
Today

• More on nearest neighbor (for classification and regression)

• Cross-validation

• Linear least-squares fitting, polynomial lest-square fitting

Recall – Wisconsin breast cancer data set

• Thirty real-valued variables per tumor that can be used for
prediction.

• Two variables that can be predicted:

– Outcome (R=recurrence, N=non-recurrence)

– Time (until recurrence, for R, time healthy, for N).

tumor size texture perimeter . . . outcome time

18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27

. . .

Recall k-nearest neighbor

• Given: Training data {(xi,yi)}
m
i=1, distance metric d on X .

• Learning: Nothing to do!

• Prediction: for x ∈ X

– Find the k nearest training samples to x.
Let their indeces be i1, i2, . . . , ik.

– Predict y =mean/median/mode of {yi1 ,yi2 , . . . ,yik
}.

Recall – predicting N/R based on tumor size

10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

tumor size (mm?)

no
n−

re
cu

rr
in

g
(0

)
/ r

ec
ur

rin
g

(1
)

10−nearest neighbor, mean

Problems

• The curve is jagged – piecewise constant.

• Zero probability is attached to some outcomes.

• What can we do?

Distance-weighted nearest neighbor

• Inputs: Training data {(xi,yi)}
m
i=1, distance metric d on X ,

weighting function w : < 7→ <.

• Learning: Nothing to do!

• Prediction: On input x,

– For each i compute wi = w(d(xi,x)).

– Predict weighted majority or mean. For example,

y =

∑

i
wiyi

∑

i
wi

How to weight distances?

Some weighting functions

1

d(xi,x)

1

d(xi,x)2
1

c + d(xi,x)2
e
−

d(xi,x)2

σ2

10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

tumor size (mm?)

no
n−

re
cu

rr
in

g
(0

)
/ r

ec
ur

rin
g

(1
)

Gaussian−weighted nearest neighbor with σ=0.25

10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

tumor size (mm?)

no
n−

re
cu

rr
in

g
(0

)
/ r

ec
ur

rin
g

(1
)

Gaussian−weighted nearest neighbor with σ=2

10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

tumor size (mm?)

no
n−

re
cu

rr
in

g
(0

)
/ r

ec
ur

rin
g

(1
)

Gaussian−weighted nearest neighbor with σ=5

Cross-validation

Suppose we want to estimate the performance of a learning
algorithm L, on a given data set D = {(xi,yi)}, with respect to
expected prediction error E .

E(f̂) =

∫

x

E0(x, f̂(x), f(x))P (x)dx

• We can divide D into a training set Dtrain and a validation set
Dvalid.

• Suppose L can be viewed as a function that maps a data set D

to a function L(D) = f̂ : X 7→ Y . Let f̂ = L(Dtrain).

Then:

E(L(D)) ≈
1

|Dvalid|

∑

(x,y)∈Dvalid

E0(x, f̂(x),y)

Cross-validation

• Leave-one-out cross validation averages m iterations of the
previous procedure (where m is number of samples in data set),
using for the ith iteration Dvalid = {(xi,yi)} and
Dtrain = D − Dvalid.

• k-fold cross-validation divides D into k roughly-equal sized sets
D1, . . . , Dk, and performs k iterations where Dvalid = Di and
Dtrain = D − Di for the ith iteration.

• What if L is stochastic, so that it doesn’t always produce the
same f̂ for a given data set D?

Linear and polynomial least-squares fits

Assumptions

• We assume that X = <n and Y = <.

• The data can be organized into a m × n matrix X and m × 1
vector Y as

X =

x1

x2

...
xm

Y =

y1

y2

...
ym

• We want to find a linear (affine, really) function of the x’s that
predicts the y’s. Informally, find a n × 1 vector w of “feature
weights” such that

Xw + w0 ≈ Y

• Can be written Xw ≈ Y by appending a column of 1’s to X .

Example: predicting recurrence time from tumor size

10 15 20 25 30
0

10

20

30

40

50

60

70

80

tumor radius (mm?)

tim
e

to
 r

ec
ur

re
nc

e
(m

on
th

s?
)

Least-squares criterion

• Specifically, w should minimize the least-squares criterion

SSQ =

m
∑

i=1

(xiw − yi)
2

,

which can also be written

SSQ = (Xw − Y)T (Xw − Y)

• Why least-squares?

• How do we find w?

Differentiate w.r.t. w

• What does the partial derivative look like?

∂

∂wi

SSQ

Differentiate w.r.t. w

• What does the partial derivative look like?

∂

∂wi

SSQ

• Answer: it is linear in the wj .

• We could solve by gradient descent, but . . .

• Because ∂
∂wi

SSQ is linear in w, we can set ∂
∂wi

SSQ = 0 for
all i.

• This gives us (n + 1) linear equations and (n + 1) unknowns.

