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Process equivalence is fundamental

Markov chains:

Lumpability
Labelled Markov processes: Bisimulation
Markov decision processes: Bisimulation
Labelled Concurrent Markov Chains with τ transitions: Weak
Bisimulation
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But...

In the context of probability is exact equivalence reasonable?

We say “no”. A small change in the probability distributions may
result in bisimilar processes no longer being bisimilar though they
may be very “close” in behaviour.
Instead one should have a (pseudo)metric for probabilistic
processes.
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Pseudometrics

Function d : X × X −→ R≥0

∀s, d(s, s) = 0; one can have x ̸= y and d(x, y) = 0.
∀s, t, d(s, t) = d(t, s)

∀s, t, u, d(s, u) ≤ d(s, t) + d(t, u); triangle inequality.
Quantitative analogue of an equivalence relation.
If we insist on d(x, y) = 0 iff x = y we get a metric.
A pseudometric defines an equivalence relation: x ∼ y if
d(x, y) = 0.
Define d∼ on X/ ∼ by d∼([x], [y]) = d(x, y); well-defined by triangle.
This is a proper metric.
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Bisimulation

Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a):

(s a→ P) ⇒ [t a→ Q,P =R Q]

(t a→ Q) ⇒ [s a→ P,P =R Q]

=R means that the measures P,Q agree on unions of
R-equivalence classes.
s, t are bisimilar if there is a bisimulation relating them.
There is a maximum bisimulation relation.
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Properties of bisimulation

Establishing equality of states: Coinduction. Establish a
bisimulation R that relates states s, t.

Distinguishing states: Simple logic is complete for bisimulation.

ϕ ::= true | ϕ1 ∧ ϕ2 | ⟨a⟩>qϕ
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A metric-based approximate viewpoint

Move from equality between processes to distances between
processes (Jou and Smolka 1990).

Quantitative measurement of the distinction between processes.

Panangaden Bisimulation metrics Lecture 2 9 / 38



A metric-based approximate viewpoint

Move from equality between processes to distances between
processes (Jou and Smolka 1990).
Quantitative measurement of the distinction between processes.

Panangaden Bisimulation metrics Lecture 2 9 / 38



Summary of results

Establishing closeness of states: Coinduction

Distinguishing states: Real-valued modal logics
Equational and logical views coincide: Metrics yield same
distances as real-valued modal logics
Compositional reasoning by non-expansiveness.
Process-combinators take nearby processes to nearby processes.

d(s1, t1) < ϵ1, d(s2, t2) < ϵ2

d(s1 || s2, t1 ||t2) < ϵ1 + ϵ2

Results work for Markov chains, Labelled Markov processes,
Markov decision processes and Labelled Concurrent Markov
chains with τ -transitions.
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Criteria on metrics

Soundness:
d(s, t) = 0 ⇔ s, t are bisimilar

Stability of distance under temporal evolution:“Nearby states stay
close forever.”
Metrics should be computable.
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Bisimulation Recalled

Let R be an equivalence relation. R is a bisimulation if: s R t if:

(s −→ P) ⇒ [t −→ Q,P =R Q]

(t −→ Q) ⇒ [s −→ P,P =R Q]

where P =R Q if
(∀R − closed E) P(E) = Q(E)
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A putative definition of a metric-bisimulation

m is a metric-bisimulation if: m(s, t) < ϵ ⇒:

s −→ P ⇒ t −→ Q, m(P,Q) < ϵ

t −→ Q ⇒ s −→ P, m(P,Q) < ϵ

Problem: what is m(P,Q)? — Type mismatch!!
Need a way to lift distances from states to a distances on
distributions of states.
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A detour: Kantorovich metric

Metrics on probability measures on metric spaces.

M: 1-bounded pseudometrics on states.

d(µ, ν) = sup
f

|
∫

fdµ−
∫

fdν|, f 1-Lipschitz

Arises in the solution of an LP problem: transshipment.
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An LP version for Finite-State Spaces

When state space is finite: Let P,Q be probability distributions. Then:

m(P,Q) = max
∑

i

(P(si)− Q(si))ai

subject to:
∀i.0 ≤ ai ≤ 1
∀i, j. ai − aj ≤ m(si, sj).
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The dual form

Dual form from Worrell and van Breugel:

min
∑

i,j

lijm(si, sj) +
∑

i

xi +
∑

j

yj

subject to:
∀i.

∑
j lij + xi = P(si)

∀j.
∑

i lij + yj = Q(sj)
∀i, j. lij, xi, yj ≥ 0.

