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Abstract

I give a short and elementary proof that paralle convergence tester
cannot implement parallel or.

Parallel convergence tester is a two-argument function c : O × O → O
with the following graph:

c(⊥,⊥) = ⊥ c(⊥,>) = >
c(>,⊥) = > c(>,>) = >.

Parallel or is the well-known function p : B× B→ B defined on the domain
of booleans B with the following graph:

p(ff, ff) = ff p(⊥, tt) = tt
p(tt,⊥) = tt p(ff,⊥) = ⊥
p(⊥, ff) = ⊥

with all other values being determined by monotonicity. These functions
arise in the discussion of full abstraction of PCF [Plo77] and the lazy λ-
calculus [AO93]. It is now well-known that the lattice of degrees of paral-
lelism is very rich and infinite in two directions [Buc97, PP01]: the fact that
one cannot implement p with c is a tiny part of these results.

There is, however, a very simple proof that PCF with c cannot implement
p assuming that PCF by itself cannot implement p. Suppose that such an
implementation exists so that there is some pure PCF context C[·] with
C[c] = p. The functional λx.C[x] is monotone. Therefore the pure PCF
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term C[λu.>] is extensionally above p, but p is maximal so the pure PCF
term C[λu.>] = p, a contradiction.

In fact this argument applies to any function with return type O even if
it is horribly non-recursive. I came up with this proof in 1988 while having
a shower.
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