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ABSTRACT
Machine learning (ML) has become an important topic for students
across disciplines to understand because of its useful applications
and its societal impacts. At the same time, there is little existing
work on ML education, particularly about teaching ML to non-
majors. This paper presents an exploration of the pedagogical con-
tent knowledge (PCK) for teaching ML to non-majors. Through
ten interviews with instructors of ML courses for non-majors, we
inquired about student preconceptions as well as what students
find easy or difficult about learning ML. We identified PCK in the
form of three preconceptions and five barriers faced by students,
and six pedagogical tactics adopted by instructors. The preconcep-
tions were found to concern themselves more with ML’s reputation
rather than its inner workings. Student barriers included underesti-
mating human decision in ML and conflating human thinking with
computer processing. Pedagogical tactics for teaching ML included
strategically choosing datasets, walking through problems by hand,
and customizing to the domain(s) of students. As we consider the
lessons from these findings, we hope that this will serve as a first
step toward improving the teaching of ML to non-majors.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Computing methodologies → Machine learning;
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1 INTRODUCTION
Not long ago, machine learning (ML) was a topic of interest limited
largely to computer science (CS) and statistics. But with the steady
increase of accessible computing power and large data sets, ML has
been applied to a wide range of domains. With its increasing use,
ML has become relevant to a much broader community, and with it
a need to understand how we can teach ML to non-major students.

Furthermore, when we consider the implications of ML, such as,
job automation [6, 10], privacy concerns [4, 28], and algorithmic
bias perpetuating discrimination [9, 25], ML is a critical issue in
today’s society. Yet, the inner workings of ML remain a mystery
to most people [26]. Given the ubiquity and increasingly impor-
tant role of ML in consequential decision-making, we suggest that
rectifying this lack of understanding is of high value to society.

Research in education has identified pedagogical content knowl-
edge (PCK) as an important component of effective pedagogy [33].
PCK refers to the knowledge needed by an educator to teach a par-
ticular subject matter. Common types of PCK include an educator’s
knowledge about student misconceptions, preconceptions, barriers
to learning, and tactics for assisting student learning.

1.1 Research Questions and Goals
In this paper, we explore examples of PCK for teaching ML to non-
majors. For the purposes of this paper, we define “non-majors” as
students without a background in CS or statistics.

Specifically, we wanted to know what preconceptions instruc-
tors can identify non-major students as having about ML, what
misconceptions these students have, what barriers students face,
and what pedagogical tactics are used to assist the students.

This is an exploratory work. The motivation for our project is to
widen the literature on ML education for non-majors, specifically
in how to teach the topic, which we believe is essential for ML
education to develop.

Our contributions include identifying common preconceptions
and barriers of students, as well as tactics of instructors. In our
interviews with ten experienced ML instructors, our participants
noted that students were generally unaffected by misconceptions,
but rather a lack of conception to begin with.

In previous work, using the same interview data, we identified
and classified learning goals for non-majors using the Structure of
Observed Learning Outcomes taxonomy (SOLO) [2].

Building on our previous work, in writing this paper we found
it useful to organize the reported student barriers and instructor
tactics around the SOLO taxonomy. What barriers did students face
at each SOLO stage, and what tactics do educators use to target
students at that stage?
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Table 1: Interview Participants

ID Position Setting Teaching

P1 Information Professor Public Research University Introductory information science
P2 Psychology Professor Public Research University Computational psychology
P3 Psychology Professor Public Research University Computational psychology and neuroscience
P4 Statistics Teaching Fellow Public Research University Intro ML for professional master’s in data science
P5 Business Management Professor European Private Catholic University Introduction to business analytics for law students
P6 Biology Professor Public Research University Quantitative methods for biology
P7 Journalism Professor Private Research University Data and computational journalism
P8 Cognitive Science & CS Professor Private Liberal Arts College Topics in AI
P9 Data Scientist and Instructor AI Research Center Workshops for upper-level business people
P10 Data Scientist and Instructor Online Learning Platform ML courses for research scientists

2 RELATEDWORKS
2.1 Pedagogical Content Knowledge
2.1.1 Origin. In 1986, Shulman argued that there was too strong of
a separation between content and pedagogy in education research
and policy, arguing that for a teacher to be effective, one was useless
without the other. He proposed “pedagogical content knowledge”
as a type of content knowledge specifically for teaching in an effort
to emphasize and explain how a teacher transforms subject matter
to be more amenable to students [33].

