Today

e More on nearest neighbor (for classification and regression)
e Cross-validation

e Linear least-squares fitting, polynomial lest-square fitting



Recall — Wisconsin breast cancer data set

e Thirty real-valued variables per tumor that can be used for
prediction.

e Two variables that can be predicted:
— Outcome (R=recurrence, N=non-recurrence)
— Time (until recurrence, for R, time healthy, for N).

tumor size  texture perimeter ... | outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27




Recall k-nearest neighbor

e Given: Training data {(x;,yi)}i~:, distance metric d on X
e |Learning: Nothing to do!

e Prediction; forx € X

— Find the k nearest training samples to x.
Let their indeces be i1, 12, ..., 1%.

— Predict y =mean/median/mode of {yi,,¥Yis,---,Yi, }-



Recall — predicting N/R based on tumor size

10—nearest neighbor, mean
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Problems

® The curve is jagged — piecewise constant.
e Zero probability is attached to some outcomes.

e \What can we do?



Distance-weighted nearest neighbor

e Inputs: Training data {(x;,y:) }i~;, distance metric d on X,
weighting function w : R — R.

e |Learning: Nothing to do!

e Prediction: On input X,
— For each ¢ compute w; = w(d(x;, X)).
— Predict weighted majority or mean. For example,

_ Zz Wiyi
y_
Zi Wi

How to weight distances?



Some weighting functions

d(x;,X)

d(x;,x)? c+ d(x;,x)?

d(x;,x)>2
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Gaussian—weighted nearest neighbor with 0=0.25
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non-recurring (0) / recurring (1)
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Gaussian—weighted nearest neighbor with 0=2
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non-recurring (0) / recurring (1)
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Gaussian—weighted nearest neighbor with 0=5
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Cross-validation

Suppose we want to estimate the performance of a learning
algorithm L, on a given data set D = {(x;,y:)}, with respect to
expected prediction error £.

£(f) = / £o(x, (%), £(x)) P(x)dx

e \We can divide D into a training set D;,.;» and a validation set
Dvalid-

e Suppose L can be viewed as a function that maps a data set D
toafunction L(D) = f : X — Y. Let f = L(Dtrain)-

Then:
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Cross-validation

® | eave-one-out cross validation averages m iterations of the
previous procedure (where m is number of samples in data set),

using for the i*" iteration Dq1:4 = {(x;,y:)} and
Dirain = D — Dvalid-

e k-fold cross-validation divides D into £ roughly-equal sized sets
D, ..., D, and performs k iterations where D, q1:4 = D; and

Dirain = D — D, for the it" iteration.

e What if L is stochastic, so that it doesn’t always produce the
same f for a given data set D?



Linear and polynomial least-squares fits




Assumptions

We assume that X = & and ) = R.

The data can be organized into a m X n matrix X and m x 1
vector Y as

- %y T -y
X2 Yo
X = Y =
L Xm L Y -

We want to find a linear (affine, really) function of the x’s that
predicts the y’s. Informally, find a n x 1 vector w of “feature
weights” such that

Xw+wogrY

Can be written Xw = Y by appending a column of 1's to X.



Example: predicting recurrence time from tumor size
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Least-squares criterion

e Specifically, w should minimize the least-squares criterion
S5Q = (xiw —yi)?,
i=1

which can also be written

SSQ=(Xw-Y) (Xw—-Y)

e \Why least-squares?

e How do we find w?



Differentiate w.r.t. w

e \What does the partial derivative look like?
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Differentiate w.r.t. w

What does the partial derivative look like?

0

aWz'

SSQ

Answer: it is linear in the w ;.

We could solve by gradient descent, but . ..

Because 88 SSQ is linear in w, we can set =2—SSQ = 0 for
all 7.

This gives us (n + 1) linear equations and (n + 1) unknowns.



