
A “Book” proof that parallel convergence tester

cannot implement parallel or

Prakash Panangaden

March 31, 2015

Abstract

I give a short and elementary proof that paralle convergence tester
cannot implement parallel or.

Parallel convergence tester is a two-argument function c : O × O → O
with the following graph:

c(⊥,⊥) = ⊥ c(⊥,>) = >
c(>,⊥) = > c(>,>) = >.

Parallel or is the well-known function p : B× B→ B defined on the domain
of booleans B with the following graph:

p(ff, ff) = ff p(⊥, tt) = tt
p(tt,⊥) = tt p(ff,⊥) = ⊥
p(⊥, ff) = ⊥

with all other values being determined by monotonicity. These functions
arise in the discussion of full abstraction of PCF [Plo77] and the lazy λ-
calculus [AO93]. It is now well-known that the lattice of degrees of paral-
lelism is very rich and infinite in two directions [Buc97, PP01]: the fact that
one cannot implement p with c is a tiny part of these results.

There is, however, a very simple proof that PCF with c cannot implement
p assuming that PCF by itself cannot implement p. Suppose that such an
implementation exists so that there is some pure PCF context C[·] with
C[c] = p. The functional λx.C[x] is monotone. Therefore the pure PCF

1



term C[λu.>] is extensionally above p, but p is maximal so the pure PCF
term C[λu.>] = p, a contradiction.

In fact this argument applies to any function with return type O even if
it is horribly non-recursive. I came up with this proof in 1988 while having
a shower.

References

[AO93] S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda
calculus: I, ii. Information and Computation, 105:159–267, 1993.

[Buc97] Antonio Bucciarelli. Degrees of parallelism in the continuous type
hierarchy. Theor. Comput. Sci., 177(1):59–71, 1997.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theo-
retical Computer Science, 5(3):223–256, 1977.

[PP01] Riccardo Pucella and Prakash Panangaden. On the expressive
power of first-order boolean functions in pcf. Theoretical Computer
Science, 266:543–567, 2001.

2