Shulman offered that PCK consisted of the following: "the most
useful forms of representation of those ideas, the most powerful
analogies, illustrations, examples, explanations, and demonstra-
tions –in a word, the ways of representing and formulating the
subject that make it comprehensible to others. . . also includes an
understanding of what makes the learning of specific topics easy
or difficult: the conceptions and preconceptions that students of
different ages and backgrounds bring with them to the learning of
those most frequently taught topics and lessons."[33, 6-7]. Although
the concept of PCK was subsequently embraced by the research
community, Shulman did not give a clear way to capture PCK with
its broad definition. Difficulties in articulating and documenting
PCK have been found since its introduction [1, 20, 23].

2.1.2 In Computer Science. Saeli et al. [31] conducted a review of
PCK for programming. To define PCK-content, it was driven by four
questions: why teach programming, what should be taught, what
are the student difficulties, and how should the topic be taught. Hub-
bard’s [17] review analyzed how computing PCK is conceptualized
and investigated. Yadav et al. [37] measured PCK through teach-
ers’ responses to teaching vignettes about student’s understanding
of programming constructs, to which they found improvements
needed in how teachers address students’ programming errors.
Other PCK research has focused on K-12 teacher education (e.g.
[18, 24]). CS PCK education literature is limited, but there is work
on student misconceptions for topics such as, programming (e.g.
[7, 19, 30]), and algorithms and data structures (e.g. [8, 29, 32]).

2.1.3 In Statistics. Groth [12] sketched a hypothetical descriptive
framework of statistical knowledge for teaching based off of re-
search on mathematical knowledge for teaching [14–16], while
maintaining the separation between statistics and mathematics.

Groth cites building data and designing a study as examples of
non-mathematical statistical knowledge. Lee and Hollebrands’s
[22] work on effectively engaging students in learning statistics
with technology resulted in a framework for a specialized knowl-
edge called technological pedagogical statistical knowledge (TPSK).
There are three components in TPSK and each depend on the one
before it: statistical knowledge, technological statistical knowledge,
and technological pedagogical statistical knowledge.

2.2 Machine Learning Education Research
This area of research is still growing, as ML is such a new subject in
university curricula. There has been work in AI education; notably
the Symposium on Educational Advances in Artificial Intelligence,
which first met in 2010. Research on ML education has been present
through that venue, including assignment designs [13, 34].

Of relevance to our study is Lavesson’s [21] case study of a mas-
ter’s level ML course (30 students). In the course evaluation results,
Lavesson reports that students found the evaluation and compari-
son of learning algorithms (through statistical tests and different
evaluation metrics) to be difficult. Students felt more comfortable
comparing algorithms theoretically than comparing them empiri-
cally with statistical tests and experiments. The implementation of
ML algorithms using programming was found to be easiest out of
all learning outcomes. Our present work extends his findings by
a more in-depth analysis of why certain topics are more difficult
and with a focus on non-majors. Additionally, as opposed to sam-
pling only a single course, our work contributes an analysis of data
sampled over multiple courses within different disciplines.

2.2.1 Teaching Machine Learning to Non-Majors. Literature on
teaching ML to non-majors is even more sparse than the already
minimal literature on ML education, comprising of papers on cur-
ricula for non-majors. Way et al. [35] [36] presented their findings
from a multi-year project called "Broader and Earlier Access to
Machine Learning" to which resulted in an online repository of flex-
ible module materials. Gil [11] designed a data science course with
ML topics for non-programmers, through a workflow paradigm
and a visual interface called WINGS. Pre-tested on non-majors, Gil
proposes that learning basic ML concepts without programming is
more approachable due to less time investment (e.g., required CS
courses, lessons spent on programming).
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3 METHODS
With no prior work focused on ML PCK, our goal for this study was
to begin this line of investigation. We chose to speak to instructors
who have taught non-majors to uncover the breadth of ML PCK.

