
User-Defined Placeholder Text

Alan Turing’s
Contributions

to the
Sciences

Prakash Panangaden
School of Computer Science

McGill University

1

2

3

Who is Alan Turing?

Logician

Mathematician

Cryptanalyst

Computer architect

Mathematical biologist

Inventor of computer science

4

More precisely

Gave a compelling notion of effective
computability.

Showed the equivalence with Church’s
Lambda Calculus.

Formulated the notion of a universal
machine; thus inventing the concept of
software.

Demonstrated the existence of unsolvable
problems (slightly later than A. Church).

5

and more!

Formulated the Turing test and initiated AI.

Designed the ACE stored-program computer.

Pioneered numerical analysis.

Formulated the concept of computable real
numbers.

Proved normalization of simply-typed lambda
calculus.

6

yet more!!

Developed the theory of pattern formation
via reaction-diffusion equations and laid the
foundations for the chemical basis of
morphogenesis.

Introduced the systematic study of error
propagation in numerical computation and
invented the concept of condition number.

7

Less well known
First paper on proving program correct.

Using computers to play games.

Significant contributions to type theory.

Finite approximations to Lie groups.

Computing the Riemann zeta function.

8

My focus today: normal
numbers

Borel defined a normal number in 1900 and
showed that with probability 1 a “random
number” is normal.

But he could not explicitly exhibit one!

He posed it as a major problem.

Turing gave an algorithm to compute normal
numbers.

9

Normal numbers as
random numbers

In the decimal expansion of a “random” real
number the digits should appear equally
often.

Is .012345678901234567890123456789... a
random number? Very predictable pattern.

We want every finite sequence of digits to
occur as often as any other sequence of the
same length.

10

Precise definitions
Consider numbers α ∈ (0, 1) represented to base b. We write

α =
∞�

n=1

anb
−n

where an are integers in {0, . . . , b− 1} and an < b− 1
infinitely often in order to ensure that rational numbers
have a unique representation.

Let w be a word of length k formed from the digits {0, . . . , b− 1}.
We write α(n) for the digit at position n of the base-b expansion
of α. We write S(w,N) = |{n : α(n)α(n+ 1) . . .α(n+ k − 1) = w}|,
where n+ k − 1 ≤ N . S(w,N) is the number of times the word w
occurs in the first N digits of the base-b expansion of α.

11

We say α is normal to base b if for every word w we have

lim
N→∞

S(w,N)/N = b−k.

Clearly, rational numbers cannot be normal to any base.

A number is absolutely normal if it is normal to every base.

A number is simply normal to base b if each digit has
asymptotic frequency 1

b in its base b expansion. A
number is absolutely normal if it is simply normal
to every base.

12

What we do and don’t know
Are there numbers that are normal to one base
but not to another? Yes!

Examples? Not a single one known!

Do we know any “natural” examples of normal numbers?
Like e,π,

√
2, ζ(3). No!

In fact we do not know if any of these are normal to any base!!

Conjecture: all algebraic irrational numbers are normal.

Fact: Champernowne’s number
·012345678910111213141516171819202122 . . .

is normal to base 10 but not known to be normal
to any other base.

13

Sierpinski’s contribution

In 1916 Sierpinski gave a “method” for producing an
explicit example of a normal number.

He defines, for every ε > 0, a countable family of intervals,

∆(ε), and shows that any number not absolutely normal

is in ∆(ε) and that |∆(ε)| < ε.

This has a “constructive” character and one view this as an
explicit description of a normal number.

In 2002 Veronica Becher and Santiago Figueira gave an
algorithm to produce a computable absolutely normal number.

14

Turing’s contributionWe denote with µ (A) the Lebesgue measure of a set A ⊆ R and P(A) is the power set

of A.

Theorem 1 (Turing’s first theorem). There is a computable function
c : N× N → P((0, 1)) such that

1. c(k, n) is a finite union of intervals with rational endpoints;

2. c(k, n + 1) ⊆ c(k, n);

3. µ (c(k, n)) > 1− 1/k.

and for each k, E(k) =
�

n c(k, n) has measure 1− 1/k and consists entirely of absolutely
normal reals.

The function c is computable in the sense that given k and n we can compute a1 < b1 <
a2 < b2 < · · · < am < bm (m depending on k and n) such that ai, bi are rationals in (0, 1)

and c(k, n) = (a1, b1) ∪ · · · ∪ (am, bm). 1

Our proof of Theorem 1 is indeed a completion of Turing’s. But one of his original lem-

mas, a constructive version of the Strong Law of Large Numbers (see Lemma 7), remained

unproved. We substituted it with a weaker version (Lemma 8) that still allows to preserve

Turing’s proof idea and obtain his result.

Turing’s second theorem gives an affirmative answer to the then outstanding question

of whether there are computable normal numbers.

Theorem 2 (Turing’s second theorem). There is an algorithm that, given k ∈ N and an
infinite sequence θ ∈ {0, 1}∞, produces an absolutely normal real number α ∈ (0, 1) in the
scale of 2. For a fixed k these numbers α form a set of Lebesgue measure at least 1− 2/k,
and so that the first n digits of θ determine α to within 2−n.

