
Chemlogic:

A Logic Programming Computer Chemistry System

Second Edition

Nicholas Paun

∗ Abstract

Chemlogic is a logic program for computer chemistry that performs stoichio-

metric calculations, balances and completes equations, and converts between formulas and

names. The program has applications in education, particularly as a study tool. Features

are implemented using a chemical information database, linear equation solver, and gram-

matical rules. Guidance is provided for resolving errors in user input. Chemlogic is available

on Android and the Web.

Background

In high school Chemistry, students learn to work with chemical compounds, equations

and stoichiometric calculations. Algorithms were researched, adapted to chemistry problems

and implemented in Prolog, to develop a program that could be used by both students and

teachers.

Design and Implementation

User input is parsed into a form that can be easily manipulated and transformed. A

parser recognizes a formal grammar describing valid user input. In Prolog, parsers are im-

plemented using DCGs (De�nite Clause Grammars), which provide a simpli�ed syntax for

creating logical clauses that process a grammar using di�erence lists, an e�cient represen-

tation. [4]

2015-04-30 � Nicholas Paun: Chemlogic � 1 of 5



Internal representations must be created for the parsed input. Chemlogic uses a pseudo-

Abstract Syntax Tree to record the structure of an equation, as well as lists containing useful

information (e.g. the elements contained in an equation).

The reaction type analysis module identi�es common types of chemical reactions,

predicts whether a reaction will take place, and completes chemical equations for common

reactions, given the reactants. These features are implemented by matching the Abstract

Syntax Tree generated by parsing an equation, against a pattern representing the structure

of a certain chemical reaction type. In Prolog, this matching is performed by syntactic uni�-

cation, which is the process of combining two structures by replacing variables with constant

terms, so as to make the two structures equal.

Once the reaction type is determined, a prediction can be made as to whether the reaction

will occur by comparing the relative positions in the reactivity series of the elements involved.

The reaction type and the reaction prediction can then be displayed by the user interfaces,

as additional information for the entered chemical equation.

To complete a chemical equation, the complete formulas of the product compounds must

be calculated, given the arrangements of elements and ions determined by reaction pattern.

This process is performed using rules speci�c to the type of compound being formed by the

reaction. The complete formulas are then substituted into the equation structure, to produce

a complete chemical equation. This structure can then be used as input by other modules,

such as the chemical equation balancer.

Balancing of chemical equations is usually performed by inspection. [3] This process

cannot easily be used in a program because it is unsystematic. Instead, Chemlogic uses an

e�cient algorithm, representing a chemical equation as a system of linear equations. One

linear equation is created for every element in a chemical equation, with the number of oc-

currences of the element in each formula representing a coe�cient, multiplied by an unknown

2015-04-30 � Nicholas Paun: Chemlogic � 2 of 5



(the chemical equation coe�cient). [5]

These systems are commonly solved by converting them to a matrix and applying Gaus-

sian elimination. [2] In Chemlogic, a matrix is produced from structures created by the

parser and lookup tables. The matrix is converted into a system of linear equations, which

is then provided to the built-in CLP(q) facility, which can solve constraints over rational

numbers. [1]

Stoichiometry is an important new feature of Chemlogic. The process of perform-

ing stoichiometric calculations begins by parsing a chemical equation that includes quantities

for some compounds. Whenever a quantity is parsed, the number of signi�cant �gures in the

value is determined and recorded in the quantity structure. A list of queries for quantities

to be determined is also parsed.

The Abstract Syntax Tree for the given chemical equation is then traversed to determine

the number of known quantities. If more than one quantity is known, the limiting reactant

must be determined and used to calculate the results. This is performed by converting each

known reactant quantity to moles (the standard unit for the amount of a chemical substance),

then dividing by the corresponding coe�cient of the reactant in the equation. The limiting

reactant always has the lowest value for this ratio. If only one quantity is known, it must,

logically, be used to perform all the calculations.

Once the correct quantity and compound to use as input for the calculation is determined,

the list of queries is traversed, and the input quantity is converted to each requested output

quantity. This calculation is performed according to the same method that is typically used

when performing stoichiometric calculations manually. Unit conversions are performed by

simple calculation rules, which take into account the maximum number of signi�cant �gures

that can be yielded by the calculation.

Syntax errors cannot simply cause a program to fail � clear identi�cation and explana-

2015-04-30 � Nicholas Paun: Chemlogic � 3 of 5



tion of an error is necessary. When a predicate that must succeed for a given input to be

valid fails, a syntax error exception is thrown, containing a code name for the error and the

remaining unparsed input (within the tail). The exception handler attempts to localize the

error by highlighting only the erroneous part of the tail, using rules speci�c to the type of

the �rst character.

The Android App was developed to make Chemlogic more readily available as a study

tool. The App consists of a user-interface, implemented in Java, using the Android APIs, and

a package consisting of the cross-compiled code of Chemlogic and its dependencies. The user

interface communicates with Chemlogic through a UNIX pipe. Upon receiving the solution

from Chemlogic, the interface renders the formatting of the result and displays it.

The Chemlogic package contains a copy of the Chemlogic command-line interface, com-

piled as a stand-alone application with an embedded Prolog interpreter in its binary, some

necessary Linux libraries and an initialization script. When loaded, the App executes the

initialization script, which starts Chemlogic by running the dynamic linker to locate and link

Chemlogic with the provided libraries.

