Estimating Probability Distribution/Density Functions

Examples of p.d.f. estimation

- Suppose we "randomly" select a set of cancer patients who have tumors removed.
- For each one we see if their cancer recurs or not, and we want to estimate the probability that a new patient's cancer will recur.

	recur	not recur
number of patients	47	151

- Suppose we also measured the size of the tumor cells, and want to estimate the joint probability of cell size >17.4 and recurrence.

	recur	not recur
cell size >17.4	31	16
cell size ≤ 17.4	66	85

Examples of p.d.f. estimation (2)

- Suppose we measure the time-to-recurrence, for the patients whose cancer recurs. We want to predict the time-to-recurrence for a new patient.

patient	t-to-r (months)
1	27
2	77
3	77
4	36
5	10
6	10
7	9
\vdots	\vdots

In this lecture

- Estimating p.d.f.'s of discrete and continuous random variables.
- The principle of maximum likelihood.
- We mainly discuss parametric p.d.f. estimation.

P.d.f. estimation for binary r.v.'s

- Suppose we observe m independent binary r.v.'s, $X_{1}, X_{2}, \ldots, X_{m}$, each equal to one with probability p. (These are called Bernoulli r.v.'s.)
- Suppose m_{1} come out as ones and $m_{0}=m-m_{1}$ come out as zeros.
- How to estimate p ?
- An obvious estimate is $p=\frac{m_{1}}{m}=\frac{m_{1}}{m_{0}+m_{1}}$.

It turns out this is the maximum likelihood estimate of p.

	recur	not recur
number of patients probability	47	151

Maximum likelihood estimation of p

- For a particular p, the probability that we would observe the data, also called the likelihood of the data, is

$$
\begin{aligned}
\mathrm{P}\left(X_{1}, \ldots, X_{m} \mid p\right) & =\Pi_{i} \mathrm{P}\left(X_{i} \mid p\right) \\
& =\Pi_{i} \begin{cases}p & \text { if } X_{i}=1 \\
1-p & \text { if } X_{i}=0\end{cases} \\
& =\Pi_{i} p^{X_{i}}(1-p)^{\left(1-X_{i}\right)}
\end{aligned}
$$

- The "principle" of maximum likelihood says that the best estimate for p is the one that maximizes $\mathrm{P}\left(X_{1}, \ldots, X_{m} \mid p\right)$.

Example

With 47 recurrences and 151 non-recurrences, the probability of the data, as a function of $p=$ estimated probability of recurrence is:

Maximum likelihood estimation of p (2)

- Equivalently, we can maximize $\log \mathrm{P}\left(X_{1}, \ldots, X_{m} \mid p\right)$ with respect to p.

$$
\log \mathrm{P}\left(X_{1}, \ldots, X_{m} \mid p\right)=\sum_{i} X_{i} \log p+\left(1-X_{i}\right) \log (1-p)
$$

- If all $X_{i}=1$, then the maximum is at $p=1=\frac{m_{1}}{m_{0}+m_{1}}$.
- If all $X_{i}=0$, then the maximum is at $p=0=\frac{m_{1}}{m_{0}+m+1}$.
- Otherwise, differentiate w.r.t. p and set equal to zero

$$
\begin{aligned}
\frac{d}{d p} \sum_{i} X_{i} \log p+\left(1-X_{i}\right) \log (1-p) & =0 \\
\sum_{i} X_{i} \frac{1}{p}-\left(1-X_{i}\right) \frac{1}{1-p} & =0
\end{aligned}
$$

Maximum likelihood estimation of p (3)

$$
\begin{aligned}
\frac{\sum_{i} X_{i}(1-p)-\left(1-X_{i}\right) p}{p(1-p)} & =0 \\
\sum_{i} X_{i}(1-p)-\left(1-X_{i}\right) p & =0 \\
m_{1}(1-p)-m_{0} p & =0 \\
m_{1}-p\left(m_{1}+m_{0}\right) & =0 \\
p & =\frac{m_{1}}{m_{0}+m_{1}}
\end{aligned}
$$

- In all cases, the maximum likelihood estimate of p is $\frac{m_{1}}{m_{0}+m_{1}}$.

Maximum likelihood estimation in general

- Let $X_{1}, X_{2}, \ldots, X_{m}$ be a set of random variables (discrete or continuous). We typically assume:
- The X_{i} 's are independent r.v.'s.
- They have the same p.d.f., $\theta_{\text {true }}$. That is $\mathrm{P}\left(X_{i}=x\right)=\theta_{\text {true }}(x)$ for all i.
- We want to estimate $\theta_{\text {true }}$.
- Let H be a set of candidate distributions.
- The "best" estimate for $\theta_{\text {true }}$, based on the data X_{1}, \ldots, X_{m}, is

$$
\theta \in \arg \max _{\theta \in H} \mathrm{P}\left(X_{1}, \ldots, X_{m} \mid \theta\right)
$$

Maximum likelihood for more than two discrete outcomes

- Let the X_{i} be discrete r.v.'s each with the same k possible outcomes.
- Let outcome k occur m_{k} times, across all the X_{i}.
- Then the maximum likelihood estimate for $\mathrm{P}(k)$ is just m_{k} / m.

number of patients	recur	not recur
cell size >17.4	31	16
cell size ≤ 17.4	66	85

probability	recur	not recur
cell size >17.4	$0.16=\frac{31}{198}$	$0.08=\frac{16}{1098}$
cell size ≤ 17.4	$0.33=\frac{66}{198}$	$0.43=\frac{85}{198}$

Maximum likelihood Gaussian fit

- Suppose the X_{i} are real-valued.
- Let $H=$ the set of all Gaussian distributions (any μ, any σ).
- Which μ and σ maximize the probability of the data?
- ... if you go through all the math, you find

$$
\mu=\frac{1}{m} \sum_{i} X_{i} \quad \sigma^{2}=\frac{1}{m} \sum_{i}\left(X_{i}-\mu\right)^{2}
$$

Example: M.L. Gaussian fit to the time-to-recurrence data.

Maximum likelihood exponential fit

- The exponential density with parameter λ is $\mathrm{P}(x)=\lambda e^{-\lambda x}$.
- The M.L. exponential fit is given by $\lambda=1 / \sum_{i} X_{i}$.

Maximum likelihood p.d.f. estimates

- For discrete r.v.'s and a variety of univariate and multivariate continuous distributions (such as Gaussian and exponential), the M.L. estimate can be computed easily from the data.
- What if some r.v.'s are discrete and some continuous?
- Problems?
- For discrete r.v.'s, non-occurring values can be a problem. (See next slide for an example.)
- As always, the best fit might not be very good...

Non-occurring values in discrete distributions

- Suppose we interpret the time-to-recurrence (reported in integer months) to be a discrete r.v.
- Max. likelihood distribution? $\mathrm{P}(x)=($ count of $x) / m$.

- A common, quick fix to zero counts is to add pseudocounts. (=Dirichlet prior.)

