t \xrightarrow{a} Q, P==_{R} Q\right] \\
(t \xrightarrow{a} Q) & \Rightarrow\left[s \xrightarrow{a} P, P==_{R} Q\right]
\end{aligned}
$$

- $={ }_{R}$ means that the measures P, Q agree on unions of R-equivalence classes.
- s, t are bisimilar if there is a bisimulation relating them.

Bisimulation

- Let R be an equivalence relation. R is a bisimulation if: $s R t$ if $(\forall a)$:

$$
\begin{aligned}
& (s \xrightarrow{a} P) \Rightarrow\left[t \xrightarrow{a} Q, P==_{R} Q\right] \\
& (t \xrightarrow{a} Q) \Rightarrow\left[s \xrightarrow{a} P, P==_{R} Q\right]
\end{aligned}
$$

- $=_{R}$ means that the measures P, Q agree on unions of R-equivalence classes.
- s, t are bisimilar if there is a bisimulation relating them.
- There is a maximum bisimulation relation.

Properties of bisimulation

- Establishing equality of states: Coinduction. Establish a bisimulation R that relates states s, t.

Properties of bisimulation

- Establishing equality of states: Coinduction. Establish a bisimulation R that relates states s, t.
- Distinguishing states: Simple logic is complete for bisimulation.

$$
\phi::=\operatorname{true}\left|\phi_{1} \wedge \phi_{2}\right|\langle a\rangle_{>q} \phi
$$

A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).

A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- Quantitative measurement of the distinction between processes.

Summary of results

- Establishing closeness of states: Coinduction

Summary of results

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics

Summary of results

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics

Summary of results

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
- Compositional reasoning by non-expansiveness. Process-combinators take nearby processes to nearby processes.

$$
\frac{d\left(s_{1}, t_{1}\right)<\epsilon_{1}, \quad d\left(s_{2}, t_{2}\right)<\epsilon_{2}}{d\left(s_{1}\left\|s_{2}, t_{1}\right\| t_{2}\right)<\epsilon_{1}+\epsilon_{2}}
$$

Summary of results

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
- Compositional reasoning by non-expansiveness. Process-combinators take nearby processes to nearby processes.

$$
\frac{d\left(s_{1}, t_{1}\right)<\epsilon_{1}, \quad d\left(s_{2}, t_{2}\right)<\epsilon_{2}}{d\left(s_{1}\left\|s_{2}, t_{1}\right\| t_{2}\right)<\epsilon_{1}+\epsilon_{2}}
$$

- Results work for Markov chains, Labelled Markov processes, Markov decision processes and Labelled Concurrent Markov chains with τ-transitions.

Criteria on metrics

- Soundness:

$$
d(s, t)=0 \Leftrightarrow s, t \text { are bisimilar }
$$

Criteria on metrics

- Soundness:

$$
d(s, t)=0 \Leftrightarrow s, t \text { are bisimilar }
$$

- Stability of distance under temporal evolution:"Nearby states stay close forever."

Criteria on metrics

- Soundness:

$$
d(s, t)=0 \Leftrightarrow s, t \text { are bisimilar }
$$

- Stability of distance under temporal evolution:"Nearby states stay close forever."
- Metrics should be computable.

Bisimulation Recalled

Let R be an equivalence relation. R is a bisimulation if: $s R t$ if:

$$
\begin{aligned}
& (s \longrightarrow P) \Rightarrow\left[t \longrightarrow Q, P==_{R} Q\right] \\
& (t \longrightarrow Q) \Rightarrow\left[s \longrightarrow P, P={ }_{R} Q\right]
\end{aligned}
$$

where $P={ }_{R} Q$ if

$$
(\forall R-\operatorname{closed} E) P(E)=Q(E)
$$

A putative definition of a metric-bisimulation

- m is a metric-bisimulation if: $m(s, t)<\epsilon \Rightarrow$:

$$
\begin{gathered}
s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{gathered}
$$

A putative definition of a metric-bisimulation

- m is a metric-bisimulation if: $m(s, t)<\epsilon \Rightarrow$:

$$
\begin{aligned}
& s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
& t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{aligned}
$$

- Problem: what is $m(P, Q)$? - Type mismatch!!

A putative definition of a metric-bisimulation

- m is a metric-bisimulation if: $m(s, t)<\epsilon \Rightarrow$:

$$
\begin{aligned}
& s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
& t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{aligned}
$$

- Problem: what is $m(P, Q)$? - Type mismatch!!
- Need a way to lift distances from states to a distances on distributions of states.

