Probabilistic Modeling

Today

- Discrete random variables
- Continuous random variables
- P.d.f.'s and c.d.f.'s
- Mean and variance
- Dependence and independence; joint and marginal probabilities

What is/why probabilistic modeling?

What is a random variable?

- Something that has not happened yet.
- Does a tossed coin come up heads or tails?
- Does the cancer recur or not?
- Something you do not know ...
- Did a tossed coin come up heads of tails?
- Is X a transcription factor for gene Y ?
- How does the protein fold?
... because you have not/cannot observe it directly or compute it definitively from what you have observed.

Discrete random variables

Examples

A discrete r.v. X takes values from a discrete set Ω_{X}.

- $X=$ result of a coin toss; $\Omega_{X}=\{$ Head,Tail $\}$.
- $X=$ roll of a die; $\Omega_{X}=\{1,2,3,4,5,6\}$.
- $X=$ nucleotide a position 1, chromosome 1, in a particular person; $\Omega_{X}=\{A, C, G, T\}$.
- $X=$ amino acid 12 in a particular person's hemoglobin; $\Omega_{X}=$ $\{A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V\}$.
- $X=$ copy number of gene Z in a particular person; $\Omega_{X}=\{0,1,2,3, \ldots\}$.

Probabilities

- For a discrete r.v. X, each value $x \in \Omega_{X}$ has a probability of occurring, denoted variously by

$$
\begin{array}{ccc}
\operatorname{Prob}(X=x) & \operatorname{Prob}_{X}(x) & \operatorname{Prob}(x) \\
\operatorname{Pr}(X=x) & \operatorname{Pr}_{X}(x) & \operatorname{Pr}(x) \\
\mathrm{P}(X=x) & \mathrm{P}_{X}(x) & \mathrm{P}(x)
\end{array}
$$

- $0 \leq \mathrm{P}(x) \leq 1$
- $\sum_{x \in \Omega_{X}} \mathrm{P}(x)=1$
- $\mathrm{P}(X)$ denotes the probability distribution function for r.v. X. It can be thought of as a table.

$$
\begin{array}{|c|cccc|}
\hline x & \text { A } & \text { C } & \text { G } & \text { T } \\
\mathrm{P}(x) & 0 & 0.2 & 0.7 & 0.1 \\
\hline
\end{array}
$$

Cumulative distribution functions

- If X takes values from an ordered set Ω_{X} (such as integers) then the cumulative distribution function is

$$
\text { c.d.f. }(x)=\mathrm{P}(X \leq x)=\sum_{x^{\prime} \leq x} \mathrm{P}(x)
$$

- For example, if X is the roll of a die, then:

x	1	2	3	4	5	6
$\mathrm{P}(x)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$
c.d.f. (x)	$1 / 6$	$2 / 6$	$3 / 6$	$4 / 6$	$5 / 6$	1

Mean and variance

- If Ω_{X} is a set of numbers, then the expected value of X is

$$
\mathrm{E}(X)=\sum_{x \in \Omega_{X}} x \mathrm{P}(x)
$$

- The variance of X is

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2} \\
& =\left(\sum_{x} x^{2} \mathrm{P}(x)\right)-\left(\sum_{x} x \mathrm{P}(x)\right)^{2} \\
& \geq 0
\end{aligned}
$$

- Example: If X is a die roll, then the mean value is 3.5 and the standard deviation is approximately 3.4157.

Continuous random variables

Examples

A continuous r.v. X takes real values.

- $X=$ expression level for a gene as reported by a microarray.
- $X=$ time until a patient's cancer recurs.
- $X=$ size of a tumor.
- $X=$ mass of a peptide as reported by mass-spec.
- $X=$ binding energy between a TF and DNA. (?)
- $X=$ fraction of time a TF is bound to DNA.

