Testing the Statistical [In]Dependence of Random Variables

Examples

- Is there a relationship between tumor cell size and recurrence?

	recur	not recur
cell size >17.4	31	16
cell size ≤ 17.4	66	85

- Is there a relationship between tumor cell size and time-to-recurrence?

Today

- Recall: Dependent and independent r.v.'s
- Are two discrete r.v.'s related?
- One answer: The chi-square (χ^{2}) test.
- Are two continuous r.v.'s related?
- Why the general problem is difficult.
- Linear correlation.
- Regression as a measure of relatedness.

Dependent and independent r.v.'s

- R.v.'s X and Y (discrete or continuous) are defined to be independent if, for all x and y,

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

	$X=1$	$X=2$	$X=3$	$P(Y)$
$Y=A$	0.08	0.2	0.12	0.4
$Y=B$	0.12	0.3	0.18	0.6
$P(X)$	0.2	0.5	0.3	

- X and Y are dependent if, for some x and y,

$$
P(X=x, Y=y) \neq P(X=x) P(Y=y)
$$

	$X=1$	$X=2$	$X=3$	$P(Y)$
$Y=A$	0.1	0.2	0.1	0.4
$Y=B$	0.1	0.3	0.2	0.6
$P(X)$	0.2	0.5	0.3	

In terms of conditional probability...

- Alternatively, X and Y are independent if for all x and y

$$
\begin{gathered}
P(X=x \mid Y=y)=P(X=x) \\
\text { because then } P(X, Y)=P(X \mid Y) P(Y)=P(X) P(Y)
\end{gathered}
$$

- Intuitively, X and Y are independent if knowing Y tells you nothing about X. (I.e., doesn't help you predict X.)
- Same thing applies with X and Y reversed.

Example: independent r.v.'s

Joint:		$X=1$	$X=2$	$X=3$	$P(Y)$	
	$Y=A$	0.08	0.2	0.12	0.4	
	$Y=B$	0.12	0.3	0.18	0.6	
	$P(X)$	0.2	0.5	0.3		
$P(X \mid Y)$:			$X=1$	$X=2$	$X=3$	
		$Y=A$$Y=B$	0.2	0.5	0.3	
		0.2	0.5	0.3		
$P(Y \mid X)$:				$X=1$	$X=2$	$X=3$
		$=A$	0.4	0.4	0.4	
		$=B$	0.6	0.6	0.6	

Example: dependent r.v.'s

Joint: | | $X=1$ | $X=2$ | $X=3$ | $P(Y)$ |
| :---: | :---: | :---: | :---: | :---: |
| | $Y=A$ | 0.1 | 0.2 | 0.1 |
| 0.4 | | | | |
| $Y=B$ | 0.1 | 0.3 | 0.2 | 0.6 |
| $P(X)$ | 0.2 | 0.5 | 0.3 | |

$$
\begin{aligned}
& P(X \mid Y): \begin{array}{|c|ccc|}
\hline & & X=1 & X=2 \\
\hline & & X=3 \\
\hline Y=B & 0.25 & 0.5 & 0.25 \\
& 0.166 & 0.5 & 0.333 \\
\hline
\end{array} \\
& P(Y \mid X): \begin{array}{|c|ccc|}
\hline & X=1 & X=2 & X=3 \\
\cline { 1 - 4 } & Y=A & 0.5 & 0.4 \\
\hline=B & 0.5 & 0.6 & 0.633 \\
\hline
\end{array}
\end{aligned}
$$

Are two discrete r.v.'s related?

The χ^{2} test: intuition

- Suppose X and Y are independent
- Suppose we observe N samples: $\left(x_{i}, y_{i}\right)$.
- Let $N_{x, y}$ the number of observed pairs equal to (x, y).
- We expect $N_{x, y} \approx N P(x, y)=N P(x) P(y)$.

