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Abstract. We develop a game semantics for process algebra with two
interacting agents. The purpose of our semantics is to make manifest
the role of knowledge and information flow in the interactions between
agents and to control the information available to interacting agents.
We define games and strategies on process algebras, so that two inde-
pendent agents interacting according to their strategies determine the
execution of the process, replacing the traditional scheduler. We show
that different restrictions on strategies represent different amounts of in-
formation being available to a scheduler. We also show that a certain
class of strategies corresponds to the syntactic schedulers of Chatzikoko-
lakis and Palamidessi, which were developed to overcome problems with
traditional schedulers modelling interaction. The restrictions on these
strategies have an explicit epistemic flavour.

1 Introduction

Concurrent processes are a natural and widely used model of interacting agents.
However, process algebra - as traditionally presented - has no explicit epis-
temic concepts, making it difficult to discuss what agents know and what has
been successfully concealed. Epistemic concepts and indeed modal logics cap-
turing “group knowledge” have proven very powerful in distributed systems [1,
2]. Strangely, it has taken a long time for these ideas to surface in the process
algebra community.

Epistemic concepts play a striking role in the resolution of nondeterministic
choices. Typically one introduces a scheduler (or adversary) to resolve nonde-
terminism. This scheduler represents a single global entity that resolves all the
choices. Furthermore, traditional schedulers are effectively omniscient: they may
use the entire execution history as well as all other information in order to resolve
choices. This is reasonable when one is reasoning about correctness in the face of
an unknown environment. In this case one wants a quantification over all possible
schedulers in order to deliver strong guarantees about process behaviour.

In security, however, one comes across conditions where omniscient schedulers
are unreasonably powerful, creating circumstances where realistic security prop-



erties cannot be established. One wants to set up protocols that conceal some
action(s) from outside observers, but if the scheduler is allowed to see these ac-
tions and reveal them through diabolical scheduling decisions, then there is no
hope for designing a protocol that conceals the desired information. For example,
randomness is often used as a way of concealing information, but if the scheduler
is allowed to see the results of random choices and code these outcomes through
scheduling policies then randomness has no power to obfuscate data.

Consider for instance a voting system which collects people’s votes for candidate
a or b, and outputs in some arbitrary order the list of people who have voted (for
example to check whether everyone has voted). Among the possible schedulers,
there is the one which lists first all the people who voted for a. Clearly, this
scheduler completely violates the desired anonymity property. Usually when we
want a correctness property to hold for a nondeterministic system we require
that it holds for all choices of the scheduler: there is no way such universally
quantified statements will be true if we permit such omniscient schedulers.

How then is process algebra traditionally used to treat security issues? In fact
scrutiny reveals that a completely demonic scheduler is not assumed all the
time. For example, Schneider and Sidiropoulos [3] argue that a system is anony-
mous if the set of (observable) traces produced by one user is the same as the
set of traces produced by another user. This is, in fact, an extremely angelic
view of the scheduler. A perverse scheduler can most definitely leak informa-
tion in this case by ensuring that certain traces never appear in one case even
though the operational semantics permits them. Even a probabilistic (hence not
overtly demonic) scheduler can leak information as discussed by Bhargava and
Palamidessi3[4]. These issues manifest themselves particularly sharply in the
problem of anonymity.

One approach to solve the problem of reasoning about anonymity in the presence
of demonic schedulers has been suggested in Chatzikokolakis and Palamidessi [5]:
the interplay between the secret choices of the process and the choices of the
scheduler is expressed by introducing two independent schedulers and a frame-
work that allows one to switch between them.

The ideas of demonic versus angelic schedulers, the idea of independent agents
and the presence of epistemic concepts all suggest that games are a unifying
theme. In this paper we propose a game-based semantic restriction on the in-
formation flow in a concurrent process. We introduce a turn-based game that
is played between two agents and define strategies for the agents. The game is
played with the process as the “playing field” and the players’ moves roughly
representing the process executing an action. The information to which a player
does not have access appears as a restriction on its allowed strategies. This is
in the spirit of game semantics [6–8] where restrictions on strategies are used
to describe limits on what can be computed. The restrictions we discuss have

3 They do not explicitly talk about schedulers in their paper but the import is the
same.



an epistemic character which we model using Kripke-style indistinguishability
relations.

