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1. Estimating protein copy number from fluorescent imaging data
Rosenfeld, Perkins, Alon, Elowitz, Swain, “A fluctuation method to quantify in

vivo fluorescence data.” Biophysical Journal (2006)

2. Modeling regulatory interactions in the gap gene system of Drosophila
melanogaster
Perkins, Jaeger, Reinitz, Glass, “Reverse Engineering the Gap Gene Network of

Drosophila melanogaster.” PLoS Computational Biology (2006)

3. Searching for coherent subnetworks in large interaction networks
Scott, Perkins, Bunnell, Pepin, Thomas, Hallett, “Identifying Regulatory

Subnetworks for a Distinguished Set of Genes.” Molecular and Cellular

Proteomics (2005)
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Part I: Estimating protein copy number from
fluorescent imaging data



Imaging technologies give relative expression
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Relative expression versus copy number
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! In many cases, relative expression is very useful
Correlate or cluster expression of genes, look at effects of knock-outs & other

interventions, infer function, infer co-regulation, look for disease markers, etc.

! But sometimes we want to know the copy number—the actual number of
molecules present

– To understand robustness to molecular noise
– To choose appropriate modeling formalisms
– To recreate realistic conditions in vitro
– Estimate energetic costs

! In some cases, variability in fluorescent intensity can be used to estimate
copy number



Intuition: Variability between daughter cells
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⇒ Difference in daughter cell intensities, as a fraction of parent, in relation to
copy number



The experiment
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! Transcription of a fluorescent gene is turned on briefly then halted,
resulting in a fixed, but unknown, number of fluorescent proteins.

! A series of fluorescent images capture relative expression levels as colony
grows

Details:

! The fluorescent protein is a fusion of λ-phage protein CI with YFP

! Transcription is repressed by ubiquitously expressed tetracycline repressor (TetR)

! Brief period of transcription achieved by spiking in anhydrotetracycline (aTc),
which interferes with TetR, and then washing it out

Ptet-cIYFP PR-CFP
aTc

Pc-TetR



The fluorescent image time series
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Cell-by-cell “family tree” and intensities
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⇒ Problem: Estimate protein copy number in each cell!



A simple model

Bioinformatics of Gene Networks 10 / 49

We assume fluorescence is proportinal to protein copy number:

yi = νni ,

where

! yi is observed fluorescence of cell i
! ni is true protein copy number in cell i
! ν relates copy number to fluorescence

⇒ We will estimate ν, from which we can estimate the protein copy number
in each cell (ni = yi/ν).



A simple model (II)
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Consider a single triad in the tree:

!

"#

! Assume no protein is lost: ni = nj + nk

! Assume nj , nk ∼ Binomial(ni,
1
2)

! Let:
ν̂i =

(yj − yk)2

yi

! Why? Because E(ν̂i|yi) = ν.
! We estimate ν by averaging over all triads: ν̂ = 1

N

∑N
i=1 ν̂i



Results of simple model
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ν̂ ≈ 15

n̂0 ≈ 840

n̂ ≈ 10



Accounting for noise
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We assume:

! Additive Gaussian observation noise: yi = νni + εi, where εi = N(0, σ)
! Binomial copy number inheritance: n2i ∼ Binomial(ni,

1
2)

! Conservation of protein: n2i+1 = ni − n2i

Compute:

P (ν, σ|y1, . . . , yN ) =
P (y1, . . . , yN |ν, σ)P (ν, σ)

P (y1, . . . , yN )
,

where

P (y1, . . . , yN |ν, σ) =
∑

n1,...,nN

P (y1, . . . , yN |n1, . . . , nN , ν, σ)×
P (n1, . . . , nn)

Naive computation of summation infeasible, but can be transformed to series
of N 1-dimensional summations (similar to Felsenstein’s algorithm).