A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.

A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.
- M: 1-bounded pseudometrics on states.

A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.
- M: 1-bounded pseudometrics on states.

$$
d(\mu, \nu)=\sup _{f}\left|\int f d \mu-\int f d \nu\right|, f \text { 1-Lipschitz }
$$

A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.
- M: 1-bounded pseudometrics on states.

$$
d(\mu, \nu)=\sup _{f}\left|\int f d \mu-\int f d \nu\right|, f \text { 1-Lipschitz }
$$

- Arises in the solution of an LP problem: transshipment.

An LP version for Finite-State Spaces

When state space is finite: Let P, Q be probability distributions. Then:

$$
m(P, Q)=\max \sum_{i}\left(P\left(s_{i}\right)-Q\left(s_{i}\right)\right) a_{i}
$$

subject to:

$$
\begin{aligned}
& \forall i .0 \leq a_{i} \leq 1 \\
& \forall i, j . a_{i}-a_{j} \leq m\left(s_{i}, s_{j}\right)
\end{aligned}
$$

The dual form

- Dual form from Worrell and van Breugel:

The dual form

- Dual form from Worrell and van Breugel:

$$
\min \sum_{i, j} l_{i j} m\left(s_{i}, s_{j}\right)+\sum_{i} x_{i}+\sum_{j} y_{j}
$$

subject to:

$$
\begin{aligned}
& \forall i . \sum_{j} l_{i j}+x_{i}=P\left(s_{i}\right) \\
& \forall j . \sum_{i} l_{i j}+y_{j}=Q\left(s_{j}\right) \\
& \forall i, j . l_{i j}, x_{i}, y_{j} \geq 0 .
\end{aligned}
$$

The dual form

- Dual form from Worrell and van Breugel:

$$
\min \sum_{i, j} l_{i j} m\left(s_{i}, s_{j}\right)+\sum_{i} x_{i}+\sum_{j} y_{j}
$$

subject to:

$$
\begin{aligned}
& \forall i . \sum_{j} l_{i j}+x_{i}=P\left(s_{i}\right) \\
& \forall j . \sum_{i} l_{i j}+y_{j}=Q\left(s_{j}\right) \\
& \forall i, j . l_{i j}, x_{i}, y_{j} \geq 0 .
\end{aligned}
$$

- We prove many equations by using the primal form to show one direction and the dual to show the other.

Example 1

- $m(P, P)=0$.

Example 1

- $m(P, P)=0$.
- In dual, match each state with itself, $l_{i j}=\delta_{i j} P\left(s_{i}\right), x_{i}=y_{j}=0$. So:

$$
\sum_{i, j} l_{i j} m\left(s_{i}, s_{j}\right)+\sum_{i} x_{i}+\sum_{j} y_{j}
$$

becomes 0 .

Example 1

- $m(P, P)=0$.
- In dual, match each state with itself, $l_{i j}=\delta_{i j} P\left(s_{i}\right), x_{i}=y_{j}=0$. So:

$$
\sum_{i, j} l_{i j} m\left(s_{i}, s_{j}\right)+\sum_{i} x_{i}+\sum_{j} y_{j}
$$

becomes 0 .

- This clearly cannot be lowered further so this is the min.

Example 2

- Let $m(s, t)=r<1$. Let $\delta_{s}\left(\right.$ resp. $\left.\delta_{t}\right)$ be the probability measure concentrated at $s($ resp. $t)$. Then,

$$
m\left(\delta_{s}, \delta_{t}\right)=r
$$

Example 2

- Let $m(s, t)=r<1$. Let δ_{s} (resp. $\left.\delta_{t}\right)$ be the probability measure concentrated at $s($ resp. $t)$. Then,

$$
m\left(\delta_{s}, \delta_{t}\right)=r
$$

- Upper bound from dual: Choose $l_{s t}=1$ all other $l_{i j}=0$. Then

$$
\sum_{i j} l_{i j} m\left(s_{i}, s_{j}\right)=m(s, t)=r
$$

Example 2

- Let $m(s, t)=r<1$. Let $\delta_{s}\left(\right.$ resp. $\left.\delta_{t}\right)$ be the probability measure concentrated at $s($ resp. $t)$. Then,

$$
m\left(\delta_{s}, \delta_{t}\right)=r
$$

- Upper bound from dual: Choose $l_{s t}=1$ all other $l_{i j}=0$. Then

$$
\sum_{i j} l_{i j} m\left(s_{i}, s_{j}\right)=m(s, t)=r
$$

- Lower bound from primal: Choose $a_{s}=0, a_{t}=r$, all others to match the constraints. Then

$$
\sum_{i}\left(\delta_{t}\left(s_{i}\right)-\delta_{s}\left(s_{i}\right)\right) a_{i}=r
$$

The Importance of Example 2

We can isometrically embed the original space in the metric space of distributions.