We show that there is a particular epistemic restriction on strategies that exactly
captures the syntactic restrictions developed by Chatzikokolakis and Palamidessi
[5]. It should be noted that this correspondence is significant since it only works
with one precise restriction on the strategies, which characterizes the knowledge
of the schedulers. This restriction is an important achievement because although
Chatzikokolakis and Palamidessi showed that these schedulers solve certain secu-
rity problems, this is the first time that the epistemic qualities of these schedulers
have been made explicit.

The advantage to thinking in terms of strategies is that it is quite easy to cap-
ture different restrictions on the knowledge of the agents as restrictions on the
allowed strategies. Traditionally, if one were to try to introduce some entirely
new restriction on what schedulers “know” one would have to rethink the syntax
and the operational semantics of the process calculus with schedulers and work
to convince oneself that the correct concept was being captured. With strate-
gies, one can easily add such restrictions and it is clear that the restrictions
capture the intended epistemic concept. For instance, our notion of introspec-
tion makes completely manifest what the agents know since it is couched as an
explicit statement of what the choice of moves can depend on. Indeed, previ-
ously one only had an intuitive notion of what the schedulers of Chatzikokolakis
and Palamidessi [5] “knew” and it required careful design to come up with the
right rules to capture this in the operational semantics. Thus, strategies and
restrictions are an ideal way to model interaction, independence and epistemic
concepts in process algebra.

Related work There are many kinds of games used in economics, mathematics,
logic and computer science. Even within logic there is a remarkable variety of
games. The logical games most related to our games are Lorenzen games. Loren-
zen games are dialogues that follow certain rules about the patterns of questions
and answers. There is a notion of winning and the main results concern the
correspondence between winning strategies and the existence of constructive
proofs. The idea of dialogue games appears in programming language semantics
culminating with the deep and fundamental results of Abramsky, Jagadeesan,
Malacaria [8] and Hyland and Ong [7] on full abstraction for PCF. These games
do not have a notion of winning. Rather the games simply delineate sets of
possible plays and strategies are used to model programs. This has been a fruit-
ful paradigm to which many researchers - far too many to enumerate - have
contributed. It has emerged that games of this kind form a semantic universe
where numerous kinds of language features coexist. Different features are simply
modelled by different conditions on the strategies.

The games that we describe are similar to these kinds of games in spirit but
there are crucial differences. Our games are not dialogue games and there is no
notion of question and answer, as a result conditions like bracketing have no



meaning in our setting. There is no notion of winning in our games either. Our
games are specifically intended to model multiple agents working in a concurrent
language. While there have been some connections drawn between concurrent
languages like the π-calculus and dialogue games [7] these are results that say
that π-calculus can be used to describe dialogue games, not that dialogue games
can be used to model π-calculus. The latter remains a fundamental challenge
and one that promises to lead to a semantic understanding of mobility.

“Innocence” is an important concept pervading game semantics [7, 9]. This is a
very particular restriction on what the players know. In order to define innocence
much more complex structures come into play; one needs special indicators of
dependence (called “justification pointers”) that are used to formalize a concept
called the “view” of each process. In the end innocence, like introspection, is a
statement about what knowledge the agents have. Our games have much less
complicated structure because there are no issues with higher types and the
introspection notion is relatively simple to define.

2 Background

We begin by introducing a process calculus with labelled actions and a protection
operator. The labels on actions allow us to control what is visible about an action;
if two actions have the same label then they are indistinguishable to an agent
controlling the execution of the process. The protection operator, represented by
curly brackets, indicates that the choice of the top-level action in the protected
subprocess must be made independently from the choices concerning unprotected
actions in the process. This idea is explained in more detail later.