Data: | $\mathrm{N}=198$ | recur | not recur |
| :---: | :---: | :---: |
| | cell size $=$ big | 31 |
| cell size $=$ small | 66 | 85 |
| | | |

Expected: | | recur | not recur | P (cell size) |
| :---: | :---: | :---: | :---: |
| | cell size $=$ big | 23.3 | 24.2 |
| cell size $=$ small | 73.7 | 76.7 | 0.24 |
| | $\mathrm{P}($ recur $)$ | 0.49 | 0.51 |

The χ^{2} test: measuring discrepancy

- Let $\hat{P}(X)$ be the maximum likelihood estimate for $P(X)$, and likewise for Y.
- Let $E_{x, y}=N P(x) P(y)$ denote the expected number of observations of the pair (x, y).
- Compute $S=\sum_{x, y} \frac{\left(N_{x, y}-E_{x, y}\right)^{2}}{E_{x, y}}$.
- If X and Y are truly independent, then S should be comparatively small.
- The larger S is, the greater is the discrepancy between the expectations and the observed data, and the greater the evidence that X and Y are dependent.

Example

case	$N_{x, y}$	$E_{x, y}$	$\frac{\left(N_{x, y}-E_{x, y}\right)^{2}}{E_{x, y}}$
recur, cell size big	31	23.3	2.54
not recur, cell size big	16	24.2	2.77
recur, cell size small	66	73.7	0.80
not recur, cell size small	85	76.7	0.90
$S=7.03$			

- Is 7.03 big enough to claim the variables are related?
to be continued. . .

Aside: the χ^{2} family of distributions

- χ_{d}^{2} is distributed as $Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{d}^{2}$, where each Z_{i} is a standard normal r.v. $(\mu=0, \sigma=1)$
- d is the "degrees-of-freedom"

Application to independence testing

- It turns out that, regardless of $P(X)$ and $P(Y)$, the value S computed in the χ^{2} test is approximately distributed like $\chi_{(r-1)(c-1)}^{2}$ where
- r is the number of different values Y can take. (The number of rows in the table.)
- c is the number of different values X can take.
- (Hence, the name χ^{2} test.)
- If S is unusually large for for a $\chi_{(r-1)(c-1)}^{2}$ random variable, this is taken as evidence for the dependence of X and Y.

Example continued

case	$N_{x, y}$	$E_{x, y}$	$\frac{\left(N_{x, y}-E_{x, y}\right)^{2}}{E_{x, y}}$
recur, cell size big	31	23.3	2.54
not recur, cell size big	16	24.2	2.77
recur, cell size small	66	73.7	0.80
not recur, cell size small	85	76.7	0.90
$S=7.03$			

- Is 7.03 big enough to claim the variables are related?
- The probability that a χ_{1}^{2} r.v. is ≥ 7.03 is less than 0.008 , strong evidence of a dependence between X and Y.

Summary

- The χ^{2} test estimates whether or not there is a dependency between two discrete r.v.'s.
- The test is only approximate, and works best when the number of samples is large - particularly, when the number of samples in each cell is not too small. (≥ 5 ?)
- There are numerous variants of χ^{2} as well as other tests for dependency between two discrete r.v.'s. (Such as Fisher's exact test.)

Are two continuous r.v.'s related?

Cell-size versus Time-to-recurrence

Synthetic example

Synthetic example again

Relatedness of continuous r.v.'s

- The difficulty with testing for dependence of continuous r.v.'s is that their relationship can be arbitrarily complex.
- If we posit a specific kind of relationship, such a linear, then we can test how related the r.v.'s are-essentially by doing regression.
- If we can predict Y any better based on X than we can without X, then X and Y are dependent.

Linear correlation

- Given paired samples $\left(x_{i}, y_{i}\right)$ distributed according to $P(X, Y)$, the [linear/Pearson's] correlation coefficient is

$$
r=\sum_{i} \frac{\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{\sigma_{x} \sigma_{y}}
$$

where μ_{x} and μ_{y} are the sample means, and σ_{x}^{2} and σ_{y}^{2} are the sample variances.