Cumulative distribution functions

- Any continuous r.v. X has a cumulative distribution function

$$
\text { c.d.f. }(x)=\mathrm{P}(X \leq x)
$$

- c.d.f. (x) is a non-decreasing function; c.d.f. $(x) \leq$ c.d.f. $\left(x^{\prime}\right)$ whenever $x \leq x^{\prime}$.
- $\lim _{x \rightarrow-\infty}$ c.d.f. $(x)=0$.
- $\lim _{x \rightarrow+\infty}$ c.d.f. $(x)=1$.
- Example: The c.d.f. of a mean-zero, variance-one Gaussian r.v.:

Probability density functions

- If c.d.f. (x) is continuous and differentiable (at least, in most places) then it's derivative is the probability density function, analogous to the probability distribution function of a discrete r.v.

$$
\frac{d}{d x} \text { c.d.f. }(x)=\text { p.d.f. }(x)=\mathrm{P}(x)
$$

- $\mathrm{P}(x)$ is the "probability", or more properly, likelihood that X takes value x.
- $0 \leq \mathrm{P}(x)<\infty$. Observe that $\mathrm{P}(x)>1$ is allowed, unlike for discrete r.v.'s.
- $\int_{x} \mathrm{P}(x) d x=1$, similar to discrete r.v.'s.

Gaussian random variables

$X \sim N(\mu, \sigma)$ has mean μ and standard deviation σ.

Exponential random variables

$X \sim \operatorname{Exp}(\lambda)$ has mean $1 / \lambda$ and standard deviation $1 / \lambda$.

$$
1-e^{-\lambda x}
$$

$$
\lambda e^{-\lambda x}
$$

Uniform random variables

$X \sim U(a, b)$ has mean $\frac{a+b}{2}$ and standard deviation $\frac{(b-a)}{\sqrt{12}}$.

$\begin{cases}\frac{1}{b-a} & a<x<b \\ 0 & \text { otherwise }\end{cases}$

A continuous r.v. with no p.d.f.

- Suppose X equal to zero with probability $\frac{1}{2}$ and otherwise is distributed according to $N(0,1)$.
- Then the c.d.f. is

$$
\text { d.f. is.f. }(x)= \begin{cases}\frac{1}{2} f(x) & x<0 \\ \frac{1}{2} f(x)+\frac{1}{2} & x \geq 0\end{cases}
$$

where $f(x)$ denotes the c.d.f. of a $N(0,1)$ r.v.

- There is no p.d.f. because of the discrete jump in the c.d.f.

Mean and variance

- We will almost always restrict attention to continuous r.v.'s with p.d.f.'s.
- Then, the expected value is defined as

$$
\mathrm{E}(X)=\int_{x} x \mathbf{P}(x) d x
$$

- Variance is

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2} \\
& =\int_{x} x^{2} \mathrm{P}(x) d x-\left(\int_{x} x \mathrm{P}(x) d x\right)^{2} \\
& \geq 0
\end{aligned}
$$

[In]dependent random variables

Example

- Let $X_{1}=$ true iff a rolled die comes out even.
- Let $X_{2}=$ true iff the same rolled die comes out odd.

$$
\begin{aligned}
& \mathrm{P}\left(X_{1}=\text { true }\right)=\mathrm{P}\left(X_{1}=\text { false }\right)=\frac{1}{2} \\
& \mathrm{P}\left(X_{2}=\text { true }\right)=\mathrm{P}\left(X_{2}=\text { false }\right)=\frac{1}{2}
\end{aligned}
$$

- What is the probability $\mathrm{P}\left(X_{1}=\right.$ true and $X_{2}=$ true $)$?

Example

- Let $X_{1}=$ true iff a rolled die comes out even.
- Let $X_{2}=$ true iff the same rolled die comes out odd.

$$
\begin{aligned}
& \mathrm{P}\left(X_{1}=\text { true }\right)=\mathrm{P}\left(X_{1}=\text { false }\right)=\frac{1}{2} \\
& \mathrm{P}\left(X_{2}=\text { true }\right)=\mathrm{P}\left(X_{2}=\text { false }\right)=\frac{1}{2}
\end{aligned}
$$

- What is the probability $\mathrm{P}\left(X_{1}=\right.$ true and $X_{2}=$ true $)$?
- We know it is zero.
- But there is no way of knowing just from $\mathrm{P}\left(X_{1}\right)$ and $\mathrm{P}\left(X_{2}\right)$.
\Rightarrow There are several ways we can specify the relationships between variables. They all come down to specifying joint probability distributions/densities.