We prove many equations by using the primal form to show one
direction and the dual to show the other.
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Example 1

m(P,P) = 0.

In dual, match each state with itself, lij = δijP(si), xi = yj = 0. So:∑
i,j

lijm(si, sj) +
∑

i

xi +
∑

j

yj

becomes 0.
This clearly cannot be lowered further so this is the min.
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Example 2

Let m(s, t) = r < 1. Let δs( resp. δt) be the probability measure
concentrated at s(resp. t). Then,

m(δs, δt) = r

Upper bound from dual: Choose lst = 1 all other lij = 0. Then∑
ij

lijm(si, sj) = m(s, t) = r.

Lower bound from primal: Choose as = 0, at = r, all others to
match the constraints. Then∑

i

(δt(si)− δs(si))ai = r.
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The Importance of Example 2

We can isometrically embed the original space in the metric space of
distributions.
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Example 3 - I

Let P(s) = r,P(t) = 0 if s ̸= t. Let Q(s) = r′,Q(t) = 0 if s ̸= t.

Then m(P,Q) = |r − r′|.
Assume that r ≥ r′.
Lower bound from primal: yielded by ∀i.ai = 1,∑

i

(P(si)− Q(si))ai = P(s)− Q(s) = r − r′.
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Example 3 - II

Upper bound from dual: lss = r′ and xs = r − r′, all others 0∑
i,j

lijm(si, sj) +
∑

i

xi +
∑

j

yj = xs = r − r′.

and the constraints are satisfied:∑
j

lsj + xs = lss + xs = r

∑
i

lis + ys = lss = r′.
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Return from detour

Summary
Given a metric on states in a metric space, can lift to a metric on
probability distributions on states.
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Metric “bisimulation”

m is a metric-bisimulation if: m(s, t) < ϵ ⇒:

s −→ P ⇒ t −→ Q, m(P,Q) < ϵ

t −→ Q ⇒ s −→ P, m(P,Q) < ϵ

The required canonical metric on processes is the least such: ie.
the distances are the least possible.
Thm: Canonical least metric exists.
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Tarski’s theorem

If L is a complete lattice and F : L −→ L is monotone then the set of
fixed points of F with the induced order is itself a complete lattice. In
particular there is a least fixed point and a greatest fixed point.
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Metrics: some details

M: 1-bounded pseudometrics on states with ordering

m1 ⪯ m2 if (∀s, t) [m1(s, t) ≥ m2(s, t)]

(M,⪯) is a complete lattice.

⊥(s, t) =

{
0 if s = t
1 otherwise

⊤(s, t) = 0, (∀s, t)

(⊓{mi}(s, t) = sup
i

mi(s, t)
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Greatest fixed-point definition

Let m ∈ M. F(m)(s, t) < ϵ if:

s −→ P ⇒ t −→ Q, m(P,Q) < ϵ

t −→ Q ⇒ s −→ P, m(P,Q) < ϵ

F(m)(s, t) can be given by an explicit expression.
F is monotone on M, and metric-bisimulation is the greatest fixed
point of F.
The closure ordinal of F is ω.
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A key tool

Splitting Lemma (Jones)
Let P and Q be probability distributions on a set of states. Let P1 and
P2 be such that: P = P1 + P2. Then, there exist Q1,Q2, such that
Q1 + Q2 = Q and

m(P,Q) = m(P1,Q1) + m(P2,Q2).

The proof uses the duality theory of LP for discrete spaces and
Kantorovich-Rubinstein duality for continuous spaces.
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Kantorovich-Rubinstein duality

Definition
Given two probability measures P1,P2 on (X,Σ), a coupling is a
measure Q on the product space X × X such that the marginals are
P1,P2. Write C(P1,P2) for the set of couplings between P1,P2.

Theorem
Let (X, d) be a compact metric space. Let P1,P2 be Borel probability
measures on X

sup
f :X−→[0,1] nonexpansive

{∫
X

f dP1 −
∫

X
f dP2

}
= inf

Q∈C(P1,P2)

{∫
X×X

d dQ
}
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Real-valued modal logic I

Develop a real-valued “modal logic” based on the analogy:

Kozen’s analogy

Program Logic Probabilistic Logic
State s Distribution µ
Formula ϕ Random Variable f
Satisfaction s |= ϕ

∫
f dµ

Define a metric based on how closely the random variables agree.