3.1 Interviews
3.1.1 Participants. Participants were recruited through cold emails
and mailing lists related to CS and data science education. The only
requirement for participation was experience teaching ML concepts
to non-majors. All of the participants’ institutions reside in Canada
or the USA, with the exception of P5 (Europe). All are professors,
except for three instructors (P4, P9, P10) who all have their PhDs.
Table 1 provides an overview of the participants.

3.1.2 Structured Interview. The development of the interview ques-
tions was informed by PCK literature. This affected questions in-
tended both to probe for, and address, the difficulties and miscon-
ceptions faced by instructors and students. Appendix A contains the
interview questions. All interviews were conducted over voice-call,
except for P2 who answered by email. The average length of voice-
call interviews was 21 minutes. Interviews took place between June
and July 2018. Transcripts contained mostly paraphrased content
of what the interviewees said, with some direct quotations. The
first author conducted all the interviews and transcription.

3.2 Qualitative Analysis
Transcripts were coded iteratively for content, and were coded
through consensus by four people. Two of the coders are authors of
the paper; the other two are members of the same research group.
All coders have a strong CS background, although one coder had no
experience with ML. Two coders have strong education background
and the other two have intermediate education backgrounds.

First, all four coders read the transcripts in their entirety and
based on first impressions created four initial categories. These
were preconceptions, easy for students, difficult for students, and
tactics. Early in the coding process, we recognized the need for two
more categories: hard to teach, and teacher goals. We free coded
the transcripts in order of the questions (i.e., code all the transcripts
for Question 2, then all the transcripts for Question 3, etc.).

3.2.1 Grouping Codes. Next, we clustered the codes that were
repetitions of the same concept or very close to being repetitions.
Through consensus, we then formed groups of codes that naturally
fit together, regardless of the category under which they were
originally coded, which resulted in 38 groups. Groups titled “Math”,
“Visual”, “Human vs. Computer”, and “Related to Domain” were the
most populated groups. In addition, there were groups related to
pedagogy (“Tools”, “Techniques”) and groups about preconceptions
about ML. “Math” and “Programming” were unique groups because
they encapsulated difficulties within their disciplines that did not
exclusively occur while learning ML (e.g., debugging).

In examining our groupings, we noticed that the group titled
“Design Decisions” was mostly full of “difficult for students” codes,
whereas the group on teaching students a given ML algorithm was
dominated by the “easy for students” codes. On further examination
of the codes that represented some learning goal/objective, we
observed a pattern that the easy to teach learning goals were aligned

with the lower levels of the SOLO taxonomy and the hard to teach
learning goals were grouped along with issues that correspond to
higher levels of the SOLO taxonomy.

3.2.2 Regrouping Codes. Once we realized that the SOLO taxon-
omy could help us re-cluster our codes, we grouped our codes into
nine categories: one for each SOLO stage as well as one for each
transition between stages. Unlike the other SOLO stages, the pre-
structural group did not have learning goals — it consisted entirely
of preconception-related codes.

In our prior work, we described our observations about what
learning goals fell into which SOLO stage. In this paper, we will
focus on the clusters that corresponded to the transitions between
SOLO stages — the barriers that students faced in development, and
the tactics that instructors used to facilitate student development.

We will also describe the codes which did not neatly fit into our
SOLO-inspired organization of codes: the difficulties students faced
surrounding math and programming, as well as the instructional
tactics which spanned multiple SOLO levels.

4 PRIORWORK: LEARNING GOALS
CLASSIFIED BY THE SOLO TAXONOMY

While this paper focuses on the PCK needed to transition students
from one SOLO stage from another, it is first worth describing the
learning goals that we classified into each SOLO stage.