Discussion

Prolog was chosen as the language for Chemlogic because its features make it well suited

to writing programs of this type in a simple and e�cient way. The built-in De�nite Clause

Grammars syntax allows a programmer to implement advanced parsers using a very simple

syntax, and strong support for metaprogramming allows syntax and code to be simpli�ed in

powerful ways. Using a logic programming language, such as Prolog, enables the program-

mer to describe the results, instead of the process. [7]

Performance was analyzed in Chemlogic by counting inferences (provided by time/1)

used by di�erent algorithms for various problem sizes. Algorithms were compared on their

2015-04-30 � Nicholas Paun: Chemlogic � 4 of 5



�xed inferences (intercept), inferences per item (slope) and to ensure that their complexities

were not exponential.

Further research and development � The parsers currently implemented in Chem-

logic process user input directly, as character lists, without a tokenization process. Using

new features available in version 7 of SWI-Prolog, a simple and fast procedure could be

implemented to separate user input into space-delimited parts, [8] signi�cantly reducing the

number of tests and operations required to perform parsing.

Developing a feature to automatically generate and mark random chemistry problems

for student review and test creation would be an important extension to Chemlogic. With

the addition of reaction type analysis, the preliminary development for this feature has

been completed. The reaction type, equation, formula and name grammars in Chemlogic

could be extended to produce random valid structures, in addition to simply recognizing and

converting them.

Conclusions

Each module of Chemlogic is designed to transform the standardized Abstract Syntax

Trees generated by the parsers, allowing for modules to be composed together, each adding

a piece of functionality as structures are passed from predicate to predicate. In this way,

existing modules can make use of new functionality, new features can be implemented based

on existing calculations and structures, and modules can be connected to as part of inte-

grated user interfaces.

Chemlogic was successfully extended to implement new features, based upon the

existing modular structure, and can now perform stoichiometric calculations, convert chemi-

cal quantities between units, and complete chemical reactions. The balancing and formula to

name conversion features were further developed and made available in a mobile application

for Android.
2015-04-30 � Nicholas Paun: Chemlogic � 5 of 5



Earlier Work

The original version of Chemlogic was an experimental program I developed in 2012, to

simplify my Science homework.

Based on these experiments, the project was extended in 2013 and 2014. The program

was rewritten in Prolog, new algorithms were studied and adapted and many new features

were implemented. The current modular design and structure of Chemlogic was implemented

in Version 1, which supported balancing chemical equations, converting chemical names to

formulas, and vice-versa. This version was presented at the 2014 CWSF in Windsor, where

it received a Bronze Excellence Award.

In 2014 and 2015, Chemlogic was further developed to signi�cantly expand the project,

by continuing to improve existing features, adding a new user interface and adding support

for higher levels of high school Chemistry. Version 2 of Chemlogic introduced the Android

user interface and support for stoichiometric calculations, chemical unit conversions and

reaction type analysis.

Acknowledgments

I would like to thank the many people who gave advice and helped with the project.

I am particularly grateful for the invaluable assistance provided by Dr. Peter Tchir,

now retired, my Physics, Chemistry and Computer Science teacher. His help and advice,

especially with algorithms, and his support for my Computer Science projects helped make

this program possible.

I would also like to thank Mr. Jason Peil for his assistance in designing the display, and

Mr. Greg Osadchuk for his input and assistance regarding the visual presentation.

Obtaining Chemlogic / Contact

Nicholas Paun <np@icebergsystems.ca>

2015-04-30 � Nicholas Paun: Chemlogic � i of ii

np@icebergsystems.ca


Chemlogic is open-source software. A copy of the program and additional information is

available at http://icebergsys.ca/chemlogic

References

[1] C. Holzbaur. OEFAI clp(q,r) Manual Rev. 1.3.2. 1995.

[2] Nayuki Minase. Chemical equation balancer (JavaScript), 2013. URL: http://nayuki.

eigenstate.org/page/chemical-equation-balancer-javascript.

[3] L. Sandner. BC Science 10. McGraw-Hill Ryerson, 2008. URL: http://books.google.

ca/books?id=vEjRtgAACAAJ.

[4] Markus Triska. DCG Primer. URL: http://www.logic.at/prolog/dcg.html.

[5] Mark E. Tuckerman. Methods of balancing chemical equations. 2011. URL: http:

//www.nyu.edu/classes/tuckerman/adv.chem/lectures/lecture_2/node3.html.

[6] Jan Wielemaker, Zhisheng Huang, and Lourens van der Meij. SWI-Prolog and the Web.

Theory and Practice of Logic Programming, 8(3):363�392, 2008.

[7] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog. The-

ory and Practice of Logic Programming, 12(1-2):67�96, 2012.

[8] Jan Wielemaker, et al. The string type and its double quoted syntax, 2014. URL:

http://www.swi-prolog.org/pldoc/man?section=strings.

2015-04-30 � Nicholas Paun: Chemlogic � ii of ii

http://icebergsys.ca/chemlogic
http://nayuki.eigenstate.org/page/chemical-equation-balancer-javascript
http://nayuki.eigenstate.org/page/chemical-equation-balancer-javascript
http://books.google.ca/books?id=vEjRtgAACAAJ
http://books.google.ca/books?id=vEjRtgAACAAJ
http://www.logic.at/prolog/dcg.html
http://www.nyu.edu/classes/tuckerman/adv.chem/lectures/lecture_2/node3.html
http://www.nyu.edu/classes/tuckerman/adv.chem/lectures/lecture_2/node3.html
http://www.swi-prolog.org/pldoc/man?section=strings