Example 3-I

- Let $P(s)=r, P(t)=0$ if $s \neq t$. Let $Q(s)=r^{\prime}, Q(t)=0$ if $s \neq t$.

Example 3-I

- Let $P(s)=r, P(t)=0$ if $s \neq t$. Let $Q(s)=r^{\prime}, Q(t)=0$ if $s \neq t$.
- Then $m(P, Q)=\left|r-r^{\prime}\right|$.

Example 3-I

- Let $P(s)=r, P(t)=0$ if $s \neq t$. Let $Q(s)=r^{\prime}, Q(t)=0$ if $s \neq t$.
- Then $m(P, Q)=\left|r-r^{\prime}\right|$.
- Assume that $r \geq r^{\prime}$.

Lower bound from primal: yielded by $\forall i . a_{i}=1$,

$$
\sum_{i}\left(P\left(s_{i}\right)-Q\left(s_{i}\right)\right) a_{i}=P(s)-Q(s)=r-r^{\prime}
$$

Example 3 - II

Upper bound from dual: $l_{s s}=r^{\prime}$ and $x_{s}=r-r^{\prime}$, all others 0

$$
\sum_{i, j} l_{i j} m\left(s_{i}, s_{j}\right)+\sum_{i} x_{i}+\sum_{j} y_{j}=x_{s}=r-r^{\prime} .
$$

and the constraints are satisfied:

$$
\begin{gathered}
\sum_{j} l_{s j}+x_{s}=l_{s s}+x_{s}=r \\
\sum_{i} l_{i s}+y_{s}=l_{s s}=r^{\prime}
\end{gathered}
$$

Return from detour

Summary

Given a metric on states in a metric space, can lift to a metric on probability distributions on states.

Metric "bisimulation"

- m is a metric-bisimulation if: $m(s, t)<\epsilon \Rightarrow$:

$$
\begin{aligned}
& s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
& t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{aligned}
$$

Metric "bisimulation"

- m is a metric-bisimulation if: $m(s, t)<\epsilon \Rightarrow$:

$$
\begin{aligned}
& s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
& t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{aligned}
$$

- The required canonical metric on processes is the least such: ie. the distances are the least possible.

Metric "bisimulation"

- m is a metric-bisimulation if: $m(s, t)<\epsilon \Rightarrow$:

$$
\begin{aligned}
& s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
& t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{aligned}
$$

- The required canonical metric on processes is the least such: ie. the distances are the least possible.
- Thm: Canonical least metric exists.

Tarski's theorem

If L is a complete lattice and $F: L \rightarrow L$ is monotone then the set of fixed points of F with the induced order is itself a complete lattice. In particular there is a least fixed point and a greatest fixed point.

Metrics: some details

- \mathcal{M} : 1-bounded pseudometrics on states with ordering

$$
m_{1} \preceq m_{2} \text { if }(\forall s, t)\left[m_{1}(s, t) \geq m_{2}(s, t)\right]
$$

Metrics: some details

- \mathcal{M} : 1-bounded pseudometrics on states with ordering

$$
m_{1} \preceq m_{2} \text { if }(\forall s, t)\left[m_{1}(s, t) \geq m_{2}(s, t)\right]
$$

- (\mathcal{M}, \preceq) is a complete lattice.