The SOLO taxonomy has been found useful for classifying learn-
ing objectives and designing curricula and course materials [3, 5].
We found that learning goals described as easy to teach were consis-
tently at the lower end of the SOLO taxonomy, while harder goals
were found consistently at the higher end. Table 2 provides a broad
overview of the learning goals found in our data.

Table 2: Instructor-Based Taxonomy of ML Learning Goals
for Non-Majors using SOLO Stages

Unistructural Stage
(Describe, Trace, Interpret, Identify) simpler ML algorithms that
do not require a high-level of prerequisite math knowledge.

Multistructural Stage
Compute a baseline.
Implement an algorithm with black box.
Plan for training and testing phase by splitting data.
Convert raw data into computer input.

Relational Stage
Relating between real life and computer input/output.
Evaluate performance with consideration to the bias-variance
tradeoff.
Apply evaluation to tune parameters to improve performance.

Extended Abstract Stage
Develop a model from scratch to solve a problem.
Communicate performance and limitations of model.

After establishing what students learn at each SOLO stage, we
turned to PCK for supporting development.Wewill describe precon-
ceptions students have (which affects the transition to the unistruc-
tural stage) and then the student barriers and pedagogical tactics
corresponding to the transitions between the other SOLO stages.
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5 PRECONCEPTIONS
Preconceptions are an important element of PCK. It is important for
educators to know where students are beginning from, particularly
to support them reaching a unistructural stage of learning.

When asked for student preconceptions, P10 responded that
students have asked, “Can you teach me to machine learn?” It is
important to note the marked difference in the ML exposure that
non-majors may have vs. those with a CS/math background, seen in
something as simple as using the term “machine learning” correctly.
In the interviews, we found three recurrent preconceptions:

• ML is Important: students believe that ML is extremely
powerful and conclude that it is the “next big thing” and
will “get you a job”. According to participants, this reflects a
common student motive for taking an ML course. P10 spoke
to this saying that research scientists, as students, express a
need to use ML because more publications are coming out
using ML techniques.

• Heard of ML from Popular Media: Students have heard
of ML technology through popular media, such as news
articles on AlphaGo and autonomous cars. P9 offered reper-
cussions of this; students read sensationalized media on ML
and they1 have to repeatedly debunk the limits of ML during
the duration of the course.

• Implementing ML is not accessible: Some participants
noted their students often feel that they are unfit to imple-
ment ML, perceiving that they need a strong CS/math back-
ground. This has been debunked in the literature [11, 35].

These preconceptions concern themselves with the reputation of
ML rather than how ML works. This reputation can cause students
to view ML as an intimidating subject to learn and/or to over-
estimate ML’s abilities.

6 FACILITATING STUDENT DEVELOPMENT
ALONG THE SOLO STAGES

The barriers that students face in learning ML change as the stu-
dents develop in their understanding of the topic. Anticipating and
appreciating student difficulties is an important component of PCK,
as is having instructional tactics for these various barriers.

Here we describe the different barriers students face as they
progress along the SOLO taxonomy, alongside the tactics reported
by participants that were targeted at particular SOLO stages.

6.1 Getting Students to a Unistructural Stage
In the SOLO taxonomy, students first begin at a prestructural stage
where they do not understand the topic at hand. This corresponds
to the preconceptions we discussed in Section 5. The prestructural
stage is aptly described by P3 as a lack of understanding rather
than misunderstanding.

The next stage of the SOLO taxonomy is the unistructural stage,
wherein students can understand a single element of the topic.
What PCK do ML educators have about facilitating the transition
from prestructural to unistructural understanding of ML?

Participants noted two tactics for facilitating this transition, and
one barrier that students encounter.

1We refer to all participants with gender neutral pronouns throughout this paper.