We let l and k represent labels, a and b actions, ā and b̄ co-actions, τ the silent
action, and α and β generic actions, co-actions, or silent action. The syntax for
a process is as follows:

P,Q ::= l : α.P | P |Q | P + Q | (νa)P | l : {P} | 0

The operational semantics for this process calculus is shown in Fig. 1. There
are corresponding right rules for + and |; these operators are both associative
and commutative. There is an additional condition that no derivation tree for
a transition may contain more than one occurrence of the SWITCH rule. The
reason for this condition is explained below. All of the rules are analogous to
those of traditional process algebra, except for the rule SWITCH, which requires
that protected processes do a silent action. The reason for the two restrictions
on the SWITCH operator is that this operator is intended to represent choices
made independently from the other choices in the process. For example in the
process (l1 : a + l2 : b) | l3 : {k1 : τ . l4 : a + k2 : τ . l4 : b}, the left and
right choices are represented as independent. This means that whatever agent
controls whether the left part of the process performs an a or b action does not
control how the choice on the right side of the process is resolved. This choice
is resolved by an entity independent from the traditional scheduler. Therefore,



ACT
l : α.P

α−−→ P
RES

P
α−−→ P ′ α 6= a, ā

(νa)P
α−−→ (νa)P ′ SUM1 P

α−−→ P ′

P + Q
α−−→ P ′

PAR1 P
α−−→ P ′

P |Q α−−→ P ′|Q
COM

P
a−−→ P ′ Q

ā−−→ Q′

P |Q τ−−→ P ′|Q′ SWITCH P
τ−−→ P ′

l : {P} τ−−→ P ′

Fig. 1. Operational semantics

we require that the protected subprocess do a silent action, because any other
action would be observable to the outside world, and therefore observable to the
scheduler, allowing it to base its decisions on the outcome of the protected choice,
which would make this choice dependent on other choices. This independence is
not a part of the operational semantics; rather, it represents the idea that the
protected subprocess makes decisions independently from the main process. In
this paper we allow only one occurence of the SWITCH rule in the derivation
tree of any transition. This is already enough for our purpose of capturing the
independence of choice: control is passed from the first agent to the second, then
the transition is performed and the control is again passed to the first agent.
The use of nested SWITCHes would lead to a richer interaction between the
two agents to select a single transition. We plan to investigate this idea in the
future. Note also that we do allow multiple occurences of the switch operator,
provided that they are not nested immediately next to each other. For example,
l1 : {P1} + l2 : {P2} and l1 : {k1 : τ.l2 : {P}} are both allowed, but the process
l1 :{k1 :{P}} cannot perform any action, since it would require two occurrences
of the SWITCH rule in its derivation tree.

A process P is deterministically labelled if, for any process reachable from P (in-
cluding P itself), all enabled actions and bracketed subprocesses have distinct
labels. For example, l1 : a + l1 : b and l1 : a + l1 : {l2 : τ} are not deterministi-
cally labelled, and no process with either of these as a (reachable) subprocess is
deterministically labelled. However, l1 :a . l3 : c + l2 : b . l3 : c is deterministically
labelled even though l3 occurs twice. This concept can be defined formally but
the meaning should be clear from the intuitive definition.

3 Games and Strategies

In this section we define two player games on deterministically labelled processes.
One game is defined for each deterministically labelled process. The two players
are called X and Y . The moves in the game are labels and pairs of labels.
Roughly, moves represent actions being taken by the process. The player X
controls all the unprotected actions, and the player Y is in charge of all the top
level actions within the protected subprocesses. We define strategies for games.
A strategy is for one player and determines the moves the player will choose
within the game. Games and strategies are both made up of valid positions,
which are discussed in the next section.



3.1 Valid Positions

Valid positions are defined on a process and represent valid plays for that process.
Every valid position is a string of moves (labels or pairs of labels from the
process), each of which is assigned to a player X or Y , with player X moving
first. The set of valid positions for a process represents all possible executions of
the process, including partial executions.

Definition 1. A valid position for a labelled process P is defined inductively:

1. ε is a valid position for any process P .

2. If P
α−−→ P ′ and there is no occurrence of the SWITCH rule or the COM

rule in the derivation tree for this transition, and if s is a valid position for
P ′ and l is the label for the action α, then l.s is a valid position for P and
this occurrence of l is an X move.