Metrics: some details

- \mathcal{M} : 1-bounded pseudometrics on states with ordering

$$
m_{1} \preceq m_{2} \text { if }(\forall s, t)\left[m_{1}(s, t) \geq m_{2}(s, t)\right]
$$

- (\mathcal{M}, \preceq) is a complete lattice.

$$
\begin{aligned}
\perp(s, t) & =\left\{\begin{array}{l}
0 \text { if } s=t \\
1 \text { otherwise }
\end{array}\right. \\
\top(s, t) & =0,(\forall s, t) \\
\left(\sqcap\left\{m_{i}\right\}(s, t)\right. & =\sup _{i} m_{i}(s, t)
\end{aligned}
$$

Greatest fixed-point definition

- Let $m \in \mathcal{M .} F(m)(s, t)<\epsilon$ if:

$$
\begin{aligned}
& s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
& t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{aligned}
$$

Greatest fixed-point definition

- Let $m \in \mathcal{M} . F(m)(s, t)<\epsilon$ if:

$$
\begin{aligned}
& s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
& t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{aligned}
$$

- $F(m)(s, t)$ can be given by an explicit expression.

Greatest fixed-point definition

- Let $m \in \mathcal{M} . F(m)(s, t)<\epsilon$ if:

$$
\begin{aligned}
& s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
& t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{aligned}
$$

- $F(m)(s, t)$ can be given by an explicit expression.
- F is monotone on \mathcal{M}, and metric-bisimulation is the greatest fixed point of F.

Greatest fixed-point definition

- Let $m \in \mathcal{M} . F(m)(s, t)<\epsilon$ if:

$$
\begin{aligned}
& s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P, Q)<\epsilon \\
& t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P, Q)<\epsilon
\end{aligned}
$$

- $F(m)(s, t)$ can be given by an explicit expression.
- F is monotone on \mathcal{M}, and metric-bisimulation is the greatest fixed point of F.
- The closure ordinal of F is ω.

A key tool

Splitting Lemma (Jones)

Let P and Q be probability distributions on a set of states. Let P_{1} and P_{2} be such that: $P=P_{1}+P_{2}$. Then, there exist Q_{1}, Q_{2}, such that $Q_{1}+Q_{2}=Q$ and

$$
m(P, Q)=m\left(P_{1}, Q_{1}\right)+m\left(P_{2}, Q_{2}\right)
$$

The proof uses the duality theory of LP for discrete spaces and Kantorovich-Rubinstein duality for continuous spaces.

Kantorovich-Rubinstein duality

Definition

Given two probability measures P_{1}, P_{2} on (X, Σ), a coupling is a measure Q on the product space $X \times X$ such that the marginals are P_{1}, P_{2}. Write $\mathcal{C}\left(P_{1}, P_{2}\right)$ for the set of couplings between P_{1}, P_{2}.

Kantorovich-Rubinstein duality

Definition

Given two probability measures P_{1}, P_{2} on (X, Σ), a coupling is a measure Q on the product space $X \times X$ such that the marginals are P_{1}, P_{2}. Write $\mathcal{C}\left(P_{1}, P_{2}\right)$ for the set of couplings between P_{1}, P_{2}.

Theorem

Let (X, d) be a compact metric space. Let P_{1}, P_{2} be Borel probability measures on X

$$
\sup _{f: X \rightarrow[0,1] \text { nonexpansive }}\left\{\int_{X} f \mathrm{~d} P_{1}-\int_{X} f \mathrm{~d} P_{2}\right\}=\inf _{Q \in \mathcal{C}\left(P_{1}, P_{2}\right)}\left\{\int_{X \times X} d \mathrm{~d} Q\right\}
$$

Real-valued modal logic I

- Develop a real-valued "modal logic" based on the analogy:

Real-valued modal logic I

- Develop a real-valued "modal logic" based on the analogy:

Kozen's analogy	
Program Logic	Probabilistic Logic
State s	Distribution μ
Formula ϕ	Random Variable f
Satisfaction $s \models \phi$	$\int f \mathrm{~d} \mu$

Real-valued modal logic I

- Develop a real-valued "modal logic" based on the analogy:

Kozen's analogy

Program Logic Probabilistic Logic
State $s \quad$ Distribution μ
Formula $\phi \quad$ Random Variable f
Satisfaction $s \models \phi \quad \int f \mathrm{~d} \mu$

- Define a metric based on how closely the random variables agree.

