
Today

• Gradient descent for minimization of functions of real variables.

• Multi-dimensional scaling

• Self-organizing maps

Gradient Descent

Derivatives

• Consider function f(x) : < 7→ <.

• The derivative w.r.t. x is another function f ′(x) or
d

dx
f(x) : < 7→ <, giving the slope of the tangent to f .

• If f ′ is continuous, then f is continuously differentiable,
sometimes written f ∈ C1.

• If f ′(x) > 0 then f(x + ε) > f(x) for all ε > 0 that are
sufficiently small.

Gradients

• Consider function f(x1, x2, . . . , xn) : <n 7→ <.

• The partial derivative w.r.t. xi is denoted
∂

∂xi

f(x1, x2, . . . , xn) : <n 7→ <.
The partial derivative is the derivative along the xi axis, keeping
all other variables fixed.

• The gradient ∇f(x1, x2, . . . , xn) : <n 7→ <n is a function
which outputs a vector containing the partial derivatives.
That is,∇f =< ∂

∂x1

f, ∂
∂x2

f, . . . , ∂
∂xn

f >.

• The gradient of f at a point < x1, x2, . . . , xn > can be thought
of as a vector indicating which way is “uphill”.

• If f ∈ C1, then for all sufficiently small ε,
f(x + ε ∗ ∇f) > f(x).

Gradient descent

• In many applications, gradient descent is used to minimize an
“error” function when explicit solution is not possible.

• The basic algorithm assumes that∇f readily computed, and
produces a sequence of vectors x1, x2, x3, . . . with the aim that:

– f(x1) > f(x2) > f(x3) > . . .

– limi→∞ xi = x, locally optimal.

• The algorithm: Given x0, do for i = 0, 1, 2, . . .

xi+1 = xi − αi∇f(xi) ,

where αi > 0 is the “step-size” for iteration i.

• Conditions for convergence? Termination?

Example gradient descent traces

Step-size conditions

• Convergence depends in part on the αi.

• If they are too large (such as constant) oscillation or “bubbling”
may occur.
(This suggests the αi should tend to zero as i→∞.)

• If they are too small, the xi may not move far enough to reach a
local minimum.

Robbins-Monroe Conditions

• The αi are a Robbins-Monroe sequence if:

•
∑∞

i=0
αi = +∞

•
∑∞

i=0
α2

i <∞

• These conditions, along with appropriate conditions on f are
sufficient to ensure that convergence of the xi.

• Many variants are possible. For example, it is allowed for
∇f(xi) to by a random vector with mean∇f(xi); this is
stochastic gradient descent.

“Batch” versus “On-line” optimization

• Often in machine learning our error function, E , is a sum of
errors attributed to each data objects.
(E = E1 + E2 + . . . + Em.)

• In “batch” mode gradient descent, the true gradient is computed
at each step:

∇E = ∇E1 +∇E2 + . . .∇Em.

• In “on-line” gradient descent, at each iteration one data object,
j ∈ {1, . . . , m}, is chosen at random and only∇Ej is used in
the update.

• Why prefer one or the other?

“Batch” versus “On-line” optimization

Why prefer one or the other?

• Batch is simple, repeatable.

• On-line:

– Requires less computation per step.

– Randomization may help the procedure escape poor local
minima.

– Allows streams of data objects rather than a static set (hence
“on-line”).

Termination

There are many heuristics for deciding when to stop gradient
descent.

1. Run until ‖∇f‖ is smaller than some threshold.

2. Run it for as long as you can stand.

3. Run it for a short time from 100 different starting points, see
which one is doing best, goto 2.

4. . . .

Applications in dimensionality reduction

Dimensionality reduction

• Recall: the task of dimensionality reduction is to assign data
objects to points in a low-dimensional Euclidean space
(<,<2,<3) such that pairwise distances are preserved as
much as possible.

Multi-dimensional scaling

Multi-dimensional scaling does this in the most direct manner
possible.

• Input:

– A dissimilarity matrix DS for m data objects, where DS(i, j)
is the distance between objects i and j.

– Desired dimension d of the embedding.

• Output:

– Coordinates zi ∈ <
d for each data object i which, as much

as possible, minimize a “stress” function which quantifies the
mismatch between distances in DS and distances of data
objects’ coordinates in <d.

Stress functions

Common stress functions include:

• The least-squares or Kruskal-Shephard criterion:

m∑

i=1

∑

i′ 6=i

(DS(i, i′)− ‖zi − zi′‖)
2

• The Sammon mapping:

m∑

i=1

∑

i′ 6=i

(DS(i, i′)− ‖zi − zi′‖)
2

DS(i, i′)
,

which emphasizes getting small distances correct.

For minimizing least-squares or Sammon criteria, one usually
resorts to a gradient-based optimization to find the zi.

Self-organizing maps

• SOMs can also be viewed as a performing something like
gradient descent.

• Recall the simple 1D SOM algorithm we discussed earlier:

– Initialize grid-point coordinates zj ∈ <, j ∈ {1, . . . , p}.

– For l = 0, 1, 2, . . .

∗ Choose a data object xi at random.
∗ Find the nearest grid-point j ∈ arg minj ‖xi − zj‖.
∗ Find the neighborhood of j: N = {j′ : |j − j′| < r}.
∗ Update the grid-point coordinates for all j′ ∈ N :

zj′ ← (1− αl)zj′ + αlxi

• What is being minimized?