3. If P
τ−−→ P ′ and the COM rule occurs in the derivation tree for this transition

but the SWITCH rule does not occur anywhere, and if the synchronizing
actions a and ā are labelled l1 and l2 respectively, and s is a valid position
for P ′, then (l1, l2).s is a valid position for P and (l1, l2) is an X move.

4. If P
τ−−→ P ′ and the SWITCH rule occurs in the derivation tree for this

transition but the COM rule does not, and the bracketed subprocess chosen
in the SWITCH rule is labelled l1 and the action chosen within the bracketed
subprocess is labelled l2, and s is a valid position for P ′, then l1 and l1.l2.s
are both valid positions for P , and l1 is an X move and l2 is a Y move.

5. If P
τ−−→ P ′ and the SWITCH rule and COM rule both occur in the deriva-

tion tree for this transition, and if the bracketed subprocess in the SWITCH
rule is labelled l1 and the actions synchronized within the bracketed subprocess
are labelled l2 and l3, and s is a valid position for P ′, then l1 and l1.(l2, l3).s
are both valid positions for P and l1 is an X move and (l2, l3) is a Y move.

Note that the set of valid positions is prefix closed.

Example 1. Consider the process

P = (νb)
(
l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d + l6 :e)

)
.

This example is interesting because it features consecutive choices by two differ-
ent agents. It will be used later to exhibit the agents’ interaction and how their
knowledge affects their strategies. Here are two of the valid positions for P , with
the Y moves in bold: l1.k1.l2.(l3, l4).l5 and l1.k2.l2.(l3, l4).l6.

3.2 Strategies

A strategy for a player is a subset of the valid positions, each position in the
strategy ending with moves made by the player. The idea behind a strategy



is that if, for example, player X finds himself in position s and s.m is in his
strategy, then he will do move m.4

Definition 2. Let Z stand for either X or Y . In the game for P , a strategy
for Z is a set S of valid positions such that ε is in S and if s.m ∈ S, then m is
a Z move and every prefix of s ending with a Z move is in S.

Example 2. For the process from the last example,

P = (νb)
(
l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d + l6 :e)

)
,

one strategy for X is: {ε, l1, l1.k2.l2, l1.k2.l2.(l3, l4), l1.k2.l2.(l3, l4).l6}. Another
strategy for X is: {ε, l1, l1.k1.l2, l1.k2.l2}. One strategy for Y is: {ε, l1.k1, l1.k2}.

3.3 Execution of Processes According to Strategies

In this section we define the execution of a process with two strategies- one for
each player. However, not every pair of strategies defines a unique execution of
a process. We define two simple restrictions on strategies, which together imply
that executions are unique.

Definition 3. A strategy S is deterministic if: s.m1 ∈ S, s.m2 ∈ S implies
m1 = m2.

The second restriction is called completeness; it means that a strategy prescribes
a move for the player whenever the player has a move available. In order to define
completeness, we start with two subsidiary definitions.

Definition 4. Let V denote the set of valid positions for P . For s a valid posi-
tion for P , define enabled(s) = {m|s.m ∈ V }. Define enabledX(s) = {m|s.m ∈
V and m is an X move} and enabledY (s) = {m|s.m ∈ V and m is a Y move}.

Note that a position can have X moves enabled or Y moves enabled, but not
both.

Definition 5. If s is a valid position for P and Z is a player, then Z(s) is the
string of Z moves in s in the same order as they occur in s.

A process is blocked if it has no transitions available.

4 Unlike the usual game theoretic definition of strategy, our strategies are not func-
tional, that is, they do not necessarily specify one move for the player to make in
every situation. We can, however, put simple conditions on our strategies so that
they are functional.



Definition 6. For a nonblocked process with valid positions V , a strategy S for
player Z is complete if for all s ∈ S, for every string s′ such that Z(s′) = ε and
s.s′ ∈ V and enabledZ(s.s′) 6= ∅, then s.s′.m ∈ S for some move m.