Real-valued modal logic II

$$
f::=\mathbf{1}|\max (f, f)| h \circ f \mid\langle a\rangle . f
$$

Real-valued modal logic II

$$
f::=\mathbf{1}|\max (f, f)| h \circ f \mid\langle a\rangle . f
$$

$\mathbf{1}(s)$	$=1$
$\max \left(f_{1}, f_{2}\right)(s)$	$=\max \left(f_{1}(s), f_{2}(s)\right)$
$h \circ f(s)$	$=h(f(s))$
$\langle a\rangle \cdot f(s)$	$=\gamma \int_{s^{\prime} \in S} f\left(s^{\prime}\right) \tau_{a}\left(s, \mathrm{~d} s^{\prime}\right)$

True
Conjunction Lipschitz
a-transition
where h 1-Lipschitz : $[0,1] \rightarrow[0,1]$ and $\gamma \in(0,1]$.

Real-valued modal logic II

$$
f::=\mathbf{1}|\max (f, f)| h \circ f \mid\langle a\rangle . f
$$

$\mathbf{1}(s)$	$=1$
$\max \left(f_{1}, f_{2}\right)(s)$	$=\max \left(f_{1}(s), f_{2}(s)\right)$
$h \circ f(s)$	$=h(f(s))$
$\langle a\rangle \cdot f(s)$	$=\gamma \int_{s^{\prime} \in S} f\left(s^{\prime}\right) \tau_{a}\left(s, \mathrm{~d} s^{\prime}\right)$

True
Conjunction Lipschitz
a-transition
where h 1-Lipschitz : $[0,1] \rightarrow[0,1]$ and $\gamma \in(0,1]$.

- $d(s, t)=\sup _{f}|f(s)-f(t)|$

Real-valued modal logic II

$$
f::=\mathbf{1}|\max (f, f)| h \circ f \mid\langle a\rangle . f
$$

$\mathbf{1}(s)$	$=1$
$\max \left(f_{1}, f_{2}\right)(s)$	$=\max \left(f_{1}(s), f_{2}(s)\right)$
$h \circ f(s)$	$=h(f(s))$
$\langle a\rangle . f(s)$	$=\gamma \int_{s^{\prime} \in S} f\left(s^{\prime}\right) \tau_{a}\left(s, \mathrm{~d} s^{\prime}\right)$

True
Conjunction
Lipschitz
a-transition
where $h 1$-Lipschitz : $[0,1] \rightarrow[0,1]$ and $\gamma \in(0,1]$.

- $d(s, t)=\sup _{f}|f(s)-f(t)|$
- Thm: d coincides with the fixed-point definition of the bisimulation metric.

Finitary syntax for the modal logic

$$
\begin{array}{lll}
\mathbf{1}(s) & =1 & \text { True } \\
\max \left(f_{1}, f_{2}\right)(s) & =\max \left(f_{1}(s), f_{2}(s)\right) & \text { Conjunction } \\
(1-f)(s) & =1-f(s) & \text { Negation } \\
\left\lfloor f_{q}(s)\right\rfloor & =\left\{\begin{array}{lll}
q, & f(s) \geq q & \text { Cutoffs } \\
f(s), \quad f(s)<q & \\
\langle a\rangle . f(s) & =\gamma \int_{s^{\prime} \in S} f\left(s^{\prime}\right) \tau_{a}\left(s, \mathrm{~d} s^{\prime}\right) & a \text {-transition }
\end{array} . \begin{array}{ll}
&
\end{array}\right)
\end{array}
$$

q is a rational.

Markov decision processes

$$
\left(S, \mathcal{A}, \forall a \in \mathcal{A}, P^{a}: S \rightarrow \mathcal{D}(S), \mathcal{R}: \mathcal{A} \times S \rightarrow \mathbb{R}\right)
$$

where
S : the state space, we will take it to be a finite set.
\mathcal{A} : the actions, a finite set
P^{a} : the transition function; $\mathcal{D}(S)$ denotes distributions over S
\mathcal{R} : the reward, could readily make it stochastic.
Will write $P^{a}(s, C)$ for $P^{a}(s)(C)$.

Policies

MDP

$$
\left(S, \mathcal{A}, \forall a \in \mathcal{A}, P^{a}: S \rightarrow \mathcal{D}(S), \mathcal{R}: \mathcal{A} \times S \rightarrow \mathbb{R}\right)
$$

Policies

MDP

$$
\left(S, \mathcal{A}, \forall a \in \mathcal{A}, P^{a}: S \rightarrow \mathcal{D}(S), \mathcal{R}: \mathcal{A} \times S \rightarrow \mathbb{R}\right)
$$