The proof of Theorem 2 follows from the observation that there is a computable real

outside the effectively null set constructed in Theorem 1, and Turing gives an explicit

algorithm to compute such a number. Although Turing’s strategy is mainly correct2, a

literal interpretation would not lead to the stated aim. We reinforce Turing’s inductive

construction with a stronger inductive hypothesis, and provide the missing correctness

proof.

Both, Turing’s intended algorithm and our reconstruction of it, have an explicit con-

vergence to normality (see Remark 23). The time complexity is double exponential in n,

where n is the length of the initial segment of the real number α ∈ (0, 1) output by the

algorithm on input n (see Remark 24).

Although nowadays it is known that there are absolutely normal numbers with lower

complexity, they are still not feasible. A simple exponential complexity bound for com-

puting an absolutely normal number follows from the work of Ambos-Spies, Terwjin and

1Turing denotes this set by Ec(k,n).
2For a different appraisal on this point see in [15] the editor’s note number 7 in page 119, elaborated

in page 264.

2

A number α is in c(k, n) if the frequency of every word of length up to L that
occurs in the first N digits of the base-b expansion occurs with the expected
frequency ±Nε for every base b up to B where N,B,L, ε are effectively given
in terms of n, k.

15

The proof of all these claims depends on a lemma not proved by Turing.
Becher et al. (2007) proved a weaker version of the lemma, which
sufficed to establish all the properties of c(k, n).

This theorem shows that the non-normal numbers are contained
in an effectively given null set.

Turing also derives from this another theorem which defines an
algorithm to produce the binary expansion of an absolutely
normal number.

16

We denote with µ (A) the Lebesgue measure of a set A ⊆ R and P(A) is the power set

of A.

Theorem 1 (Turing’s first theorem). There is a computable function
c : N× N → P((0, 1)) such that

1. c(k, n) is a finite union of intervals with rational endpoints;

2. c(k, n + 1) ⊆ c(k, n);

3. µ (c(k, n)) > 1− 1/k.

and for each k, E(k) =
�

n c(k, n) has measure 1− 1/k and consists entirely of absolutely
normal reals.

The function c is computable in the sense that given k and n we can compute a1 < b1 <
a2 < b2 < · · · < am < bm (m depending on k and n) such that ai, bi are rationals in (0, 1)

and c(k, n) = (a1, b1) ∪ · · · ∪ (am, bm). 1

Our proof of Theorem 1 is indeed a completion of Turing’s. But one of his original lem-

mas, a constructive version of the Strong Law of Large Numbers (see Lemma 7), remained

unproved. We substituted it with a weaker version (Lemma 8) that still allows to preserve

Turing’s proof idea and obtain his result.

Turing’s second theorem gives an affirmative answer to the then outstanding question

of whether there are computable normal numbers.

Theorem 2 (Turing’s second theorem). There is an algorithm that, given k ∈ N and an
infinite sequence θ ∈ {0, 1}∞, produces an absolutely normal real number α ∈ (0, 1) in the
scale of 2. For a fixed k these numbers α form a set of Lebesgue measure at least 1− 2/k,
and so that the first n digits of θ determine α to within 2−n.

The proof of Theorem 2 follows from the observation that there is a computable real

outside the effectively null set constructed in Theorem 1, and Turing gives an explicit

algorithm to compute such a number. Although Turing’s strategy is mainly correct2, a

literal interpretation would not lead to the stated aim. We reinforce Turing’s inductive

construction with a stronger inductive hypothesis, and provide the missing correctness

proof.

Both, Turing’s intended algorithm and our reconstruction of it, have an explicit con-

vergence to normality (see Remark 23). The time complexity is double exponential in n,

where n is the length of the initial segment of the real number α ∈ (0, 1) output by the

algorithm on input n (see Remark 24).

Although nowadays it is known that there are absolutely normal numbers with lower

complexity, they are still not feasible. A simple exponential complexity bound for com-

puting an absolutely normal number follows from the work of Ambos-Spies, Terwjin and

1Turing denotes this set by Ec(k,n).
2For a different appraisal on this point see in [15] the editor’s note number 7 in page 119, elaborated

in page 264.

2

Turing’s proof contains some gaps and needed some bug fixes as well.
These were provided by Becher et al.

They also showed that producing n bits requires time O(22
n
),

contrary to Turing’s claim that it required a single exponential.

In 2007 Elvira Mayordomo gave an O(n log n) algorithm
to compute absolutely normal numbers.

17

Conclusions
Turing’s paper on normal numbers was not published until his collected
works appeared in 1992.

It was a visionary paper opening the way to the modern theory
of algorithmic randomness.

This theory has led to Martin-Löf’s characterization of a random
sequence (1966).

Many modern developments: algorithmic information theory,
fractal dimension of finite state recognizers, computability
and randomness, ...

18