Completeness captures the idea that a player’s strategy always dictates a move
whenever it is that player’s turn to play and a move is available. Note that if a
deterministic strategy chooses a move m1 at a particular point and another move
m2 is available to it, there is no need for a complete strategy to specify what
happens after an m2 move, since this move will not be chosen. The condition
Z(s) = ε ensures that a strategy can take into account all the moves made by
the opponent but, of course, we do not want to quantify over moves made by
the strategy’s own player.

Example 3. For P = (νb)
`
l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d + l6 :e)

´
the X strategy given above, S = {ε, l1, l1.k2.l2, l1.k2.l2.(l3, l4), l1.k2.l2.(l3, l4).l6} is
not complete, because l1 ∈ S, l1.k1 ∈ V , enabledX(l1.k1) 6= ∅ and X(k1) = ε, but
l1.l2.m 6∈ S for any move m. To make this strategy complete, we can, for example, add
the positions l1.k1.l2, l1.k1.l2.(l3, l4), and l1.k1.l2.(l3, l4).l5.

Proposition 1. Consider a process P , S1 a deterministic, complete X strategy
for P , and S2 a deterministic, complete Y strategy for P . Let

S = {s ∈ S1 ∪ S2 | every prefix of s is in S1 ∪ S2}

Then the prefix ordering is a total order on S.

Now we define the execution of a process according to a valid position. If s is
a valid position for P , then we will say P

s=⇒P ′ if starting from process P , the
labels in s can be chosen in order and the end result is process P ′.

Definition 7. Let P be a deterministically labelled process.

1. P
ε=⇒P .

2. P
l=⇒P ′ if P

α−−→ P ′, there is no occurrence of the SWITCH rule or the COM
rule in the derivation tree for this transition, and the action α is labelled l.

3. P
(l1,l2)=⇒ P ′ if P

τ−−→ P ′ and the COM rule occurs in the derivation tree for
this transition but the SWITCH rule does not, and the synchronizing actions
are labelled l1 and l2.

4. P
l1.l2=⇒P ′ if P

τ−−→ P ′ and the SWITCH rule occurs in the derivation tree for
this transition but the COM rule does not, and the bracketed subprocess in
the SWITCH rule is labelled l1 and the action chosen within the bracketed
subprocess is labelled l2.

5. P
l1.(l2,l3)=⇒ P ′ if P

τ−−→ P ′ and the SWITCH rule and COM rule both occur
in the derivation tree for this transition, and the bracketed subprocess in the



switch rule is labelled l1 while the synchronizing actions within the bracketed
subprocess are labelled l1 and l2.

6. P
l.s=⇒P ′ if P

l=⇒P ′′ and P ′′ s=⇒P ′.

7. P
l1.l2.s=⇒ P ′ if P

l1.l2=⇒P ′′ and P ′′ s=⇒P ′.

It is easy to see that P
s=⇒P ′ for some P ′ if and only if s is a valid position for

P . Note that if s is a valid position for P , then P
s=⇒P ′ for exactly one process

P ′. The determinacy of P ’s labelling forces the process P ′ to be unique.

Define the execution of a deterministically labelled process P with deterministic,
complete X and Y strategies S1 and S2 as follows: Let s be the maximal element
in S = {s ∈ S1∪S2 | every prefix of s is in S1∪S2}. The execution of P according
to S1 and S2 is the sequence of processes P, P1...Pn such that

P
s1=⇒P1

s2=⇒P2
s3=⇒...

sn−1=⇒Pn−1
sn=⇒Pn

and s = s1s2...sn and each si is either a single X move or an X move followed by
a Y move. This represents the sequence of moves that are chosen and processes
that are reached if labels are chosen according to the strategies S1 and S2.