6.1.1 Barrier: Human Thinking vs. Computer Processing. It was
mentioned frequently that students attribute human qualities to
computers, for example, that computers have intuition or common
sense that will influence their decision. Or that computers can take
in data (e.g., language, images) and process it similar to humans.
Psychology students specifically want to map ML to the the brain
and models of learning previously encountered during their psy-
chology studies. This barrier is possibly due to a lack of exposure
to algorithmic thinking, considering their non-major background.
P8, who teaches to both CS and non-majors, explicitly noted that
this was an issue with only the non-major students.

6.1.2 Tactic: Working through Simple Problems by Hand. Partic-
ipants described working through simple problems by hand to
promote student understanding of ML algorithms. The key to these
problems is that they are low dimensional, so students can trace
the steps of the algorithm sequentially.

6.1.3 Tactic: Simulating an Algorithm. Along the same line of un-
derstanding algorithms, participants promoted simulation of al-
gorithms, which can come in different forms. Two participants
described activities where their class simulates an algorithm as a
whole. For example, P3 turns the class into a multi-level percep-
tron where every student acts as a function within the network.
Students pass a note as input and output, following the network
structure, with each student altering the note to their function. The
goal is to demystify the black box by having students experience
an algorithm’s sequential logic. Other forms include interactive
visualizations of algorithms (e.g., pyLDAvis 2 for Topic Modeling).

6.2 Getting Students to a Multistructural Stage
When at a multistructural stage, students learn the individual steps
needed to transform an algorithm into model (e.g., data cleaning,
creating features, using Sckit-learn), but cannot yet see how the
individual steps all come together.

In the context of machine learning, we define an algorithm to be
a set of instructions. A model is the result of training data being
inputted into an algorithm to make predictions on unseen data.

There are no overarching themes in the data for transitioning
to the multistructural stage. Participants had comments for this
stage that were not expressed by others. This indicates future work
needed to further investigate these two stages and their progression.

6.3 Getting Students to a Relational Stage
At a relational stage, students can combine their skills learned in
previous stages to build and tune a model, as well as students mak-
ing design decisions about features and parameters. Participants
noted these were difficult for students to learn.

6.3.1 Barrier: Underestimating Decision-Making in ML. According
to participants, students believe that ML requires little human deci-
sion. It is more difficult to design a model (i.e., choosing algorithm,
features, and parameters) than to implement a model. P6 described
that students were surprised that humans are responsible for decid-
ing when to stop tuning a model, expecting more automation and
less decision-making.

2Available at https://github.com/bmabey/pyLDAvis
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6.3.2 Tactic: Strategically Choosing Data Set(s). Participants re-
ported using low-dimensional data sets throughout a course, whether
in assignments or in-class examples. Students can grasp more easily
what is happening to the input and analyze the output without get-
ting lost in a large number of features. For example, P6 described us-
ing the IRIS data set3 because of its low-dimension (four attributes).
Even with its low-dimensionality, effective models can be trained
on it. There are other benefits to low-dimensions, including faster
run time and less data cleaning.

In addition, participants described minimizing the data sets they
use throughout the courses. As P10 stressed, every new data set
is a cognitive barrier for students because students need to get
acquainted with its unique format and in addition, will probably
need to clean it, which takes time. P6 uses the IRIS data set for
every new algorithm they introduce. By using it on each algorithm
taught, they aim to show that the same question can be addressed
using different tools. They concluded that it helps students build
confidence, noting that students often try their unrelated final
project models on the IRIS data set as a reference point.

6.4 Getting Students to an Extended Abstract
Stage

Students at a extended abstract stage are able to develop a model
to solve a specific problem using their model building skills from
the previous stage to compare different models and select the best
solution. At this stage, students also evaluate whether ML methods
are suitable for a problem. Participants noted one barrier and tactic
in facilitating student development to this stage.

6.4.1 Barrier: Perceiving the Limits of ML Applications. When given
a problem, students lack the immediate inclination to identify the
constraints of applying ML as a solution. This may be related to
students’ over-estimation of the capabilities of ML. P9 says that
they have to re-iterate that a model is only as good as the data, i.e.,
ML applications depend heavily on quality and quantity of data.

