Today

- Gradient descent for minimization of functions of real variables.
- Multi-dimensional scaling
- Self-organizing maps

Gradient Descent

Derivatives

- Consider function $f(x): \Re \mapsto \Re$.
- The derivative w.r.t. x is another function f'(x) or $\frac{d}{dx}f(x): \Re \mapsto \Re$, giving the slope of the tangent to f.
- If f' is continuous, then f is continuously differentiable, sometimes written $f \in C^1$.
- If f'(x) > 0 then $f(x + \epsilon) > f(x)$ for all $\epsilon > 0$ that are sufficiently small.

Gradients

- Consider function $f(x_1, x_2, \dots, x_n) : \mathbb{R}^n \mapsto \mathbb{R}$.
- The partial derivative w.r.t. x_i is denoted $\frac{\partial}{\partial x_i} f(x_1, x_2, \dots, x_n) : \Re^n \mapsto \Re$. The partial derivative is the derivative along the x_i axis, keeping all other variables fixed.
- The gradient $\nabla f(x_1,x_2,\ldots,x_n): \Re^n \mapsto \Re^n$ is a function which outputs a vector containing the partial derivatives. That is, $\nabla f = <\frac{\partial}{\partial x_1}f, \frac{\partial}{\partial x_2}f,\ldots,\frac{\partial}{\partial x_n}f>$.

- The gradient of f at a point $\langle x_1, x_2, \dots, x_n \rangle$ can be thought of as a vector indicating which way is "uphill".
- If $f \in C^1$, then for all sufficiently small ϵ , $f(x + \epsilon * \nabla f) > f(x)$.

Gradient descent

- In many applications, gradient descent is used to minimize an "error" function when explicit solution is not possible.
- The basic algorithm assumes that ∇f readily computed, and produces a sequence of vectors $\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3, \dots$ with the aim that:
 - $-f(\mathbf{x}^1) > f(\mathbf{x}^2) > f(\mathbf{x}^3) > \dots$
 - $\lim_{i\to\infty} \mathbf{x}^i = \mathbf{x}$, locally optimal.
- ullet The algorithm: Given ${f x}^0$, do for $i=0,1,2,\ldots$

$$\mathbf{x}^{i+1} = \mathbf{x}^i - \alpha_i \nabla f(\mathbf{x}^i) ,$$

where $\alpha_i > 0$ is the "step-size" for iteration i.

Conditions for convergence? Termination?

Example gradient descent traces

Step-size conditions

- Convergence depends in part on the α_i .
- If they are too large (such as constant) oscillation or "bubbling" may occur.
 (This suggests the α_i should tend to zero as i → ∞.)
- If they are too small, the \mathbf{x}^i may not move far enough to reach a local minimum.

Robbins-Monroe Conditions

- The α_i are a Robbins-Monroe sequence if:
 - $\bullet \ \sum_{i=0}^{\infty} \alpha_i = +\infty$
 - $\sum_{i=0}^{\infty} \alpha_i^2 < \infty$
- These conditions, along with appropriate conditions on f are sufficient to ensure that convergence of the \mathbf{x}^i .
- Many variants are possible. For example, it is allowed for $\nabla f(\mathbf{x}^i)$ to by a random vector with mean $\nabla f(\mathbf{x}^i)$; this is stochastic gradient descent.

"Batch" versus "On-line" optimization

ullet Often in machine learning our error function, \mathcal{E} , is a sum of errors attributed to each data objects.

$$(\mathcal{E} = \mathcal{E}_1 + \mathcal{E}_2 + \ldots + \mathcal{E}_m)$$

• In "batch" mode gradient descent, the true gradient is computed at each step:

$$\nabla \mathcal{E} = \nabla \mathcal{E}_1 + \nabla \mathcal{E}_2 + \dots \nabla \mathcal{E}_m.$$

- In "on-line" gradient descent, at each iteration one data object, $j \in \{1, \ldots, m\}$, is chosen at random and only $\nabla \mathcal{E}_j$ is used in the update.
- Why prefer one or the other?

"Batch" versus "On-line" optimization

Why prefer one or the other?

- Batch is simple, repeatable.
- On-line:
 - Requires less computation per step.
 - Randomization may help the procedure escape poor local minima.
 - Allows streams of data objects rather than a static set (hence "on-line").

Termination

There are many heuristics for deciding when to stop gradient descent.

- 1. Run until $\|\nabla f\|$ is smaller than some threshold.
- 2. Run it for as long as you can stand.
- 3. Run it for a short time from 100 different starting points, see which one is doing best, goto 2.
- 4. ...

Applications in dimensionality reduction

Dimensionality reduction

• Recall: the task of dimensionality reduction is to assign data objects to points in a low-dimensional Euclidean space (\Re,\Re^2,\Re^3) such that pairwise distances are preserved as much as possible.

Multi-dimensional scaling

Multi-dimensional scaling does this in the most direct manner possible.

Input:

- A dissimilarity matrix \mathcal{DS} for m data objects, where $\mathcal{DS}(i,j)$ is the distance between objects i and j.
- Desired dimension d of the embedding.

Output:

- Coordinates $z_i \in \Re^d$ for each data object i which, as much as possible, minimize a "stress" function which quantifies the mismatch between distances in \mathcal{DS} and distances of data objects' coordinates in \Re^d .

Stress functions

Common stress functions include:

The least-squares or Kruskal-Shephard criterion:

$$\sum_{i=1}^{m} \sum_{i' \neq i} (\mathcal{DS}(i, i') - ||z_i - z_{i'}||)^2$$

The Sammon mapping:

$$\sum_{i=1}^{m} \sum_{i'\neq i} \frac{(\mathcal{DS}(i,i') - ||z_i - z_{i'}||)^2}{\mathcal{DS}(i,i')},$$

which emphasizes getting small distances correct.

For minimizing least-squares or Sammon criteria, one usually resorts to a gradient-based optimization to find the z_i .

Self-organizing maps

- SOMs can also be viewed as a performing something like gradient descent.
- Recall the simple 1D SOM algorithm we discussed earlier:
 - Initialize grid-point coordinates $z_j \in \Re$, $j \in \{1, \ldots, p\}$.
 - For $l = 0, 1, 2, \dots$
 - * Choose a data object x_i at random.
 - * Find the nearest grid-point $j \in \arg\min_{j} \|x_i z_j\|$.
 - * Find the neighborhood of j: $N = \{j' : |j j'| < r\}$.
 - * Update the grid-point coordinates for all $j' \in N$:

$$z_{j'} \leftarrow (1 - \alpha_l) z_{j'} + \alpha_l x_i$$

• What is being minimized?