

Examples of p.d.f. estimation

- Suppose we "randomly" select a set of cancer patients who have tumors removed.
- For each one we see if their cancer recurs or not, and we want to estimate the probability that a new patient's cancer will recur.

	recur	not recur
number of patients	47	151

 Suppose we also measured the size of the tumor cells, and want to estimate the joint probability of cell size > 17.4 and recurrence.

	recur	not recur
cell size > 17.4	31	16
cell size \leq 17.4	66	85

Examples of p.d.f. estimation (2)

 Suppose we measure the time-to-recurrence, for the patients whose cancer recurs. We want to predict the time-to-recurrence for a new patient.

	t-to-r	
patient	(months)	
1	27	
2	77	
3	77	
4	36	
5	10	
6	10	
7	9	
	•	
	:	

In this lecture

- Estimating p.d.f.'s of discrete and continuous random variables.
- The principle of maximum likelihood.
- We mainly discuss parametric p.d.f. estimation.

P.d.f. estimation for binary r.v.'s

- Suppose we observe m independent binary r.v.'s, X_1, X_2, \ldots, X_m , each equal to one with probability p. (These are called *Bernoulli* r.v.'s.)
- Suppose m_1 come out as ones and $m_0 = m m_1$ come out as zeros.
- How to estimate p?
- An obvious estimate is $p = \frac{m_1}{m} = \frac{m_1}{m_0 + m_1}$. It turns out this is the maximum likelihood estimate of p.

	recur	not recur
number of patients	47	151
probability	$0.24 = \frac{47}{47 + 151}$	$0.76 = \frac{151}{47 + 151}$

Maximum likelihood estimation of p

ullet For a particular p, the probability that we would observe the data, also called the likelihood of the data, is

$$P(X_1, \dots, X_m | p) = \Pi_i P(X_i | p)$$

$$= \Pi_i \begin{cases} p & \text{if } X_i = 1 \\ 1 - p & \text{if } X_i = 0 \end{cases}$$

$$= \Pi_i p^{X_i} (1 - p)^{(1 - X_i)}$$

• The "principle" of maximum likelihood says that the best estimate for p is the one that maximizes $P(X_1, \ldots, X_m | p)$.

Example

With 47 recurrences and 151 non-recurrences, the probability of the data, as a function of p =estimated probability of recurrence is:

Maximum likelihood estimation of p (2)

• Equivalently, we can maximize $\log P(X_1, \dots, X_m | p)$ with respect to p.

$$\log P(X_1, ..., X_m | p) = \sum_i X_i \log p + (1 - X_i) \log(1 - p)$$

- If all $X_i = 1$, then the maximum is at $p = 1 = \frac{m_1}{m_0 + m_1}$.
- If all $X_i = 0$, then the maximum is at $p = 0 = \frac{m_1}{m_0 + m + 1}$.
- Otherwise, differentiate w.r.t. p and set equal to zero

$$\frac{d}{dp}\sum_{i}X_{i}\log p + (1 - X_{i})\log(1 - p) = 0$$

$$\sum_{i} X_{i} \frac{1}{p} - (1 - X_{i}) \frac{1}{1 - p} = 0$$

Maximum likelihood estimation of p (3)

$$\frac{\sum_{i} X_{i}(1-p) - (1-X_{i})p}{p(1-p)} = 0$$

$$\sum_{i} X_{i}(1-p) - (1-X_{i})p = 0$$

$$m_{1}(1-p) - m_{0}p = 0$$

$$m_{1} - p(m_{1} + m_{0}) = 0$$

$$p = \frac{m_{1}}{m_{0} + m_{1}}$$

• In all cases, the maximum likelihood estimate of p is $\frac{m_1}{m_0+m_1}$.

Maximum likelihood estimation in general

- Let X_1, X_2, \ldots, X_m be a set of random variables (discrete or continuous). We typically assume:
 - The X_i 's are independent r.v.'s.
 - They have the same p.d.f., θ_{true} . That is $P(X_i = x) = \theta_{true}(x)$ for all i.
- We want to estimate θ_{true} .
- Let H be a set of candidate distributions.
- The "best" estimate for θ_{true} , based on the data X_1, \ldots, X_m , is

$$\theta \in \arg\max_{\theta \in H} \mathsf{P}(X_1, \dots, X_m | \theta)$$

Maximum likelihood for more than two discrete outcomes

- Let the X_i be discrete r.v.'s each with the same k possible outcomes.
- Let outcome k occur m_k times, across all the X_i .
- Then the maximum likelihood estimate for P(k) is just m_k/m .

number of patients	recur	not recur
cell size > 17.4	31	16
cell size \leq 17.4	66	85

probability	recur	not recur
cell size > 17.4	$0.16 = \frac{31}{198}$	$0.08 = \frac{16}{198}$
cell size \leq 17.4	$0.33 = \frac{66}{198}$	$0.43 = \frac{85}{198}$

Maximum likelihood Gaussian fit

- Suppose the X_i are real-valued.
- Let H = the set of all Gaussian distributions (any μ , any σ).
- Which μ and σ maximize the probability of the data?
- ... if you go through all the math, you find

$$\mu = \frac{1}{m} \sum_{i} X_i \qquad \sigma^2 = \frac{1}{m} \sum_{i} (X_i - \mu)^2$$

Example: M.L. Gaussian fit to the time-to-recurrence data.

Maximum likelihood exponential fit

- The exponential density with parameter λ is $P(x) = \lambda e^{-\lambda x}$.
- The M.L. exponential fit is given by $\lambda = 1/\sum_i X_i$.

Maximum likelihood p.d.f. estimates

- For discrete r.v.'s and a variety of univariate and multivariate continuous distributions (such as Gaussian and exponential), the M.L. estimate can be computed easily from the data.
- What if some r.v.'s are discrete and some continuous?
- Problems?
 - For discrete r.v.'s, non-occurring values can be a problem.
 (See next slide for an example.)
 - As always, the best fit might not be very good...

Non-occurring values in discrete distributions

- Suppose we interpret the time-to-recurrence (reported in integer months) to be a discrete r.v.
- Max. likelihood distribution? P(x) = (count of x)/m.

A common, quick fix to zero counts is to add *pseudocounts*.
 (=Dirichlet prior.)