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Summary of Results

Probabilistic bisimulation can be defined for continuous
state-space systems. [LICS97]

Logical characterization. [LICS98,Info and Comp 2002]
Metric analogue of bisimulation. [CONCUR99, TCS2004]
Approximation of LMPs. [LICS00,Info and Comp 2003]
Weak bisimulation. [LICS02,CONCUR02]
Real time. [QEST 2004, JLAP 2003,LMCS 2006]
Event bisimulation [Info and Comp 2006]
Metrics for MDPs [UAI 2004,2005, SIAM 2011]
Approximation by averaging [ICALP 2009, JACM 2014]
Duality [JACM 2014, LICS 2013, 2017]
Quantitative equational logic [LICS 2016, 2017, 2018, 2021,
CALCO 2021]
Diffusion and continuous-time processes [MFPS 2019, 2020]
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Labelled Transition System

A set of states S,

a set of labels or actions, L or A and
a transition relation ⊆ S ×A× S, usually written

→a⊆ S × S.

The transitions could be indeterminate (nondeterministic).
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Markov Chains

A discrete-time Markov chain is a finite set S (the state space)
together with a transition probability function T : S × S −→ [0, 1].

The key property is that the transition probability from s to s′ only
depends on s and s′ and not on the past history of how it got there.
This is what allows the probabilistic data to be given as a single
matrix T.
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Discrete probabilistic transition systems

Just like a labelled transition system with probabilities associated
with the transitions.

(S,L,∀a ∈ L Ta : S × S −→ [0, 1])

The model is reactive: All probabilistic data is internal - no
probabilities associated with environment behaviour.
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Examples of PTSs

s0
a[ 1

4 ]

��

a[ 3
4 ]

��
s1 s2

a[1]
��

s3

s0
a[1]

��

b[1]

��
s1

c[ 1
2 ]

��

c[ 1
2 ]

&&

s2

a[1]
��

s4 s3
A1 A2
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Bisimulation for PTS: Larsen and Skou

Consider

t0
a[ 1

3 ]

��

a[ 2
3 ]

��
t1 t2

b[1]
��

t3

s0
a[ 1

3 ]

��
a[ 1

3 ]

��

a[ 1
3 ]

��
s1 s2

b[1]
��

s3

b[1]��
s4

P1 P2

Should s0 and t0 be bisimilar?
Yes, but we need to add the probabilities.
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The Official Definition

Let S = (S,L,Ta) be a PTS. An equivalence relation R on S is a
bisimulation if whenever sRs′, with s, s′ ∈ S, we have that for all
a ∈ A and every R-equivalence class, A, Ta(s,A) = Ta(s′,A).

The notation Ta(s,A) means “the probability of starting from s and
jumping to a state in the set A.”
Two states are bisimilar if there is some bisimulation relation R
relating them.
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What are labelled Markov processes?

Labelled Markov processes are probabilistic versions of labelled
transition systems. Labelled transition systems where the final
state is governed by a probability distribution - no other
indeterminacy.

All probabilistic data is internal - no probabilities associated with
environment behaviour.
We observe the interactions - not the internal states.
In general, the state space of a labelled Markov process may
be a continuum.
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The Need for Measure Theory

Basic fact: There are subsets of R for which no sensible notion of
size can be defined.

More precisely, there is no non-trivial translation-invariant
measure defined on all the subsets of the reals.
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Stochastic Kernels

A stochastic kernel (Markov kernel) is a function h : S × Σ −→ [0, 1]
with (a) h(s, ·) : Σ −→ [0, 1] a (sub)probability measure and (b)
h(·,A) : S −→ [0, 1] a measurable function.