Panangaden Bisimulation metrics Lecture 2 29 / 38



Real-valued modal logic I

Develop a real-valued “modal logic” based on the analogy:

Kozen’s analogy

Program Logic Probabilistic Logic
State s Distribution µ
Formula ϕ Random Variable f
Satisfaction s |= ϕ

∫
f dµ

Define a metric based on how closely the random variables agree.

Panangaden Bisimulation metrics Lecture 2 29 / 38



Real-valued modal logic I

Develop a real-valued “modal logic” based on the analogy:

Kozen’s analogy

Program Logic Probabilistic Logic
State s Distribution µ
Formula ϕ Random Variable f
Satisfaction s |= ϕ

∫
f dµ

Define a metric based on how closely the random variables agree.

Panangaden Bisimulation metrics Lecture 2 29 / 38



Real-valued modal logic II

f ::= 1 | max(f , f ) | h ◦ f | ⟨a⟩.f

1(s) = 1 True
max(f1, f2)(s) = max(f1(s), f2(s)) Conjunction
h ◦ f (s) = h(f (s)) Lipschitz
⟨a⟩.f (s) = γ

∫
s′∈S f (s′)τa(s, ds′) a-transition

where h 1-Lipschitz : [0, 1] → [0, 1] and γ ∈ (0, 1].
d(s, t) = supf |f (s)− f (t)|
Thm: d coincides with the fixed-point definition of the bisimulation
metric.
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Finitary syntax for the modal logic

1(s) = 1 True
max(f1, f2)(s) = max(f1(s), f2(s)) Conjunction
(1 − f )(s) = 1 − f (s) Negation

⌊fq(s)⌋ =

{
q , f (s) ≥ q
f (s) , f (s) < q

Cutoffs

⟨a⟩.f (s) = γ
∫

s′∈S f (s′)τa(s, ds′) a-transition

q is a rational.
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Markov decision processes

(S,A,∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

where
S : the state space, we will take it to be a finite set.
A : the actions, a finite set
Pa : the transition function; D(S) denotes distributions over S
R : the reward, could readily make it stochastic.
Will write Pa(s,C) for Pa(s)(C).
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Policies

MDP

(S,A,∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

Policy

π : S −→ D(A)

The goal is choose the best policy: numerous algorithms to find or
approximate the optimal policy.
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Value functions

What is the value of a state?

Immediate gratification: reward, for given a, s it is R(a, s).
But what of the future?
Take immediate reward plus discounted future reward.
Only makes sense if we have a policy π.
Vπ(s) =

∑
a π(s)(a)[R(a, s) + γ

∑
s′∈S Pa(s, s′)Vπ(s′)]

Notice this is a fixed-point equation, solution exists by Banach’s
fixed point theorem.
One can define an optimal value function.
V∗(s) = maxa[R(a, s) + γ

∑
s′∈S Pa(s, s′)V∗(s′)]

These are the celebrated Bellman equations.
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Bisimulation

Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a)
and all equivalence classes C of R:

(i) R(a, s) = R(a, t)
(ii) Pa(s,C) = Pa(t,C)

s, t are bisimilar if there is a bisimulation relation R with sRt them.
Basic pattern: immediate rewards match (initiation), stay related
after the transition (coinduction).
Bisimulation can be defined as the greatest fixed point of a
relation transformer.
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The bisimulation metric

Let M be the space of 1-bounded pseudometrics over S, ordered
by d1 ≤ d2 if ∀x, y; d2(x, y) ≤ d1(x, y).

This is a complete lattice.
We define TK : M −→ M by
TK(d)(x, y) = maxa[|R(x, a)−R(y, a)|+ γWd(Pa(x),Pa(y))]

This is a monotone function on M.
We can find the bisimulation as the fixed point of TK by iteration:
d∼.
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Ferns’ theorem

Ferns et al. - 2004,2005
|V∗(x)− V∗(y)| ≤ d∼(x, y).

So bisimulation metrics have an important connection with value
functions in MDPs.
Ferns and Precup showed that bisimulation metrics are value
functions for a suitably defined MDP.
Pablo Castro has adapted bisimulation metrics to deal with
specific policies.
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Conclusions

Bisimulation can be made into a quantitative concept by defining a
pseudometric.

The induced equivalence relation is precisely bisimulation.
The bisimulation metric can be defined via a real-valued logic or
via fixed points on the lattice of 1-bounded pseudometrics.
For MDP’s the metrics take rewards into account.
The bisimulation metric on MDP’s is closely related to value
functions.
How does one reason about these metrics in a way similar to
equational reasoning?
Valeria will tell you on Thursday morning!
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