6.4.2 Tactic: Open-Ended Problems. Participants described teach-
ing their students through open-ended problems for assignments,
class activities, and final projects, which would involve developing
a new model from scratch.

7 GENERAL PEDAGOGICAL TACTICS
Whereas the tactics from Section 6 were targeted to particular
learning goals or transitions, participants additionally described
tactics that they used generally. By “generally” we mean they used
this tactic for numerous transitions, or they mentioned the tactic
without a reference to a specific learning goal. These were generally
used throughout a course, and are sufficiently flexible that they can
be used for a variety of learning goals.

7.1 Visualization
When answering Question 3 or 6 (see Appendix A), participants
overwhelmingly mentioned “visualization" broadly. This term en-
capsulates a wide range, including some of the tactics that were

3Available at https://archive.ics.uci.edu/ml/datasets/iris

presented in previous sections. In response to Question 3, partici-
pants expressed that visualized concepts are easier. This could be
because a concept lends itself to visualization (e.g., could be drawn
on a blackboard) or because a concept has an existing visualiza-
tion (e.g., online interactive demos). This was especially cited for
explaining algorithms.

There was no consensus on a type of visualization; each par-
ticipants had their own methods. One participant who did not
include programming, advocated for drag-and-drop type interfaces
for building ML processes, such as Microsoft Azure Machine Learn-
ing Studio. Another created demos on Jupyter notebooks that his
class could follow along to. Finally, a few mentioned data plotting.

7.2 Relating to the Real World
Using real world applications was strongly promoted by partici-
pants. This can come in the form of showing how certain models
solve common problems, such as Naive Bayes for effective spam
filtering. Or, students solving socially significant issues using public
data sets (e.g., predicting benign or malignant tumors using the
Breast Cancer Wisconsin Data Set4).

It may not even have to do with solving a problem, but the con-
text. Two participants described using data related to their school;
school newspaper archives and the course catalog as a subject of
topic modeling and NLP respectively. As a final example of diverse
applications, one participant has students read O’Neil’sWeapons
of Math Destruction [27], which concerns itself more with how ML
causes problems within society. This real world relation contextu-
alizes ML’s importance by highlighting to students its increasing
relevance in solving and, even, creating contemporary problems.

7.3 Domain Specificity
The majority of our participants teach ML to a specific discipline, to
which they expressed the importance of teaching to the discipline of
the students. P6’s final comment on teaching non-majors was that
having an instructor from the students’ domain is more effective
than sending students to the CS department. P9 agreed with this
saying if an instructor approaches teaching ML to non-majors as a
CS instructor, they will lose students in the math and programming.

Being domain specific helps with student motivation. P2 noted
that their students are “eager to finally combine psychology and
computation”. In addition, P7 made an interesting comment in an-
swering question 4 that student difficulty depends on disciplinary
norms, citing difference in math and programming exposure across
disciplines. Thismay be another reason to support domain-specificity.

According to the participants’ answers, being domain specific
can look like focusing course content to relevant ML methods to
the students’ field, showing domain-specific examples, or giving
domain-specific problems or data sets to solve.

8 GENERAL STUDENT BARRIERS
Math and programming arose as difficult topics for students. These
topics were broadly mentioned and our interview questions did
not aim to capture their details. From the participants’ comments,
student difficulty with math and programming is independent from
learning ML, yet necessary to address in order to teach ML.
4https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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8.1 Math as a Barrier for Students
Math was consistently brought up by participants, with probability
and linear algebra noted as subtopics. P2 sums up the participants’
thoughts on math when they say “anything mathematical seems
to elicit some concern in many students”. P7 describes their stu-
dents as “self-identified as not able to do math”. This reflects that a
source of difficulty is that math itself causes anxiety, rather than its
application. Additionally, there were comments on the lack of pre-
requisite(s) in math or retainment of prerequisite(s) math course(s)
as a source of the difficulty.

