What is dimensionality reduction?

- Mapping data objects to (short) real vectors
- For visualization, comparison, outlier detection
- For further machine learning
- Some techniques:
- Principal components analysis (linear)
- Independent components analysis (linear or nonlinear)
- Self-organizing maps (nonlinear)
- Multi-dimensional scaling (nonlinear, allows non-numeric data objects)

Good case

Not too bad case

Hard case

Forget it!

Today

- Reviewing some basic stats
- Principal components analysis
- Refs for today's material:
- Duda, Hart, Stork pp. 114-117
- Hastie, Tibshirani, Friedman pp. 485-491

Reviewing some basic stats

Expected value, sample average

- For a numeric random variable X, the expected value (mean) is

$$
E(X)=\sum_{x} x \mathrm{P}(X=x) \quad \text { or } \quad \int_{x} x \mathrm{p}(x) d x \quad \text { or } \quad \int_{x} x d \mathrm{p}(x)
$$

- If we take m samples from the same distribution/density, x_{1}, \ldots, x_{n}, then the sample average

$$
\frac{1}{m} \sum_{i=1}^{m} x_{i}
$$

is an unbiased estimated of $E(X)$.
(That is, $E\left(\frac{1}{m} \sum_{i=1}^{m} x_{i}\right)=E(X)$.)

Variance

- The variance of X is

$$
\operatorname{Var}(X)=E\left(X^{2}-(E(X))^{2}\right)=E\left(X^{2}\right)-(E(X))^{2}
$$

- The variance of X is non-negative and captures how "spread out" X 's distribution is.

Estimating variance

- The sample variance is sometimes

$$
\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu\right)^{2}
$$

where $\mu=\frac{1}{m} \sum_{i=1}^{m} x_{i}$.

- It turns out that this underestimates the true variance by a factor of $(m-1) / m$.
- An alternative definition of sample variance,

$$
\frac{1}{m-1} \sum_{i=1}^{m}\left(x_{i}-\mu\right)^{2},
$$

is an unbiased estimator of $\operatorname{Var}(X)$.

Covariance

- Covariance quantifies a linear relationship (if any) between two random variables X and Y.

$$
\operatorname{Cov}(X, Y)=E\{(X-E(X))(Y-E(Y))\}
$$

- Given m samples of X and Y, covariance can be estimated as

$$
\frac{1}{m-1} \sum_{i=1}^{m}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right),
$$

where $\mu_{X}=\sum_{i=1}^{m} x_{i}$ and $\mu_{Y}=\sum_{i=1}^{m} y_{i}$.

- Note: $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$.

Examples - all on the same scale

Principal components analysis

PCA for reduction to 1D

- Given: m data objects, each a length- n real vector.
- Suppose we want a 1-dimensional representation of that data, instead of n-dimensional.
- Specifically, we will:
- Choose a line in \Re^{n} that "best represents" the data.
- Assign each data object to a point along that line.

Which line is best?

How do we assign points to lines?

Reconstruction error

- Let our line be represented as $b+\alpha v$ for $b, v \in \Re^{n}, \alpha \in \Re$. For later convenience, assume $\|v\|=1$.
- Each data vector x_{i} is assigned a point on the line $\hat{x}_{i}=b+\alpha_{i} v$.
- The (squared Euclidean) reconstruction error for data object i is

$$
\left\|x_{i}-\hat{x}_{i}\right\|^{2}=\sum_{j=1}^{n}\left(x_{i}(j)-\hat{x}_{i}(j)\right)^{2}
$$

\Rightarrow Choose b, v, and the α_{i} to minimize the total reconstruction error over all data points:

$$
R=\sum_{i=1}^{m}\left\|x_{i}-\hat{x}_{i}\right\|^{2}
$$

Minimizing reconstruction error

- Suppose we fix v. A little calculus reveals that (an) optimal choice for b is

$$
b=\frac{1}{m} \sum_{i=1}^{m} x_{i}
$$

and for any α_{i},

$$
\alpha_{i}=v \cdot\left(x_{i}-b\right)
$$

So $\hat{x}_{i}=b+v \cdot\left(x_{i}-b\right)$.

Minimizing reconstruction error: b and the α_{i}

- Suppose we fix v. A little calculus reveals that (an) optimal choice for b is

$$
b=\frac{1}{m} \sum_{i=1}^{m} x_{i}
$$

and for any α_{i},

$$
\alpha_{i}=v \cdot\left(x_{i}-b\right)
$$

So $\hat{x}_{i}=b+v \cdot\left(x_{i}-b\right)$.

- Intuitively:
- The line goes through the centroid of the data.
- Data points are mapped to the point on the line closest to them in Euclidean distance. (They are projected onto the line.)

Example data

Example with $v \propto(1,0.3)$

Example with $v \propto(1,-0.3)$

Minimizing reconstruction error: the scatter matrix

- Substituting back into the formula for R shows v should maximize

$$
v^{T} S v,
$$

where S is an $n \times n$ matrix with

$$
S(k, l)=\sum_{i=1}^{m}\left(x_{i}(k)-b(k)\right)\left(x_{i}(l)-b(l)\right)
$$

- $S(k, l)$ is proportional to the estimated covariance between element k and element l in the data.
- S is the scatter matrix.

Optimal choice of v

- Recall: an eigenvector u of a matrix A satisfies $A u=\lambda u$, where $\lambda \in \Re$ is the eigenvalue.
- Fact: the scatter matrix, S, has n non-negative eigenvalues and n orthogonal eigenvectors.
- The v that maximizes $v^{T} S v$ is the eigenvector of S with the largest eigenvalue.

Example with optimal line: $b=(0.54,0.52), v \propto(1,0.45)$

Comments

- The line $b+\alpha v$ is the first principal component.
- The variance of the data along the line $b+\alpha v$ is as large as along any other line.
- b, v, and the α_{i} can be computed in polynomial time.

Reduction to d dimensions

- More generally, we can create a d-dimensional representation of our data by projecting our data points onto a hyperplane $b+\alpha^{1} v_{1}+\ldots+\alpha^{d} v_{d}$.
- If we assume the v_{j} are of unit length and orthogonal, then the optimal choices are:
- b is the centroid of the data (as before)
- The v_{j} are orthogonal eigenvectors of S corresponding to S 's d-largest eigenvalues.
- Each data point is assigned to the nearest (in Euclidean distance) point on the hyperplane.

Comments

- b, the v_{j} (and the corresponding eigenvalues), and the projections of the data points can all be computing in polynomial time.
- The magnitude of the $j^{\text {th }}$-largest eigenvalue, λ_{j}, tells you how much variability in the data the $j^{\text {th }}$ principal component captures - giving you feedback on how to choose d !

$$
\underline{\lambda_{1}}=0.0938, \lambda_{2}=0.0007
$$

$$
\underline{\lambda_{1}}=0.1260, \lambda_{2}=0.0054
$$

$$
\lambda_{1}=0.0884, \lambda_{2}=0.0725
$$

$$
\underline{\lambda_{1}}=0.0881, \lambda_{2}=0.0769
$$