Validation - simulation studies
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Validation - simulation studies
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Posterior belief in ν, σ
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! Most likely ν about 15 (as with simple method!)
! Noise estimated at σ ≈ 160



Consistency across experimental runs
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Part I Summary
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! Protein copy number can be estimated from variability in fluorescent
intensity between daughter cells

! (Though we don’t yet have independent confirmation)
! The Bayesian (complicated) approach gives estimates of uncertainty in

parameters
! Similar work in progress for Drosophila:
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Part II: Modeling regulatory interactions in the gap
gene system of Drosophila melanogaster



The problem: Modeling the gap gene network in fruit flies
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Bcd Cad

Hb Kr

Kni Gt

Tll



The data
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Previous work by Reinitz and colleagues (Jaeger et al. 2004a,b)
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Let va(x, t) be the expression of gene a (protein) at time t and
anterior-posterior position x.

A PDE model for protein levels:

∂va(x, t)
∂t

= P a(v(x, t))︸ ︷︷ ︸− γava(x, t)︸ ︷︷ ︸+Da∂
2va(x, t)
∂x2︸ ︷︷ ︸

production decay diffusion
where

P a(v(x, t)) = Rag

(
∑

b

T abvb(x, t) + ha

)

where g(u) = 1
2

(
u√

u2+1
+ 1

)
is sigmoidal.



Fitted models
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They fit all parameters using multiple runs of a parallel simulated annealing
algorithm.



The problem?
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! 2 CPU-years fitting time! (≈ 2 months on their 10-node parallel
processor)

! Did not explicitly test RPJ network structure
! Did not check sensitivity to various modeling assumptions
⇒ Optimization is hard for the usual reasons:

– parameter dependencies
– plateaus and local minima in error surface



Fitting Differential Equations
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! Suppose we have time series data xo(t) for t = t1, t2, . . . , tN .

! Postulate an ODE model of the form ẋ(t) = f(x, θ), where f is a
dynamics function parameterized by θ.

! There are two main classes of criteria one might optimize when fitting a
differential equation:

1. Trajectory-based error: Etraj =
∑

t ‖xo(t) − x(t)‖2 where x(t) is the
solution to the ODE model (from some initial condition)

2. Derivative-based error: Ederiv =
∑

t ‖ˆ̇xo(t) − f(xo(t), θ)‖2 where
ˆ̇xo(t) estimates the time derivatives of the data at time t.



Differences between Etraj and Ederiv
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Etraj :

! Minimizes the difference between simulated and observation expression
! Error is typically highly nonlinear in model parameters
! Even evaluating error requires solution of ODE model

Ederiv:

! Minimizes the difference between estimated time derivatives and modeled
time derivatives

! Error evaluation is simple
! Error minimization is a regression problem
! Error is typically much less nonlinear in model parameters
! Behaves poorly when data is noisy (though there are ways of fixing that

— see functional data analysis)
! But. . . when simulated, model may not match observed expression well



A hybrid solution for the original problem
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∂va(x, t)
∂t

= Rag

(
∑

b

T abvb(x, t) + ha

)
− γava(x, t) + Da∂

2va(x, t)
∂x2

1. Estimate ∂va(x,t)
∂t — in fact, we estimate production, decay and diffusion

components separately
2. Optimize Ra, T ab, ha, γa, Da so that:

P a
est(x, t) ≈ Rag

(
∑

b

T abvb
o(x, t) + ha

)

3. Further tune params to minimize trajectory-based error

⇒ Computationally efficient; trajectory-based optimization easy if initial
params good enough; in end, model optimized to simulate correctly.