Policy

$$
\pi: S \rightarrow \mathcal{D}(\mathcal{A})
$$

Policies

MDP

$$
\left(S, \mathcal{A}, \forall a \in \mathcal{A}, P^{a}: S \rightarrow \mathcal{D}(S), \mathcal{R}: \mathcal{A} \times S \rightarrow \mathbb{R}\right)
$$

Policy

$$
\pi: S \rightarrow \mathcal{D}(\mathcal{A})
$$

Policies

MDP

$$
\left(S, \mathcal{A}, \forall a \in \mathcal{A}, P^{a}: S \rightarrow \mathcal{D}(S), \mathcal{R}: \mathcal{A} \times S \rightarrow \mathbb{R}\right)
$$

Policy

$$
\pi: S \rightarrow \mathcal{D}(\mathcal{A})
$$

The goal is choose the best policy: numerous algorithms to find or approximate the optimal policy.

Value functions

- What is the value of a state?

Value functions

- What is the value of a state?
- Immediate gratification: reward, for given a, s it is $\mathcal{R}(a, s)$.

Value functions

- What is the value of a state?
- Immediate gratification: reward, for given a, s it is $\mathcal{R}(a, s)$.
- But what of the future?

Value functions

- What is the value of a state?
- Immediate gratification: reward, for given a, s it is $\mathcal{R}(a, s)$.
- But what of the future?
- Take immediate reward plus discounted future reward.

Value functions

- What is the value of a state?
- Immediate gratification: reward, for given a, s it is $\mathcal{R}(a, s)$.
- But what of the future?
- Take immediate reward plus discounted future reward.
- Only makes sense if we have a policy π.

Value functions

- What is the value of a state?
- Immediate gratification: reward, for given a, s it is $\mathcal{R}(a, s)$.
- But what of the future?
- Take immediate reward plus discounted future reward.
- Only makes sense if we have a policy π.
- $V^{\pi}(s)=\sum_{a} \pi(s)(a)\left[\mathcal{R}(a, s)+\gamma \sum_{s^{\prime} \in S} P^{a}\left(s, s^{\prime}\right) V^{\pi}\left(s^{\prime}\right)\right]$

Value functions

- What is the value of a state?
- Immediate gratification: reward, for given a, s it is $\mathcal{R}(a, s)$.
- But what of the future?
- Take immediate reward plus discounted future reward.
- Only makes sense if we have a policy π.
- $V^{\pi}(s)=\sum_{a} \pi(s)(a)\left[\mathcal{R}(a, s)+\gamma \sum_{s^{\prime} \in S} P^{a}\left(s, s^{\prime}\right) V^{\pi}\left(s^{\prime}\right)\right]$
- Notice this is a fixed-point equation, solution exists by Banach's fixed point theorem.

Value functions

- What is the value of a state?
- Immediate gratification: reward, for given a, s it is $\mathcal{R}(a, s)$.
- But what of the future?
- Take immediate reward plus discounted future reward.
- Only makes sense if we have a policy π.
- $V^{\pi}(s)=\sum_{a} \pi(s)(a)\left[\mathcal{R}(a, s)+\gamma \sum_{s^{\prime} \in S} P^{a}\left(s, s^{\prime}\right) V^{\pi}\left(s^{\prime}\right)\right]$
- Notice this is a fixed-point equation, solution exists by Banach's fixed point theorem.
- One can define an optimal value function.

Value functions

- What is the value of a state?
- Immediate gratification: reward, for given a, s it is $\mathcal{R}(a, s)$.
- But what of the future?
- Take immediate reward plus discounted future reward.
- Only makes sense if we have a policy π.
- $V^{\pi}(s)=\sum_{a} \pi(s)(a)\left[\mathcal{R}(a, s)+\gamma \sum_{s^{\prime} \in S} P^{a}\left(s, s^{\prime}\right) V^{\pi}\left(s^{\prime}\right)\right]$
- Notice this is a fixed-point equation, solution exists by Banach's fixed point theorem.
- One can define an optimal value function.
- $V^{*}(s)=\max _{a}\left[\mathcal{R}(a, s)+\gamma \sum_{s^{\prime} \in S} P^{a}\left(s, s^{\prime}\right) V^{*}\left(s^{\prime}\right)\right]$