Some instructors actively avoided teaching with math as a way
around this barrier. As much as there were comments on math
difficulties, only one participant offered a way to deal with math
difficulties that did not require omitting math. P7 purposefully
speaks of students as "not being good at math yet" and empowers
their journalism students by saying that because they are good at
learning, they will be able to learn the necessary math concepts.

8.2 Programming as a Barrier for Students
Programming did not come up as consistently as math, but not
all participants include programming in their courses. Non-major
students usually have at most one programming course done, which
is one of the sources of student difficulty. This is also a reason why
some participants do not include programming and opt to use visual
interfaces for implementing ML (e.g., Microsoft Azure).

Although programming was broadly mentioned, the most agreed
difficulty on programming was debugging. P3 had an interesting
comment that “if students had a bug, they saw it more as a problem
with programming than understanding of ML concepts so they
don’t get demotivated", which may be a helpful re-framing.

9 DISCUSSION
Through our interviews with ten participants, we uncovered a
range of themes that begin to explore ML PCK for non-majors. We
suspect that some of the results presented here are not specific to
non-majors, but may be transferable to CS and statistics students.
For example, there is overlap between our results and Lavesson’s
[21] course evaluation findings on easier and more difficult topics
in ML (see Section 2.2). This is especially notable because Lavesson
presents the perspectives of CS students.

9.1 Limitations
Our short interview format helped us recruit more participants
and gain breadth. However, as the interviews lasted on average
of 21 minutes to accommodate our uncompensated participants’
busy schedules, this affected the depth of conversation. We did not
interview any students nor observe any classrooms, thus limiting
our study to the perspectives of instructors.

There were considerable differences in the ML course content
taught by our participants and the motivation of their students
for learning the subject. While this helps survey a broad scope of
course content, it may have reduced consensus on the themes since
the participants were often describing different topics and student
populations, unique to their respective courses. However, given
that ML is a new subject to be taught to non-majors, these issues
arise naturally with the subject of study.

9.2 Future Work
To the best of the authors’ knowledge, this is the first work on ML
PCK. We hope to provide a foundation for future PCK studies in
ML. Our interview format did not focus on specific ML concepts
because we did not know which concepts, across disciplines, would
be consistently relevant. Having identified several learning goals as
well as common barriers, more specific questions can be developed
to capture more detailed PCK.

Although “visualization” was a frequently mentioned tactic, par-
ticipants lacked specificity as to what it meant. There is opportunity
to more clearly define what constitutes visualization of ML and
best practices for doing so.

More work is needed on the role of math and programming while
learning ML. How do these subjects facilitate understanding while
teaching/learning ML? Is math development and programming
development separate from ML development? And in terms of
course design for non-majors with little prerequisites: how much
math needs to be included? Is programming necessary?

10 CONCLUSION
We identified examples of pedagogical content knowledge (PCK) for
teaching machine learning, namely in the forms of preconceptions
and barriers faced by students along with instructional tactics.

Student preconceptions include ideas that ML is important, but
also not accessible. The data from our participants are evidence that
it is possible to teach ML to those with little to no math/CS back-
ground. Instructors reported students having difficulty appreciating
the human decision-making aspects of ML, and overestimating the
power of ML to solve real-world problems. Visualization was a
popular tactic for teaching ML; it appears that more visualization
tools would be useful for ML educators.

PCK is important to building a teacher’s competence. Our results
highlight opportunities for innovation in teaching ML as well as
the relationships ML has with math and programming.

A INTERVIEW QUESTIONS
(1) Could you briefly describe the context in which you teach

machine learning? (i.e. what background do your students
have and what are the motivations?)

(2) What are some common ML preconceptions that students
have before taking your course?

(3) What ML concepts do students have the easiest time with?
(4) What ML concepts do students have most difficulty grasp-

ing?
(5) What are the most common mistakes students make?
(6) Are there any examples, analogies, or other methods of ex-

plaining concepts that you find particularly effective?
(7) Any other comments on teaching non-technical students

machine learning?
(8) Do you have any formal education in teaching? If so, when?
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