Today

- More on nearest neighbor (for classification and regression)
- Cross-validation
- Linear least-squares fitting, polynomial lest-square fitting

Recall – Wisconsin breast cancer data set

- Thirty real-valued variables per tumor that can be used for prediction.
- Two variables that can be predicted:
 - Outcome (R=recurrence, N=non-recurrence)
 - Time (until recurrence, for R, time healthy, for N).

tumor size	texture	perimeter	 outcome	time
18.02	27.6	117.5	N	31
17.99	10.38	122.8	N	61
20.29	14.34	135.1	R	27

. . .

Recall *k*-nearest neighbor

- Given: Training data $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$, distance metric d on \mathcal{X} .
- Learning: Nothing to do!
- ullet Prediction: for $\mathbf{x} \in \mathcal{X}$
 - Find the k nearest training samples to \mathbf{x} . Let their indeces be i_1, i_2, \dots, i_k .
 - Predict \mathbf{y} =mean/median/mode of $\{\mathbf{y}_{i_1}, \mathbf{y}_{i_2}, \dots, \mathbf{y}_{i_k}\}$.

Recall – predicting N/R based on tumor size

Problems

- The curve is jagged piecewise constant.
- Zero probability is attached to some outcomes.
- What can we do?

Distance-weighted nearest neighbor

- Inputs: Training data $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$, distance metric d on \mathcal{X} , weighting function $w: \Re \mapsto \Re$.
- Learning: Nothing to do!
- Prediction: On input x,
 - For each i compute $w_i = w(d(\mathbf{x}_i, \mathbf{x}))$.
 - Predict weighted majority or mean. For example,

$$\mathbf{y} = \frac{\sum_{i} w_{i} \mathbf{y}_{i}}{\sum_{i} w_{i}}$$

How to weight distances?

Some weighting functions

$$\frac{1}{d(\mathbf{x}_i, \mathbf{x})}$$

$$\frac{1}{d(\mathbf{x}_i, \mathbf{x})^2}$$

$$\frac{1}{d(\mathbf{x}_i, \mathbf{x})^2} \qquad \frac{1}{c + d(\mathbf{x}_i, \mathbf{x})^2}$$

$$e^{-\frac{d(\mathbf{x}_i,\mathbf{x})^2}{\sigma^2}}$$

Gaussian–weighted nearest neighbor with σ =0.25

Gaussian–weighted nearest neighbor with σ =2

Gaussian-weighted nearest neighbor with σ =5

Cross-validation

Suppose we want to estimate the performance of a learning algorithm L, on a given data set $D = \{(\mathbf{x}_i, \mathbf{y}_i)\}$, with respect to expected prediction error \mathcal{E} .

$$\mathcal{E}(\hat{f}) = \int_{\mathbf{x}} \mathcal{E}_0(\mathbf{x}, \hat{f}(\mathbf{x}), f(\mathbf{x})) P(\mathbf{x}) d\mathbf{x}$$

- We can divide D into a training set D_{train} and a validation set D_{valid} .
- Suppose L can be viewed as a function that maps a data set D to a function $L(D) = \hat{f} : \mathcal{X} \mapsto \mathcal{Y}$. Let $\hat{f} = L(D_{train})$.

Then:

$$\mathcal{E}(L(D)) \approx \frac{1}{|D_{valid}|} \sum_{(\mathbf{x}, \mathbf{y}) \in D_{valid}} \mathcal{E}_0(\mathbf{x}, \hat{f}(\mathbf{x}), \mathbf{y})$$

Cross-validation

- Leave-one-out cross validation averages m iterations of the previous procedure (where m is number of samples in data set), using for the i^{th} iteration $D_{valid} = \{(\mathbf{x}_i, \mathbf{y}_i)\}$ and $D_{train} = D D_{valid}$.
- k-fold cross-validation divides D into k roughly-equal sized sets D_1, \ldots, D_k , and performs k iterations where $D_{valid} = D_i$ and $D_{train} = D D_i$ for the i^{th} iteration.
- What if L is stochastic, so that it doesn't always produce the same \hat{f} for a given data set D?

Linear and polynomial least-squares fits

Assumptions

- We assume that $\mathcal{X} = \Re^n$ and $\mathcal{Y} = \Re$.
- \bullet The data can be organized into a $m\times n$ matrix X and $m\times 1$ vector Y as

$$X = \left[egin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_m \end{array}
ight] \qquad Y = \left[egin{array}{c} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_m \end{array}
ight]$$

• We want to find a linear (affine, really) function of the x's that predicts the y's. Informally, find a $n \times 1$ vector w of "feature weights" such that

$$X\mathbf{w} + \mathbf{w}_0 \approx Y$$

• Can be written $X\mathbf{w} \approx Y$ by appending a column of 1's to X.

Example: predicting recurrence time from tumor size

Least-squares criterion

Specifically, w should minimize the least-squares criterion

$$SSQ = \sum_{i=1}^{m} (\mathbf{x}_i \mathbf{w} - \mathbf{y}_i)^2,$$

which can also be written

$$SSQ = (X\mathbf{w} - Y)^T (X\mathbf{w} - Y)$$

- Why least-squares?
- How do we find w?

Differentiate w.r.t. w

• What does the partial derivative look like?

$$\frac{\partial}{\partial \mathbf{w}_i} SSQ$$

Differentiate w.r.t. w

What does the partial derivative look like?

$$\frac{\partial}{\partial \mathbf{w}_i} SSQ$$

- Answer: it is linear in the \mathbf{w}_j .
- We could solve by gradient descent, but . . .
- Because $\frac{\partial}{\partial \mathbf{w}_i} SSQ$ is linear in \mathbf{w} , we can set $\frac{\partial}{\partial \mathbf{w}_i} SSQ = 0$ for all i.
- This gives us (n+1) linear equations and (n+1) unknowns.