3.4 Epistemic Restrictions on Strategies

Since certain strategies determine the execution of a process, we can use epis-
temic aspects of strategies to represent interacting agents’ restricted knowledge.
In general, we impose epistemic conditions on strategies first by determining
what knowledge is appropriate for each agent. Once the correct notion of the
agent’s knowledge is determined, the condition on the strategy to enforce this
knowledge is “if valid positions s1 and s2 are indistinguishable for player Z (Z’s
knowledge about s1 and s2 is the same), then for any move m, s1.m is in the
strategy if and only if s2.m is in the strategy.” We call restrictions of this form
epistemic restrictions. For example, we could require that an agent only have
knowledge of his own past moves. The epistemic restriction for a strategy S to
satisfy this property is: if Z(s1) = Z(s2), then for all moves m, s1.m ∈ S if
and only if s2.m ∈ S. Similarly, we could require that an agent only know what
moves are currently available to him. The epistemic restriction expressing this
for a strategy S is: if enabledZ(s1) = enabledZ(s2) then s1.m ∈ S if and only if
s2.m ∈ S.

We now single out a very important epistemic restriction, called introspection.
An introspective strategy allows a player to “remember” not only his own history
of moves, but also the moves that were available to him at every point in the
past, including the current step. Introspective strategies are important because
they exactly capture the intended independence requirement for the protection
operator.



Definition 8. For player Z, positions s1 and s2 are called Z indistinguishable
if they satisfy the following conditions:

1. Z(s1) = Z(s2)

2. Z has at least one move available at s1 and at s2.

3. For all prefixes s′1 of s1 and s′2 of s2, if Z has a move available at both s′1
and s′2 and Z(s′1) = Z(s′2), then enabled(s′1) = enabled(s′2).

In this definition, we describe an indistinguishability relation on positions where
player Z has a move available. It is only defined on these positions because this
relation governs the moves Z is allowed to make, so it only concerns positions
where it is Z’s turn. We define two positions as indistinguishable if the player
made the same series of moves to arrive at both positions, and at any point in
the past where he had made a certain series of moves in both positions and had
moves available, he had the same set of moves available in both positions.

Definition 9. Given a process P and S a strategy for player Z on P , S is
introspective if for every Z indistinguishable pair of valid positions s1 and s2,
for all moves m, s1.m ∈ S if and only if s2.m ∈ S.

In other words, the player chooses the move he makes at each step based on
his past moves, the moves that are available to him, and the moves that were
available to him at each point in the past. If these conditions are all the same at
two positions, the player cannot distinguish them, so he makes the same move
at both positions.

Example 4. For P = (νb)
`
l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d + l6 :e)

´
the deterministic strategy given above for X, S = {ε, l1, l1.k1.l2, l1.k2.l2, l1.k1.l2.(l3, l4),
l1.k2.l2.(l3, l4), l1.k1.l2.(l3, l4).l5, l1.k2.l2.(l3, l4).l6} is not introspective, because in or-
der to satisfy the introspection condition, l1.k1.l2.(l3, l4) and l1.k2.l2.(l3, l4) should have
the same moves appended to them in S, since they are X indistinguishable. However,
l1.k1.l2.(l3, l4).l5 ∈ S and l1.k2.l2.(l3, l4).l5 6∈ S, and similarly, l1.k2.l2.(l3, l4).l6 ∈ S
and l1.k2.l2.(l3, l4).l5 6∈ S. Intuitively, this strategy represents X choosing l5 or l6
based on whether Y chose k1 or k2, so that these choices are not independent. An
example of an introspective strategy for X is the strategy containing l1.k1.l2.(l3, l4).l5
and l1.k2.l2.(l3, l4).l5 as well as all prefixes of these two positions ending in an X move,
and ε. This introspective strategy makes X’s choice of move independent from Y ’s
choice.

Here is an example showing why the prefixes of the valid positions are discussed
in the definition of introspective.

Example 5. Consider P = l0 : {k1 : τ.(l1 : c.(l4 : f + l5 : g) + l2 : d) + k2 : τ.(l1 :
c.(l4 : f + l5 : g) + l3 : e)}. Let X’s strategy be S =

{ε, l0, l0.k1.l1, l0.k2.l1, l0.k1.l1.l4, l0.k2.l1.l5}.



This strategy is introspective. Even though X(l0.k1.l1) = X(l0.k2.l1) and
enabledX(l0.k1.l1) = enabledX(l0.k2.l1), it is acceptable that the two strings
have different moves appended to them, because enabledX(l0.k1) = {l1, l2} and
enabledX(l0.k2) = {l1, l3}. This can be thought of as X being able to distinguish
between the two positions l0.k1.l1 and l0.k2.l1 because he remembers what moves
were available to him earlier and is able to use this information to tell apart the
two positions.