Joint probabilities

- When considering r.v.'s $X_{1}, X_{2}, \ldots, X_{m}$, the joint probability function specifies the probability of every combination of values.

$$
\mathrm{P}\left(X_{1}=x_{1} \text { and } X_{2}=x_{2} \text { and } \ldots \text { and } X_{m}=x_{m}\right)
$$

- When the r.v.'s are discrete, the joint probability can be viewed as a table.

	even=true	odd=true
odd=true	0	$1 / 2$
odd=false	$1 / 2$	0

	$\mathrm{die}=1$	2	3	4	5	6
even=true	0	$1 / 6$	0	$1 / 6$	0	$1 / 6$
even=false	$1 / 6$	0	$1 / 6$	0	$1 / 6$	0

Marginal probabilities

Given r.v.'s $X_{1}, X_{2}, \ldots X_{m}$ with joint probability $\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$.

- The marginal probability of a r.v. X_{i} is

$$
\mathrm{P}\left(X_{i}=x_{i}\right)=\sum_{x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m}} \mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{m}\right)
$$

- That is, you get the marginal probability by summing (or integrating) over all possible values of the other r.v.'s.

	die $=1$	2	3	4	5	6	$\mathrm{P}($ even $)$
even=true	0	$1 / 6$	0	$1 / 6$	0	$1 / 6$	$1 / 2$
even=false	$1 / 6$	0	$1 / 6$	0	$1 / 6$	0	$1 / 2$
P (die)	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	

- Similarly for the marginal probability of a subset of the r.v.'s.

Independent r.v.'s

- Two r.v.'s X and Y are independent if and only if

$$
\mathrm{P}(X=x \text { and } Y=y)=\mathrm{P}(X=x) \mathrm{P}(Y=y)
$$

for all x and y.

- This is often abbreviated as $\mathrm{P}(X, Y)=\mathrm{P}(X) \mathrm{P}(Y)$.

Conditional probablity

- For two r.v.'s X and $Y, \mathrm{P}(X=x \mid Y=y)$ denote the probability that $X=x$ given that $Y=y$.
- $\mathrm{P}(\mathrm{die}=1 \mid$ odd $=$ true $)=1 / 3$.
$-\mathrm{P}($ die $=1 \mid$ odd $=$ false $)=0$.
- The conditional probability can be defined (and computed) as

$$
\mathrm{P}(x \mid y)=\frac{\mathrm{P}(x, y)}{\mathrm{P}(y)}
$$

as long as $\mathrm{P}(y)>0$.

- This is sometimes used as

$$
\mathrm{P}(x)=\sum_{y} \mathrm{P}(x, y)=\sum_{y} \mathrm{P}(x \mid y) \mathrm{P}(y)
$$

Conditional probability (2)

Conditional probabilities are interesting because we often observe something and want to infer something/make a guess about something unobserved but related.

- P (cancer recurs|tumor measurements)
- P (TF binds|TF and DNA properties)
- P (Gene expressed $>1.3 \mid$ TF concentrations)

Bayes' Rule

(Or possibly Bayes's Rule.)

- Bayes' Rule: $\mathrm{P}(x \mid y)=\frac{\mathrm{P}(y \mid x) \mathrm{P}(x)}{\mathrm{P}(y)}$.
- E.g., suppose we know based on past data collected:
P (tumor measurements|cancer)
P (tumor measurements|not cancer)
P (cancer $\quad \mathrm{P}$ (not cancer)
$\mathrm{P}($ cancer \mid tumor meas. $)=\frac{\mathrm{P}(\text { tumor meas. } \mid \text { cancer }) \mathrm{P}(\text { cancer })}{\mathrm{P}(\text { tumor meas. })}$
$=\frac{\mathrm{P} \text { (tumor meas. } \mid \text { cancer })}{\mathrm{P}(\text { tumor meas. } \mid \text { cancer }) \mathrm{P}(\text { cancer })+\mathrm{P}(\text { tumor meas. } \mid \text { not cancer }) \mathrm{P}(\text { not cancer })}$

