Today

- More on nearest neighbor (for classification and regression)
- Cross-validation
- Linear least-squares fitting, polynomial lest-square fitting

Recall - Wisconsin breast cancer data set

- Thirty real-valued variables per tumor that can be used for prediction.
- Two variables that can be predicted:
- Outcome (R=recurrence, $\mathrm{N}=$ non-recurrence)
- Time (until recurrence, for R, time healthy, for N).

tumor size	texture	perimeter	\ldots	outcome	time
18.02	27.6	117.5		N	31
17.99	10.38	122.8		N	61
20.29	14.34	135.1		R	27

Recall k-nearest neighbor

- Given: Training data $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}_{i=1}^{m}$, distance metric d on \mathcal{X}.
- Learning: Nothing to do!
- Prediction: for $\mathbf{x} \in \mathcal{X}$
- Find the k nearest training samples to \mathbf{x}. Let their indeces be $i_{1}, i_{2}, \ldots, i_{k}$.
- Predict $\mathbf{y}=$ mean $/$ median $/$ mode of $\left\{\mathbf{y}_{i_{1}}, \mathbf{y}_{i_{2}}, \ldots, \mathbf{y}_{i_{k}}\right\}$.

Recall - predicting N/R based on tumor size

Problems

- The curve is jagged - piecewise constant.
- Zero probability is attached to some outcomes.
- What can we do?

Distance-weighted nearest neighbor

- Inputs: Training data $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}_{i=1}^{m}$, distance metric d on \mathcal{X}, weighting function $w: \Re \mapsto \Re$.
- Learning: Nothing to do!
- Prediction: On input x,
- For each i compute $w_{i}=w\left(d\left(\mathbf{x}_{i}, \mathbf{x}\right)\right)$.
- Predict weighted majority or mean. For example,

$$
\mathbf{y}=\frac{\sum_{i} w_{i} \mathbf{y}_{i}}{\sum_{i} w_{i}}
$$

How to weight distances?

Some weighting functions

$$
\frac{1}{d\left(\mathbf{x}_{i}, \mathbf{x}\right)} \quad \frac{1}{d\left(\mathbf{x}_{i}, \mathbf{x}\right)^{2}} \quad \frac{1}{c+d\left(\mathbf{x}_{i}, \mathbf{x}\right)^{2}} \quad e^{-\frac{d\left(\mathbf{x}_{i}, \mathbf{x}\right)^{2}}{\sigma^{2}}}
$$

Gaussian-weighted nearest neighbor with $\sigma=0.25$

Gaussian-weighted nearest neighbor with $\sigma=2$

Gaussian-weighted nearest neighbor with $\sigma=5$

Cross-validation

Suppose we want to estimate the performance of a learning algorithm L, on a given data set $D=\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}$, with respect to expected prediction error \mathcal{E}.

$$
\mathcal{E}(\hat{f})=\int_{\mathbf{x}} \mathcal{E}_{0}(\mathbf{x}, \hat{f}(\mathbf{x}), f(\mathbf{x})) P(\mathbf{x}) d \mathbf{x}
$$

- We can divide D into a training set $D_{\text {train }}$ and a validation set $D_{\text {valid. }}$
- Suppose L can be viewed as a function that maps a data set D to a function $L(D)=\hat{f}: \mathcal{X} \mapsto \mathcal{Y}$. Let $\hat{f}=L\left(D_{\text {train }}\right)$.

Then:

$$
\mathcal{E}(L(D)) \approx \frac{1}{\left|D_{\text {valid }}\right|} \sum_{(\mathbf{x}, \mathbf{y}) \in D_{\text {valid }}} \mathcal{E}_{0}(\mathbf{x}, \hat{f}(\mathbf{x}), \mathbf{y})
$$

Cross-validation

- Leave-one-out cross validation averages m iterations of the previous procedure (where m is number of samples in data set), using for the $i^{\text {th }}$ iteration $D_{\text {valid }}=\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}$ and $D_{\text {train }}=D-D_{\text {valid }}$.
- k-fold cross-validation divides D into k roughly-equal sized sets D_{1}, \ldots, D_{k}, and performs k iterations where $D_{\text {valid }}=D_{i}$ and $D_{\text {train }}=D-D_{i}$ for the $i^{\text {th }}$ iteration.
- What if L is stochastic, so that it doesn't always produce the same \hat{f} for a given data set D ?

$\underline{\text { Linear and polynomial least-squares fits }}$

Assumptions

- We assume that $\mathcal{X}=\Re^{n}$ and $\mathcal{Y}=\Re$.
- The data can be organized into a $m \times n$ matrix X and $m \times 1$ vector Y as

$$
X=\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{m}
\end{array}\right] \quad Y=\left[\begin{array}{c}
\mathbf{y}_{1} \\
\mathbf{y}_{2} \\
\vdots \\
\mathbf{y}_{m}
\end{array}\right]
$$

- We want to find a linear (affine, really) function of the x's that predicts the y's. Informally, find a $n \times 1$ vector \mathbf{w} of "feature weights" such that

$$
X \mathbf{w}+\mathbf{w}_{0} \approx Y
$$

- Can be written $X \mathbf{w} \approx Y$ by appending a column of 1 's to X.

Example: predicting recurrence time from tumor size

Least-squares criterion

- Specifically, w should minimize the least-squares criterion

$$
S S Q=\sum_{i=1}^{m}\left(\mathbf{x}_{i} \mathbf{w}-\mathbf{y}_{i}\right)^{2}
$$

which can also be written

$$
S S Q=(X \mathbf{w}-Y)^{T}(X \mathbf{w}-Y)
$$

- Why least-squares?
- How do we find w?

Differentiate w.r.t. w

- What does the partial derivative look like?

$$
\frac{\partial}{\partial \mathbf{w}_{i}} S S Q
$$

Differentiate w.r.t. w

- What does the partial derivative look like?

$$
\frac{\partial}{\partial \mathbf{w}_{i}} S S Q
$$

- Answer: it is linear in the \mathbf{w}_{j}.
- We could solve by gradient descent, but ...
- Because $\frac{\partial}{\partial \mathbf{w}_{i}} S S Q$ is linear in \mathbf{w}, we can set $\frac{\partial}{\partial \mathbf{w}_{i}} S S Q=0$ for all i.
- This gives us $(n+1)$ linear equations and $(n+1)$ unknowns.