4 Correspondence between Strategies and
Schedulers

In this section, we first review the syntactic schedulers defined in Chatzikoko-
lakis and Palamidessi [5] and then prove that deterministic complete introspec-
tive strategies correspond exactly to these schedulers. This result is important
because these schedulers were defined purely syntactically, without any explicit
reference to knowledge or equivalence between executions. Since the players’
knowledge is explicit in the definition of introspective strategies, this equiva-
lence explains the knowledge requirements underlying the syntactic schedulers,
which had not been discussed before.

4.1 Background on Schedulers

The new ingredient in the process calculus is explicit syntax for a pair of inde-
pendent schedulers. The two schedulers operate independently and do not com-
municate with one another, and each scheduler controls certain choices. This
makes it possible to represent independent choices in the process calculus. A
complete process is a labelled process augmented with a pair of schedulers. The
notations σ(l) and σ(l1, l2) are used to designate choices made by the schedulers.
The latter is used to indicate that the scheduler has chosen to synchronize two
processes.

ρ, η ::= σ(l).ρ | σ(l, k).ρ | if l then ρ else η | 0
CP ::= P ‖ ρ, η

The operational semantics of the process calculus with schedulers are in Fig. 2.
For the rules IF1 and IF2, we define the top level labels of a process: tl(l : α.P ) =
tl(l : {P}) = {l}, tl(P1+P2) = tl(P1|P2) = tl(P1)∪tl(P2), and tl((νa)P ) = tl(P ).
Using the if then else construct, the scheduler can check whether a label is avail-
able and choose what to do based on that information. The SWITCH rule says
that the curly brackets indicate a point where the secondary scheduler makes
the next choice. After making this choice, control reverts to the primary sched-
uler. The choice made by the secondary scheduler must result in a τ observation
because the process is encapsulated and cannot interact with the environment
at this point. Of course, once control reverts to the primary scheduler, interac-
tions with the external environment can indeed take place. The scheduler written



ACT
l : α.P ‖σ(l).ρ, η

α−−→ P ‖ ρ, η
IF1

l ∈ tl(P ) P ‖ ρ1, η
α−−→ P ′ ‖ ρ′

1, η
′

P ‖ if l then ρ1 else ρ2, η
α−−→ P ′ ‖ ρ′

1, η
′

SUM1
P ‖ ρ, η

α−−→ P ′ ‖ ρ′, η′

P + Q ‖ ρ, η
α−−→ P ′ ‖ ρ′, η′ IF2

l 6∈ tl(P ) P ‖ ρ2, η
α−−→ P ′ ‖ ρ′

2, η
′

P ‖ if l then ρ1 else ρ2, η
α−−→ P ′ ‖ ρ′

2, η
′

PAR1
P ‖ ρ, η

α−−→ P ′ ‖ ρ′, η′

P |Q ‖ ρ, η
α−−→ P ′|Q ‖ ρ′, η′ SWITCH

P ‖ η, 0
τ−−→ P ′||η′, 0

l : {P} ‖σ(l).ρ, η
τ−−→ P ′ ‖ ρ, η′

RES
P ‖ ρ, η

α−−→ P ′ ‖ ρ′, η′ α 6= a, ā

(νa)P ‖ ρ, η
α−−→ (νa)P ′ ‖ ρ′, η′

COM
P ‖σ(l1).0, 0

a−−→ P ′ ‖ 0, 0 Q ‖σ(l2).0, 0
ā−−→ Q′ ‖ 0, 0

P |Q ‖σ(l1, l2).ρ, η
τ−−→ P ′|Q′ ‖ ρ, η

Fig. 2. Operational semantics for processes with schedulers

first is called the primary scheduler and the second one is the secondary sched-
uler.

A process is blocked if no transition is possible with any schedulers. Roughly
speaking, a single primary or secondary scheduler for a process is nonblocking if
it can be paired with any nonblocking secondary or primary scheduler (respec-
tively) and not cause the process to be blocked5.

