
Announcements

• Lectures slides will be on the course web page:
http://www.mcb.mcgill.ca/∼perkins/COMP76602/COMP76602.html

• By later today, I will also put up links to background readings on
biology/bioinfo and produce a detailed schedule for the next few
weeks at least.

• Don’t forget homework 0! Email me from your preferred and tell
me briefly what your cs/math/bio/bioinfo background is.

• Today we begin Section 1 – Summarization – with a discussion
of clustering.



What is clustering?

• Clustering is grouping similar objects together.

– To help visualize data.

– To establish prototypes, or detect outliers.

– To simplify data for further analysis/learning.

• Clusterings are not right or wrong – different clusterings can
reveal different things about the data.

• There are two major types of clustering,“flat” and hierarchical.



Flat clustering divides, or partitions, the set of objects into disjoint
sets.



Hierarchical clustering organizes the objects into a tree.



Today: Flat Clustering

• K-means clustering

• A more general formulation and approaches



K-means clustering

• ... is one of the most commonly-used clustering algorithms.

• It is easy to implement and quick to run.

• Assumes the objects to be clustered are n-dimensional real
vectors. (E.g., a list of expression values for different genes under
some conditions; or, for the same gene under different conditions)

• Similarity between the vectors is measured by Euclidean
distance.



K-means clustering

• Inputs:

– A set of n-dimensional real vectors {x1,x2, . . . ,xm}.

– K, the desired number of clusters.

• Outputs:

– A partitioning of the vectors into K clusters (disjoint
subsets), C : {1, . . . , m} 7→ {1, . . . ,K}.



K-means clustering: the algorithm

• Initialize C randomly.

• Repeat

– Compute the centroid of each cluster.
(The centroid is just the arithmetic average of the vectors in the
cluster.)

– Assign each vector to the cluster whose centroid is closest,
in terms of Euclidean distance.

Until C stops changing.



Example: initial data



Example: assign into 4 clusters randomly



Example: compute centroids



Example: reassign clusters



Example: recompute centroids



Example: reassign clusters



Example: recompute centroids – done!



How about 3 clusters?



Example: initial data



Example: assign into 3 clusters randomly



Example: compute centroids



Example: reassign clusters



Example: recompute centroids



Example: reassign clusters



Example: recompute centroids – done!



Issues with K-means clustering

• Does the algorithm always terminate?

• Does it always find the same answer?

• How many clusters are there?



Issues with K-means clustering

• Does the algorithm always terminate? yes

• Does it always find the same answer? no

• How many clusters are there? hard to say



Termination of K-means clustering

• For given data {x1, . . . ,xm} and a clustering C, consider

f =

m∑

i=1

‖xi − µC(i)‖
2

,

where µj denotes the centroid of the jth cluster.
(That is, sum the squared Euclidean distance of every vector to the
centroid of its cluster.)

• There are finitely many possible clusterings. (At most, Km.)

• Each time we reassign a vector to a cluster with a nearer
centroid, f decreases.

• Claim: Each time we recompute the centroids of each cluster, f
decreases (or stays the same.)

• Thus, the algorithm must terminate.



Interpretation

• So, K-means is an iterative procedure for minimizing the sum of
squared Euclidean distances from vectors to their cluster
centroid.

• It does not always find the same solution; it may terminate at a
suboptimal clustering.

f = 0.22870 f = 0.3088

• Why this choice of f?

• Can we make other choices for f? (Yes, as we’ll see shortly.)



Why the sum of squared Euclidean distances?

Reason 1: It produces nice, round clusters.



Why the sum of squared Euclidean distances?

Reason 2: The Principle of Maximum Likelihood.

Details in a future class. Roughly:

• Suppose the data really does divide into K clusters.

• Suppose the data in each cluster is generated by a multivariate
Gaussian, where

– The mean of the Gaussian is the centroid of the cluster.

– The covariance matrix is of the form σ2I . (It’s a “round”
Gaussian.)

• Then the probability of the data is highest when the sum of
squared Euclidean distances is smallest.



Why not the sum of squared Euclidean distances?

Reason 1: It produces nice round clusters!

Reason 2: Differently scaled axes can dramatically affect results.
Reason 3: And what if our objects aren’t vectors at all or have
symbolic elements (like A,C,G,T)?



A more general approach

Given a set of objects,

• Choose a notion of pairwise distance / similarity between the
objects.

• Choose a scoring function, that represents some notion of
clustering.

• Optimize the scoring function, to find a good clustering.

(For most choices, the optimization problem will be intractable.
Local optimization is the usual recourse.)



Example notions of distance

• Euclidean distance

• Hamming distance

• Estimated evolutionary distance (as between strings of DNA or
species)

• Number of shared motifs (as between strings of DNA) or
domains (proteins)

• Number of shared transcription factors (between two genes)

• . . .



Example notions of scoring functions

• Minimize: Summed distances between all pairs of objects in the
same cluster. (Also known as ”within-cluster scatter.”)

• Minimize: Maximum distance between any two objects in the
same cluster. (Can be hard to optimize.)

• Maximize: Minimum distance between any two objects in
different clusters.

• . . .



Summary / Notes

• Flat clustering partitions a data set into disjoint subsets.

• K-means clustering:

– Is a widely-applied algorithm for partitioning a set of real vectors.

– It iteratively attempts to optimize the sum of squared Euclidean
distances from the vectors to their cluster centers.

• Other clustering algorithms can be generated by different
choices of distance measure and scoring function.

• Clusterings are not right or wrong; different clusterings may
reveal different aspects of the data.

• Domain knowledge, and experimentation, can help you choose
the right notions of distance and clustering.

• How do you know if you have good clusters? Or even the right
number of clusters?


