Announcements

Lectures slides will be on the course web page:
http://www.mcb.mcgill.ca/~perkins/ COMP76602/COMP76602.html

By later today, | will also put up links to background readings on
biology/bioinfo and produce a detailed schedule for the next few
weeks at least.

Don’t forget homework 0! Email me from your preferred and tell
me briefly what your cs/math/bio/bioinfo background is.

Today we begin Section 1 — Summarization — with a discussion
of clustering.



What is clustering?

e Clustering is grouping similar objects together.
— To help visualize data.
— To establish prototypes, or detect outliers.
— To simplify data for further analysis/learning.

e Clusterings are not right or wrong — different clusterings can
reveal different things about the data.

e There are two major types of clustering,“flat” and hierarchical.



Flat clustering divides, or partitions, the set of objects into disjoint
sets.
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Hierarchical clustering organizes the objects into a tree.
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Today: Flat Clustering

e K -means clustering

e A more general formulation and approaches



K-means clustering

® ... is one of the most commonly-used clustering algorithms.
® [t is easy to implement and quick to run.

e Assumes the objects to be clustered are n-dimensional real
vectors. (E.g., a list of expression values for different genes under
some conditions; or, for the same gene under different conditions)

e Similarity between the vectors is measured by Euclidean
distance.



K-means clustering

® Inputs:
— A set of n-dimensional real vectors {x1,X2,...,Xm}.

— K, the desired number of clusters.

e Outputs:

— A partitioning of the vectors into K clusters (disjoint
subsets), C' : {1,...,m} — {1,..., K}.



K-means clustering: the algorithm

e Initialize C randomly.

e Repeat

— Compute the centroid of each cluster.
(The centroid is just the arithmetic average of the vectors in the
cluster.)

— Assign each vector to the cluster whose centroid is closest,
In terms of Euclidean distance.

Until C' stops changing.



Example: initial data




Example: assign into 4 clusters randomly




Example: compute centroids




Example: reassign clusters




Example: recompute centroids
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Example: reassign clusters




Example: recompute centroids — done!
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How about 3 clusters?




Example: initial data




Example: assign into 3 clusters randomly




Example: compute centroids




Example: reassign clusters
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Example: recompute centroids




Example: reassign clusters




Example: recompute centroids — done!




Issues with K-means clustering

e Does the algorithm always terminate?
e Does it always find the same answer?

e How many clusters are there?



Issues with K-means clustering

e Does the algorithm always terminate? yes
e Does it always find the same answer? no

e How many clusters are there? hard to say



Termination of K-means clustering

For given data {x1, ..., X, } and a clustering C, consider
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where 1; denotes the centroid of the %" cluster.
(That is, sum the squared Euclidean distance of every vector to the
centroid of its cluster.)

There are finitely many possible clusterings. (At most, K '.)

Each time we reassign a vector to a cluster with a nearer
centroid, f decreases.

Claim: Each time we recompute the centroids of each cluster, f
decreases (or stays the same.)

Thus, the algorithm must terminate.



Interpretation

® S0, K-means is an iterative procedure for minimizing the sum of
squared Euclidean distances from vectors to their cluster
centroid.

e |t does not always find the same solution; it may terminate at a
suboptimal clustering.
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e Why this choice of f?

e Can we make other choices for f? (Yes, as we'll see shortly.)



Why the sum of squared Euclidean distances?

Reason 1: It produces nice, round clusters.




Why the sum of squared Euclidean distances?

Reason 2: The Principle of Maximum Likelihood.
Details in a future class. Roughly:
e Suppose the data really does divide into K clusters.

® Suppose the data in each cluster is generated by a multivariate
Gaussian, where
— The mean of the Gaussian is the centroid of the cluster.
— The covariance matrix is of the form 1. (It's a “round”
Gaussian.)

e Then the probability of the data is highest when the sum of
squared Euclidean distances is smallest.



Why not the sum of squared Euclidean distances?

Reason 1: It produces nice round clusters!

Reason 2: Differently scaled axes can dramatically affect results.
Reason 3: And what if our objects aren’t vectors at all or have
symbolic elements (like A,C,G,T)?



A more general approach

Given a set of objects,

e Choose a notion of pairwise distance / similarity between the
objects.

e Choose a scoring function, that represents some notion of
clustering.

e Optimize the scoring function, to find a good clustering.

(For most choices, the optimization problem will be intractable.
Local optimization is the usual recourse.)



Example notions of distance

Euclidean distance
Hamming distance

Estimated evolutionary distance (as between strings of DNA or
species)

Number of shared motifs (as between strings of DNA) or
domains (proteins)

Number of shared transcription factors (between two genes)



Example notions of scoring functions

Minimize: Summed distances between all pairs of objects in the
same cluster. (Also known as "within-cluster scatter.”)

Minimize: Maximum distance between any two objects in the
same cluster. (Can be hard to optimize.)

Maximize: Minimum distance between any two objects in
different clusters.



Summary / Notes

Flat clustering partitions a data set into disjoint subsets.

K-means clustering:

— Is a widely-applied algorithm for partitioning a set of real vectors.

— It iteratively attempts to optimize the sum of squared Euclidean
distances from the vectors to their cluster centers.

Other clustering algorithms can be generated by different
choices of distance measure and scoring function.

Clusterings are not right or wrong; different clusterings may
reveal different aspects of the data.

Domain knowledge, and experimentation, can help you choose
the right notions of distance and clustering.

How do you know if you have good clusters? Or even the right
number of clusters?