Step 1: Estimate P a(x, t), γa, Da
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∂va(x, t)
∂t

= P a(x, t) − γaxa(x, t) + Da∂
2va(x, t)
∂x2

! Production given by quadrilateral patches of space-time
! Optimize so simulated expression matches observed
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Step 2: Estimate Ra, T ab, hb based on P a(x, t)
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P a
est(x, t) = Rag

(
∑

b

T abvb
o(x, t) + ha

)

! Repeated gradient descent to minimize sum squared error
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Simulating PDE with Ra, T ab, ha, γa, Da gives poor fit
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Step 3: Tune Ra, T ab, ha, γa, Da to get good fit
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! Repeated stochastic local search
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Results
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Obtained similar results to Jaeger et al. (2004a,b), in terms of expression and
regulatory relationships!
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Is that the only regulatory architecture that works?
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! Next, we fit a model of the same form but limited to the Rivera-Pomar &
Jackle regulatory relationships

! Regulatory weights T ab corresponding to links not in the RPJ model are
fixed at zero

! Regulatory weights T ab corresponding to link in the RPJ model are
constrained to have the appropriate sign

! A few exceptions:

– We allowed Tll to activate Hb
– There was an extra negative weight TKr,Hb2 multiplied by

(vHb(x, t))2, to allow Hb to have a dual regulatory effect on Kr



Model restricted to RPJ structure
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Does the mathematical form of the model matter?
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! Next, we fit a piecewise-constant (“logical”) model for production
! We assumed production if at least one activator and no repressors exceed

thresholds

PHb =






RHb if (vBcd > 20 or vHb > 90) and vKr < 140
and vKni < 10

0 otherwise

! Optimized thresholds, but not structure of network – we borrowed the
structure of the first, unconstrained fit



Logical model
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Part II Summary
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! A 3-step decomposition of the PDE fitting process

– Allows estimation of regulatory parameters first by regression
– Resulting in much faster fitting
– Relevant to ODE fitting as well

! Future work

– Theoretical justification for the algorithm
– Modeling pair-rule genes
– Quantitative agreement with mutant phenotypes
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Part III: Searching for coherent subnetworks in large
interaction networks



Large interaction networks
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As we learn more about
gene and protein inter-
actions on a genome
scale, network diagrams
become a big, tan-
gled mess! The net-
work does not separate
neat subnetworks, be-
cause. . .

! Proteins may have multiple functions or be “promiscuous”
! Subnetworks communicate non-hierarchically
! Links indicate (e.g.) protein-protein or protein-DNA interactions that

happens under some conditions



Active subnetworks
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! Different parts of the network may be active at different times / under
different conditions



Try to find active subnetworks
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(Similar to Ideker et al. 2001,2002)

! Weight vertices by evidence for differential expression
! Find connected subsets with high total weight

!5

!3

$1

!3

!3

$2

$4

$2

⇒ Unfortunately, this problem is intractable (NP-hard), inapproximable, not
f.p.t. You have to check all 2N subsets.



Steiner trees in a graphs
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(Scott et al. 2005)

! Weight vertices by evidence against differential expression

! Being with a seed set of genes S

! Find a connected subset A with S ⊂ A of minimal total weight

+1

+2

+2

+1

+3

+5

+1



Finding the Steiner tree in a graph
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! A modification of the Dreyfus-Wagner algorithm can solve this problem
exactly in time O(3|S|Poly(N)), where N is the total number of vertices.
(It is a dynamic programming approach, that looks at different ways of
breaking Steiner trees into smaller Steiner trees.)

! It is also approximable, and well-solved in practice by heuristics



Computational experiments
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We defined an interaction network with

! 5458 vertices corresponding to yeast genes
! 23,642 edges taken from BIND (yeast protein-protein interactions),

TRANSFAC, SCPD and a ChiP-Chip data set (yeast protein-DNA
interactions)

! Vertex weights indicate differential expression based on microarray
experiments



Connecting heat-responsive genes
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Connecting GAL80 to differentially expressed genes
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Connecting co-expressed genes in metabolic pathways
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Part III Summary
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! We can efficiently find an active subnetwork that connects a seed set of
vertices

! Should be considered an exploratory, rather than explanatory, tool

– Solutions may not be unique
– Solutions can be sensitive to incorrect vertex weights, missing links

! Links can be weighted too, representing uncertainty about an interaction
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The End