Though apparantly asymmetric, these are the stochastic
analogues of binary relations
and the uncountable generalization of a matrix.
They are the Kleisli arrows of a monad: the Giry monad.
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Formal Definition of LMPs

An LMP is a tuple (S,Σ,L,∀α ∈ L.τα) where τα : S ×Σ −→ [0, 1] is a
transition probability function such that

∀s : S.λA : Σ.τα(s,A) is a subprobability measure
and
∀A : Σ.λs : S.τα(s,A) is a measurable function.
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Probabilistic Bisimulation

Desharnais et al.
Let S = (S, i,Σ, τ) be a labelled Markov process. An equivalence
relation R on S is a bisimulation if whenever sRs′, with s, s′ ∈ S, we
have that for all a ∈ A and every R-closed measurable set A ∈ Σ,
τa(s,A) = τa(s′,A).

Two states are bisimilar if they are related by a bisimulation relation.
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A game for bisimulation

Two players: spoiler (S) and duplicator (D).

Duplicator claims x, y are bisimilar.
Spoiler exhibits a set C and says C is bisimulation-closed and that
τ(x,C) ̸= τ(y,C). Assume that the inequality holds; it is easy to
check.
Duplicator responds by saying that C is not bisimulation-closed
and that exhibits x′ ∈ C and y′ ̸∈ C and claims that x′, y′ are
bisimilar.
A player loses when he or she cannot make a move. Note that if C
is all of the state space, duplicator loses. Duplicator wins if she
can play forever.
We prove that x is bisimilar to y iff Duplicator has a winning
strategy starting from (x, y).
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Logical Characterization

L ::== T|ϕ1 ∧ ϕ2|⟨a⟩qϕ

We say s |= ⟨a⟩qϕ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= ϕ) ∧ (τa(s,A) > q).

Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
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That cannot be right?

s0
a

��

a

��
s1 s2

b
��

s3

t0
a
��

t1

b
��

t2

Two processes that cannot be distinguished without negation.
The formula that distinguishes them is ⟨a⟩(¬⟨b⟩⊤).
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But it is!

s0
a[p]

��

a[q]

��
s1 s2

b
��

s3

t0

a[r]
��

t1

b
��

t2

We add probabilities to the transitions.

If p + q < r or p + q > r we can easily distinguish them.
If p + q = r and p > 0 then q < r so ⟨a⟩r⟨b⟩1⊤ distinguishes them.
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Proof idea

Show that the relation “s and s′ satisfy exactly the same formulas”
is a bisimulation.

Can easily show that τa(s,A) = τa(s′,A) for A of the form JϕK.
Use Dynkin’s lemma to show that we get a well defined measure
on the σ-algebra generated by such sets and the above equality
holds.
Use special properties of analytic spaces to show that this
σ-algebra is the same as the original σ-algebra.
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Simulation

Let S = (S,Σ, τ) be a labelled Markov process. A preorder R on S is a
simulation if whenever sRs′, we have that for all a ∈ A and every
R-closed measurable set A ∈ Σ, τa(s,A) ≤ τa(s′,A). We say s is
simulated by s′ if sRs′ for some simulation relation R.
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Logic for simulation?

The logic used in the characterization has no negation, not even a
limited negative construct.

One can show that if s simulates s′ then s satisfies all the formulas
of L that s′ satisfies.
What about the converse?
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Counter example!

In the following picture, t satisfies all formulas of L that s satisfies but t
does not simulate s.

s
1
2

��

1
2

��
s1

a
��

s2

b
��

· ·

t
1
4

xx
1
4��

1
4 ��

1
4

&&·
a
��

·
a
��

b

��

·
b
��

t1

· · · ·
All transitions from s and t are labelled by a.
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Counter example (contd.)

A formula of L that is satisfied by t but not by s.

⟨a⟩0(⟨a⟩0T ∧ ⟨b⟩0T).

A formula with disjunction that is satisfied by s but not by t:

⟨a⟩ 3
4
(⟨a⟩0T ∨ ⟨b⟩0T).
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A logical characterization for simulation

The logic L does not characterize simulation. One needs
disjunction.

L∨ := L | ϕ1 ∨ ϕ2.

With this logic we have:
An LMP s1 simulates s2 if and only if for every formula ϕ of L∨ we
have

s1 |= ϕ ⇒ s2 |= ϕ.