4.2 Correspondence Theorem

The main correspondence theorem can now be stated.

Theorem 1. Given a deterministically labelled process P , a nonblocking pri-
mary scheduler ρ for P , and a nonblocking secondary scheduler η for P , there is
a deterministic, complete, introspective X strategy S depending only on P and
ρ, and a deterministic, complete, introspective Y strategy T depending only on
P and η, such that the execution of P ‖ ρ, η is identical to the execution of P
with S and T .

Furthermore, given a deterministically labelled process P , a deterministic, com-
plete, introspective X strategy S for P , and a deterministic, complete, introspec-
tive Y strategy T for P , there is a nonblocking primary scheduler ρ depending
only on S and P and a nonblocking secondary scheduler η depending only on T
and P such that the execution of P with S and T is identical to the execution of
P ‖ ρ, η.

5 Obviously, this would be a circular definition, so in the full paper we define nonblock-
ing first inductively for a secondary scheduler, and then for a primary scheduler, with
reference to nonblocking secondary schedulers.



Before we discuss the proof we make some observations on the quantifier struc-
ture of the statement of the theorem. One could imagine stating the first part as
follows: ∀P, ρ∃S s.t. ∀η∃T . . . This is apparently stronger and certainly clearer
than the original version which uses the clumsy phrase “depending only on...”
However, this is not the case; it is actually weaker. The “new improved” ver-
sion allows T to depend on ρ, which the version stated in the theorem does not
allow. There is in fact a formal logic called “Independence Friendly” (IF) logic
which allows quantifiers to be introduced with independence statements; this is
just what the version in the statement of the theorem does, without, of course,
dragging in all the formal apparatus of IF logic. In fact, it can be proved that
there are statements of IF logic than cannot be rendered in ordinary first-order
logic; the statement of the theorem is an example.

The proof is available online in the full version of the paper at
www.cs.mcgill.ca/∼sknigh8. It begins by stating a procedure to construct a
strategy from a scheduler, then proves that the strategy constructed by this
procedure always leads to the same choice of action in the process as the cor-
responding scheduler. Next it is proven that these strategies are always deter-
ministic, complete, and introspective. To prove the other part of the theorem, a
procedure is given to translate a deterministic, complete, introspective strategy
into a syntactic scheduler.

5 Conclusions

In this paper we have given a semantic treatment of a process algebra with
two kinds of choice in terms of games and strategies. This gives a semantic
understanding of the “knowledge” possessed by schedulers when they resolve
choices. This epistemic aspect is captured by restrictions on what the schedulers
can see when they execute their strategies. In this short version we have not
discussed the probabilistic case; we have, however, developed the theory for that
case as well and have proved the correspondence theorem.

As far as we know there has been no work on a game semantics for process
algebras with the notion of multiple schedulers. This work is a first step toward
a systematic game semantic exploration of concurrency. First of all, we would like
to develop a new paradigm for process algebra which is more naturally adapted
to games. This will lead to richer notions of interactions between agents than
synchronization and value or name passing.

Second, we would like to enrich the epistemic aspects of the subject. In particular,
we would like to move toward an explicit combination of modal process logic and
epistemic logic so that we can describe in a compositional process-algebraic way
how agents learn and exchange knowledge. Preliminary investigations into these
ideas have been carried out by Borgstrom et al. [10] and by Deschesne et al. [11].
These approaches do not use games and are very closely tied to the operational
semantics of specific calculi.



Third, we would like to explore more subtle notions of transfer of control between
the agents. Thus, for example, there could be a protracted dialogue between the
agents before they decide on a process move. This could conceivably be fruitful
for incorporating higher-order or mobile processes.

Finally, we would like to combine the epistemic and probabilistic notions using
ideas from information theory [12]. We have used these information theoretic
ideas for an analysis of anonymity [13], indeed it was that investigation that
sparked the research reported in [5] and which ultimately led to the present work.
As far as we know, the only paper looking at epistemic logic and information
theory is by Krasucki, Ndjatou and Parikh [14] where they quantify the amount
of information shared when agents possess common knowledge.
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