
Learning Bayesian Networks

(from completely observed data)



The Problem

• We are considering m r.v.’s, X1, . . . , Xm.

• We have a data set of n joint samples,
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• We want to build a Bayes net that models the joint probability
distribution.



Example, from the Wisconsin breast cancer data

• Size = mean tumor cell size, real or discretized into {Little,Big}.

• Texture = mean tumor cell texture (roughness), real or
discretized into {Smooth,Rough}.

• Recur = whether or not the cancer recurred, true or false.

• Time, real or discretized {1yr, 2yr, 3yr,. . .},

=

{

time to recurrence if Recur
time free of cancer if not Recur

Size Texture Recur Time

18.02 27.60 false 31
20.29 14.34 true 27

...
...

...
...



Size and Texture

• Consider modeling the relationship between discretized size
and discretized texture.

Counts Little Big

Smooth 62 51
Rough 39 46

Estimated probs. Little Big

Smooth 0.31 0.26 0.57
Rough 0.20 0.23 0.43

0.51 0.49

• What Bayes net structures are possible?



Three possible Bayes nets structures

• P (Size, Texture) = P (Size)P (Texture)

• P (Size, Texture) = P (Size)P (Texture|Size)

• P (Size, Textures) = P (Size|Texture)P (Texture)

• Which is best? Are the variables statistically related?



Are the variables related?

Little Big

Smooth 62 (57.6) 51 (55.4)
Rough 39 (43.4) 46 (42.6)

• A χ2-test gives little reason to reject independence.

S = 1.56, p-value > 0.1



Are the variables related?

Little Big

Smooth 62 (57.6) 51 (55.4)
Rough 39 (43.4) 46 (42.6)

• A χ2-test gives little reason to reject independence.

S = 1.56, p-value > 0.1

• But suppose we allow for a relationship anyway. . .

• How do we fill in the parameters of the Bayes net? P(Size) and
P(Texture|Size)?



Maximum likelihood solution

• In general, suppose we have settled on a Bayes net structure
for m variables, X1, . . . , Xm.

• Let πi ⊂ {X1, . . . , Xm} denote the parents of Xi.

• Let x
j

i denote the value of r.v. Xi in sample j.

• Assuming the data is i.i.d., its probability is
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j
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• To maximize the probability of the data, we can maximize each
ΠjP (Xi = x

j

i |Xπi
= xj

πi
) independently.

• It’s like solving m independent supervised learning problems.



For the Size and Texture model

Counts Little Big

Smooth 62 51
Rough 39 46

• P (Big) = 51+46

39+46+51+62
= 0.49

• P (Little) = 62+39

39+46+51+62
= 0.51

• P (Rough|Little) = 39

39+62
= 0.39

• P (Smooth|Little) = 62

39+62
= 0.61

• P (Rough|Big) = 46

51+46
= 0.47

• P (Smooth|Big) = 51

51+46
= 0.53



Real-valued Texture

• Suppose we use discretized size, but leave texture real-valued.

• P(Size) is fit the same.

• What do we do about P(Texture|Size)?

10 15 20 25 30 35 40
0

5

10

15

20

25

30
Texture when Size=Little

Texture

C
ou

nt

10 15 20 25 30 35 40
0

5

10

15

20

25

30
Texture when Size=Big

Texture

C
ou

nt



Real-valued Texture

• Suppose we use discretized size, but leave texture real-valued.

• P(Size) is fit the same.

• What do we do about P(Texture|Size)? Gaussian fit?
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Real-valued Texture 2

• P(Big)=0.49 (as before)

• P(Little)=0.51 (as before)

• P(Texture|Big)=Normal(µ = 22.9,σ = 4.6)

• P(Texture|Little)=Normal(µ = 21.7,σ = 3.9)



How do we make inferences?

When texture is discretized:

• What is P(Texture=Rough|Size=Big)?

• What is P(Size=Big|Texture=Rough)?

When texture is real-valued:

• What is P(Texture=17|Size=Big)?

• What is P(Size=Big|Texture=17)?



How can we model all four r.v.’s?

• Size = mean tumor cell size, real or discretized into {Little,Big}.

• Texture = mean tumor cell texture (roughness), real or
discretized into {Smooth,Rough}.

• Recur = whether or not the cancer recurred, true or false.

• Time, real or discretized {1yr, 2yr, 3yr,. . .},

=

{

time to recurrence if Recur
time free of cancer if not Recur



Summary

• Bayes net structures can be chosen based on:

– The meaning of the r.v.’s

– Statistical tests

– Convenience

• Once the structure is given, the parameters (conditional p.d.f.’s
for each r.v.) can be optimized independently according to
maximum likelihood.


