Today

e Gradient descent for minimization of functions of real variables.
e Multi-dimensional scaling

e Self-organizing maps



Gradient Descent




Derivatives

Consider function f(x) : R — R.

The derivative w.r.t. = is another function f’(x) or

% (z) : ® — R, giving the slope of the tangent to f.

If " is continuous, then f is continuously differentiable,
sometimes written f € C"*.

If f'(x) > O0then f(x + €) > f(x) for all e > 0 that are
sufficiently small.



Gradients

e Consider function f(x1,z2,...,2,) : R" — K.

e The partial derivative w.r.t. x; is denoted

ai% (x1,22,...,xyn) : R" — R,

The partial derivative is the derivative along the x; axis, keeping
all other variables fixed.

e The gradient Vf(x1,x2,...,2Z,) : R" — R" is a function
which outputs a vector containing the partial derivatives.

Thatis, Vf =< 2 f, 822f,...,%f>.

oxq




e The gradient of f ata point < x1, z2, ..., T, > can be thought
of as a vector indicating which way is “uphill”.

e If f € C*, then for all sufficiently small e,

flx+exVf)> f(x).




Gradient descent

e |n many applications, gradient descent is used to minimize an
“error” function when explicit solution is not possible.

e The basic algorithm assumes that V f readily computed, and
produces a sequence of vectors x*, x?, x>, ... with the aim that:

— fON) > (X3 > F3) > .

— lim;— o0 X" = X, locally optimal.
e The algorithm: Given x°, dofori =0,1,2, ...
X't =x" —a; Vf(x"),
where a; > 0 is the “step-size” for iteration 1.

e Conditions for convergence? Termination?



Example gradient descent traces




Step-size conditions

e Convergence depends in part on the «;.

e [f they are too large (such as constant) oscillation or “bubbling”
may OcCculr.

(This suggests the «; should tend to zero as 1 — o0.)

e |f they are too small, the X may not move far enough to reach a
local minimum.



Robbins-Monroe Conditions

e The «; are a Robbins-Monroe seguence If:
[ Zzo o; = +00
e > o <

e These conditions, along with appropriate conditions on f are
sufficient to ensure that convergence of the x°.

e Many variants are possible. For example, it is allowed for

V f(x") to by a random vector with mean V f(x"); this is
stochastic gradient descent.



“Batch” versus “On-line” optimization

e Often in machine learning our error function, &, is a sum of
errors attributed to each data objects.

E=E+E—+...4+Em)

e |n “batch” mode gradient descent, the true gradient is computed
at each step:

VE=VE +VE +...VE,.

e |n “on-line” gradient descent, at each iteration one data object,
j € {1,...,m},is chosen at random and only VE&; is used in
the update.

e \Why prefer one or the other?



“Batch” versus “On-line” optimization

Why prefer one or the other?
e Batch is simple, repeatable.

e On-line:
— Requires less computation per step.

— Randomization may help the procedure escape poor local
minima.

— Allows streams of data objects rather than a static set (hence
“on-line”).



Termination

There are many heuristics for deciding when to stop gradient
descent.

1. Run until ||V f|| is smaller than some threshold.
2. Run it for as long as you can stand.

3. Run it for a short time from 100 different starting points, see
which one is doing best, goto 2.



Applications in dimensionality reduction




Dimensionality reduction

e Recall: the task of dimensionality reduction is to assign data
objects to points in a low-dimensional Euclidean space
(R, R2, 1°) such that pairwise distances are preserved as
much as possible.



Multi-dimensional scaling

Multi-dimensional scaling does this in the most direct manner
possible.
® |nput:

— A dissimilarity matrix DS for m data objects, where DS(1, 7)
IS the distance between objects ¢ and .

— Desired dimension d of the embedding.

e Output:

— Coordinates z; € R? for each data object = which, as much
as possible, minimize a “stress” function which quantifies the
mismatch between distances in DS and distances of data
objects’ coordinates in 1.



Stress functions

Common stress functions include:

e The least-squares or Kruskal-Shephard criterion:

> N (DS, i) — |z — 20 |1)
i=1 i/ #4
e The Sammon mapping:

ZZ (DS (3,3") — ||zi — zir||)?
DS(i,14") ’

1=1 i/ #1

which emphasizes getting small distances correct.

For minimizing least-squares or Sammon criteria, one usually
resorts to a gradient-based optimization to find the z;.



Self-organizing maps

e SOMSs can also be viewed as a performing something like
gradient descent.
e Recall the simple 1D SOM algorithm we discussed eatrlier:
— Initialize grid-point coordinates z; € R, j € {1,...,p}.
— Forl=0,1,2,...
* Choose a data object x; at random.
* Find the nearest grid-point j € arg min; ||x; — z;||.
* Find the neighborhood of j: N = {j" : |7 — 5’| < r}.
* Update the grid-point coordinates for all j* € N

Zjr (1 — Ozl)zj/ —+ oy

e \What is being minimized?