The original proof uses domain theory and approximation.
New development (2017 ICALP) we can prove logical
characterization for simulation and bisimulation in almost the
same way.
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Digression on Analytic Spaces

An analytic set A is the image of a Polish space X (or a Borel
subset of X) under a continuous (or measurable) function f : X
−→ Y, where Y is Polish. If (S,Σ) is a measurable space where S is
an analytic set in some ambient topological space and Σ is the
Borel σ-algebra on S.

Analytic sets do not form a σ-algebra but they are in the
completion of the Borel algebra under any measure. [Universally
measurable.]
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Amazing Facts about Analytic Spaces

Given A an analytic space and ∼ an equivalence relation such that
there is a countable family of real-valued measurable functions
fi : S −→ R such that

∀s, s′ ∈ S.s ∼ s′ ⇐⇒ ∀fi.fi(s) = fi(s′)

then the quotient space (Q,Ω) - where Q = S/ ∼ and Ω is the
finest σ-algebra making the canonical surjection q : S −→ Q
measurable - is also analytic.

If an analytic space (S,Σ) has a sub-σ-algebra Σ0 of Σ which
separates points and is countably generated then Σ0 is Σ! The
Unique Structure Theorem (UST).
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Some more measure theory

A π-system is a family of sets closed under finite intersections.

A λ-system is a family of sets closed under complements and
countable disjoint unions.
λ− π theorem: If Π is a π-system and Λ is a λ-system and Π ⊂ Λ
then σ(Π) ⊂ Λ.
Corollary: If two measures agree on the sets of a π-system then
they agree on the generated σ-algebra.
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Bisimulation proof I

Given (S,Σ, τa) an LMP, we define x ≃ y if x and y obey exactly the
same formulas of L0.

We claim that ≃ is a bisimulation relation.
Suppose that x, y ∈ S and for some a and some ≃-closed set C,
τa(x,C) ̸= τa(y,C).
We need to show there is a formula on which x, y disagree.
Let δ = τa(x, ·) and γ = τa(y, ·).
If δ(S) > γ(S) then choose rational q such that δ(S) > q > γ(S).
Now x |= ⟨a⟩q⊤ and y ̸|= ⟨a⟩q⊤.
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Bisimulation proof II

If δ(S) = γ(S) then pick an ≃-closed set C ∈ Σ with δ(C) ̸= γ(C).

Define Π = {JϕK|ϕ ∈ L0} and Λ = {Y ∈ Σ|δ(Y) = γ(Y)}. These are
a π-system and a λ-system respectively.
By unique structure theorem C ∈ σ(Π) but, by assumption C ̸∈ Λ
so Π ̸⊂ Λ so there is a formula ϕ such that δ(JϕK) ̸= γ(JϕK).
Suppose δ(JϕK) > γ(JϕK) choose q rational in between and we
have
x |= ⟨a⟩qϕ and y ̸|= ⟨a⟩qϕ.
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How can we do this for simulation?

Simulation is a preorder ⪯ rather than an equivalence relation.

Simulation game can be defined similarly: Duplicator starts by
claiming x ⪯ y.
Spoiler chooses C which he claims is ⪯-closed and that
τ(x,C) > τ(y,C).

Duplicator chooses x′ ∈ C and y′ ̸∈ C and claims that x′ ⪯ y′.
x ⪯ y iff Duplicator has a winning strategy starting from x, y.
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Positive theorems

We had to come up with positive versions of the unique structure
theorem and the monotone class theorem. With help from experts
in descriptive theory.

With these in place the proof of the logical characterization of
simulation follows the same pattern.
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Uncountable labels

The logical characterization theorem is false if you allow
uncountably many labels. [Fijalkow]

However, if you require the transition functions to be continuous
instead of measurable then logical characterization is restored.
For simulation as well as bisimulation.
We heavily use topological ideas in this proof.
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What is next?

Metrics!
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