Value functions

- What is the value of a state?
- Immediate gratification: reward, for given a, s it is $\mathcal{R}(a, s)$.
- But what of the future?
- Take immediate reward plus discounted future reward.
- Only makes sense if we have a policy π.
- $V^{\pi}(s)=\sum_{a} \pi(s)(a)\left[\mathcal{R}(a, s)+\gamma \sum_{s^{\prime} \in S} P^{a}\left(s, s^{\prime}\right) V^{\pi}\left(s^{\prime}\right)\right]$
- Notice this is a fixed-point equation, solution exists by Banach's fixed point theorem.
- One can define an optimal value function.
- $V^{*}(s)=\max _{a}\left[\mathcal{R}(a, s)+\gamma \sum_{s^{\prime} \in S} P^{a}\left(s, s^{\prime}\right) V^{*}\left(s^{\prime}\right)\right]$
- These are the celebrated Bellman equations.

Bisimulation

- Let R be an equivalence relation. R is a bisimulation if: $s R t$ if $(\forall a)$ and all equivalence classes C of R :

Bisimulation

- Let R be an equivalence relation. R is a bisimulation if: $s R t$ if $(\forall a)$ and all equivalence classes C of R :
(i) $\mathcal{R}(a, s)=\mathcal{R}(a, t)$

Bisimulation

- Let R be an equivalence relation. R is a bisimulation if: $s R t$ if $(\forall a)$ and all equivalence classes C of R :
(i) $\mathcal{R}(a, s)=\mathcal{R}(a, t)$
(ii) $P^{a}(s, C)=P^{a}(t, C)$

Bisimulation

- Let R be an equivalence relation. R is a bisimulation if: $s R t$ if $(\forall a)$ and all equivalence classes C of R :
(i) $\mathcal{R}(a, s)=\mathcal{R}(a, t)$
(ii) $P^{a}(s, C)=P^{a}(t, C)$
- s, t are bisimilar if there is a bisimulation relation R with $s R t$ them.

Bisimulation

- Let R be an equivalence relation. R is a bisimulation if: $s R t$ if $(\forall a)$ and all equivalence classes C of R :
(i) $\mathcal{R}(a, s)=\mathcal{R}(a, t)$
(ii) $P^{a}(s, C)=P^{a}(t, C)$
- s, t are bisimilar if there is a bisimulation relation R with $s R t$ them.
- Basic pattern: immediate rewards match (initiation), stay related after the transition (coinduction).

Bisimulation

- Let R be an equivalence relation. R is a bisimulation if: $s R t$ if $(\forall a)$ and all equivalence classes C of R :
(i) $\mathcal{R}(a, s)=\mathcal{R}(a, t)$
(ii) $P^{a}(s, C)=P^{a}(t, C)$
- s, t are bisimilar if there is a bisimulation relation R with $s R t$ them.
- Basic pattern: immediate rewards match (initiation), stay related after the transition (coinduction).
- Bisimulation can be defined as the greatest fixed point of a relation transformer.

The bisimulation metric

- Let \mathcal{M} be the space of 1-bounded pseudometrics over S, ordered by $d_{1} \leq d_{2}$ if $\forall x, y ; d_{2}(x, y) \leq d_{1}(x, y)$.

The bisimulation metric

- Let \mathcal{M} be the space of 1-bounded pseudometrics over S, ordered by $d_{1} \leq d_{2}$ if $\forall x, y ; d_{2}(x, y) \leq d_{1}(x, y)$.
- This is a complete lattice.

The bisimulation metric

- Let \mathcal{M} be the space of 1-bounded pseudometrics over S, ordered by $d_{1} \leq d_{2}$ if $\forall x, y ; d_{2}(x, y) \leq d_{1}(x, y)$.
- This is a complete lattice.
- We define $T_{K}: \mathcal{M} \rightarrow \mathcal{M}$ by

The bisimulation metric

- Let \mathcal{M} be the space of 1-bounded pseudometrics over S, ordered by $d_{1} \leq d_{2}$ if $\forall x, y ; d_{2}(x, y) \leq d_{1}(x, y)$.
- This is a complete lattice.
- We define $T_{K}: \mathcal{M} \rightarrow \mathcal{M}$ by
- $T_{K}(d)(x, y)=\max _{a}\left[|\mathcal{R}(x, a)-\mathcal{R}(y, a)|+\gamma W_{d}\left(P^{a}(x), P^{a}(y)\right)\right]$

The bisimulation metric

- Let \mathcal{M} be the space of 1-bounded pseudometrics over S, ordered by $d_{1} \leq d_{2}$ if $\forall x, y ; d_{2}(x, y) \leq d_{1}(x, y)$.
- This is a complete lattice.
- We define $T_{K}: \mathcal{M} \rightarrow \mathcal{M}$ by
- $T_{K}(d)(x, y)=\max _{a}\left[|\mathcal{R}(x, a)-\mathcal{R}(y, a)|+\gamma W_{d}\left(P^{a}(x), P^{a}(y)\right)\right]$
- This is a monotone function on \mathcal{M}.

