
Estimating Probability Distribution/Density Functions



Examples of p.d.f. estimation

• Suppose we “randomly” select a set of cancer patients who
have tumors removed.

• For each one we see if their cancer recurs or not, and we want
to estimate the probability that a new patient’s cancer will recur.

recur not recur

number of patients 47 151

• Suppose we also measured the size of the tumor cells, and
want to estimate the joint probability of cell size > 17.4 and
recurrence.

recur not recur

cell size > 17.4 31 16
cell size ≤ 17.4 66 85



Examples of p.d.f. estimation (2)

• Suppose we measure the time-to-recurrence, for the patients
whose cancer recurs. We want to predict the time-to-recurrence
for a new patient.

t-to-r
patient (months)

1 27
2 77
3 77
4 36
5 10
6 10
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In this lecture

• Estimating p.d.f.’s of discrete and continuous random variables.

• The principle of maximum likelihood.

• We mainly discuss parametric p.d.f. estimation.



P.d.f. estimation for binary r.v.’s

• Suppose we observe m independent binary r.v.’s,
X1, X2, . . . , Xm, each equal to one with probability p. (These
are called Bernoulli r.v.’s.)

• Suppose m1 come out as ones and m0 = m − m1 come out
as zeros.

• How to estimate p?

• An obvious estimate is p = m1

m
= m1

m0+m1
.

It turns out this is the maximum likelihood estimate of p.

recur not recur

number of patients 47 151
probability 0.24 = 47

47+151
0.76 = 151

47+151



Maximum likelihood estimation of p

• For a particular p, the probability that we would observe the
data, also called the likelihood of the data, is

P(X1, . . . , Xm|p) = ΠiP(Xi|p)

= Πi

{

p if Xi =1
1 − p if Xi =0

= Πip
Xi(1 − p)(1−Xi)

• The “principle” of maximum likelihood says that the best
estimate for p is the one that maximizes P(X1, . . . , Xm|p).



Example

With 47 recurrences and 151 non-recurrences, the probability of the
data, as a function of p =estimated probability of recurrence is:
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Maximum likelihood estimation of p (2)

• Equivalently, we can maximize log P(X1, . . . , Xm|p) with
respect to p.

log P(X1, . . . , Xm|p) =
∑

i

Xi log p + (1 − Xi) log(1 − p)

• If all Xi = 1, then the maximum is at p = 1 = m1

m0+m1
.

• If all Xi = 0, then the maximum is at p = 0 = m1

m0+m+1
.

• Otherwise, differentiate w.r.t. p and set equal to zero

d

dp

∑

i

Xi log p + (1 − Xi) log(1 − p) = 0

∑

i

Xi

1

p
− (1 − Xi)

1

1 − p
= 0



Maximum likelihood estimation of p (3)

∑

i
Xi(1 − p) − (1 − Xi)p

p(1 − p)
= 0

∑

i

Xi(1 − p) − (1 − Xi)p = 0

m1(1 − p) − m0p = 0

m1 − p(m1 + m0) = 0

p =
m1

m0 + m1

• In all cases, the maximum likelihood estimate of p is m1

m0+m1
.



Maximum likelihood estimation in general

• Let X1, X2, . . . , Xm be a set of random variables (discrete or
continuous). We typically assume:

– The Xi’s are independent r.v.’s.

– They have the same p.d.f., θtrue.
That is P(Xi = x) = θtrue(x) for all i.

• We want to estimate θtrue.

• Let H be a set of candidate distributions.

• The “best” estimate for θtrue, based on the data X1, . . . , Xm, is

θ ∈ arg max
θ∈H

P(X1, . . . , Xm|θ)



Maximum likelihood for more than two discrete outcomes

• Let the Xi be discrete r.v.’s each with the same k possible
outcomes.

• Let outcome k occur mk times, across all the Xi.

• Then the maximum likelihood estimate for P(k) is just mk/m.

number of patients recur not recur

cell size > 17.4 31 16
cell size ≤ 17.4 66 85

probability recur not recur

cell size > 17.4 0.16 = 31
198

0.08 = 16
198

cell size ≤ 17.4 0.33 = 66
198

0.43 = 85
198



Maximum likelihood Gaussian fit

• Suppose the Xi are real-valued.

• Let H = the set of all Gaussian distributions (any µ, any σ).

• Which µ and σ maximize the probability of the data?

• . . . if you go through all the math, you find

µ =
1

m

∑

i

Xi σ2 =
1

m

∑

i

(Xi − µ)2



Example: M.L. Gaussian fit to the time-to-recurrence data.
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µ=2.0904, σ=1.8932



Maximum likelihood exponential fit

• The exponential density with parameter λ is P(x) = λe−λx.

• The M.L. exponential fit is given by λ = 1/
∑

i
Xi.
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Maximum likelihood p.d.f. estimates

• For discrete r.v.’s and a variety of univariate and multivariate
continuous distributions (such as Gaussian and exponential),
the M.L. estimate can be computed easily from the data.

• What if some r.v.’s are discrete and some continuous?

• Problems?

– For discrete r.v.’s, non-occurring values can be a problem.
(See next slide for an example.)

– As always, the best fit might not be very good. . .



Non-occurring values in discrete distributions

• Suppose we interpret the time-to-recurrence (reported in integer
months) to be a discrete r.v.

• Max. likelihood distribution? P(x) = (count of x)/m.
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• A common, quick fix to zero counts is to add pseudocounts.
(=Dirichlet prior.)