The bisimulation metric

- Let \mathcal{M} be the space of 1-bounded pseudometrics over S, ordered by $d_{1} \leq d_{2}$ if $\forall x, y ; d_{2}(x, y) \leq d_{1}(x, y)$.
- This is a complete lattice.
- We define $T_{K}: \mathcal{M} \rightarrow \mathcal{M}$ by
- $T_{K}(d)(x, y)=\max _{a}\left[|\mathcal{R}(x, a)-\mathcal{R}(y, a)|+\gamma W_{d}\left(P^{a}(x), P^{a}(y)\right)\right]$
- This is a monotone function on \mathcal{M}.
- We can find the bisimulation as the fixed point of T_{K} by iteration: d^{\sim}.

Ferns' theorem

Ferns et al. - 2004,2005
 $\left|V^{*}(x)-V^{*}(y)\right| \leq d^{\sim}(x, y)$.

Ferns' theorem

Ferns et al. - 2004,2005

$\left|V^{*}(x)-V^{*}(y)\right| \leq d^{\sim}(x, y)$.

- So bisimulation metrics have an important connection with value functions in MDPs.

Ferns' theorem

Ferns et al. - 2004,2005

$\left|V^{*}(x)-V^{*}(y)\right| \leq d^{\sim}(x, y)$.

- So bisimulation metrics have an important connection with value functions in MDPs.
- Ferns and Precup showed that bisimulation metrics are value functions for a suitably defined MDP.

Ferns' theorem

Ferns et al. - 2004,2005

$$
\left|V^{*}(x)-V^{*}(y)\right| \leq d^{\sim}(x, y) .
$$

- So bisimulation metrics have an important connection with value functions in MDPs.
- Ferns and Precup showed that bisimulation metrics are value functions for a suitably defined MDP.
- Pablo Castro has adapted bisimulation metrics to deal with specific policies.

Conclusions

- Bisimulation can be made into a quantitative concept by defining a pseudometric.

Conclusions

- Bisimulation can be made into a quantitative concept by defining a pseudometric.
- The induced equivalence relation is precisely bisimulation.

Conclusions

- Bisimulation can be made into a quantitative concept by defining a pseudometric.
- The induced equivalence relation is precisely bisimulation.
- The bisimulation metric can be defined via a real-valued logic or via fixed points on the lattice of 1-bounded pseudometrics.

Conclusions

- Bisimulation can be made into a quantitative concept by defining a pseudometric.
- The induced equivalence relation is precisely bisimulation.
- The bisimulation metric can be defined via a real-valued logic or via fixed points on the lattice of 1-bounded pseudometrics.
- For MDP's the metrics take rewards into account.

Conclusions

- Bisimulation can be made into a quantitative concept by defining a pseudometric.
- The induced equivalence relation is precisely bisimulation.
- The bisimulation metric can be defined via a real-valued logic or via fixed points on the lattice of 1-bounded pseudometrics.
- For MDP's the metrics take rewards into account.
- The bisimulation metric on MDP's is closely related to value functions.

Conclusions

- Bisimulation can be made into a quantitative concept by defining a pseudometric.
- The induced equivalence relation is precisely bisimulation.
- The bisimulation metric can be defined via a real-valued logic or via fixed points on the lattice of 1-bounded pseudometrics.
- For MDP's the metrics take rewards into account.
- The bisimulation metric on MDP's is closely related to value functions.
- How does one reason about these metrics in a way similar to equational reasoning?

Conclusions

- Bisimulation can be made into a quantitative concept by defining a pseudometric.
- The induced equivalence relation is precisely bisimulation.
- The bisimulation metric can be defined via a real-valued logic or via fixed points on the lattice of 1-bounded pseudometrics.
- For MDP's the metrics take rewards into account.
- The bisimulation metric on MDP's is closely related to value functions.
- How does one reason about these metrics in a way similar to equational reasoning?
- Valeria will tell you on Thursday morning!

