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Dialogue Generation

Speaker 1 Speaker 2

Hey, are you free
tomorrow?

Context | am after dinner.

Do you want to
see a movig? How about that
one about Turing?

Generated | [Sure, | heard good
Reponse reviews.

@ We can measure the quality of a response using ADEM

o A Dialogue Evaluation Model (R. Lowe, M. Noseworthy, 1.V. Serban,
N. Angelard-Gontier, Y. Bengio, and J. Pineau)
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Dialogue Generation

@ Goal: Train a model to maximize the ADEM score
@ We will use the policy-gradient framework from RL

e State (s;): What has been generated up to this point \A/l,myt,l given a
context ¢

Action (a;): Emit a token ! W; in the generated response 4 given a
context ¢
Policy (7): The HRED 2 model (softmax over the vocab)
Return (R): The ADEM score for a generated response

o Rewards are 0 except for the final step.

o Reward part of sentences with ADEM might gives us a very bad signal
Work inspired by “An Actor-Critic Algorithm for Sequence Prediction”
(D. Bahdanau et al., 2017)

@ Data-set used: On-line Tweets (7700,000 conversations)

'We use BPE (sub-word level) tokens to reduce the size of the action space from
“20k to "5k

2].V. Serban et al. (2016)
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Actor Network
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a€ Vocab

Critic Network
TD Targets: g; = R(\A/l ) R+ > P(a|{\/1,4..,t) % ©(3|\A/1,...,t)
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Challenges

Large Action Space

o Critic target g: uses (R: — R) to reduce variance in the reward

0 Jeritic = Zz—zlsquared error loss+AC; to penalize variance in the critic
values Q(a| Y1, . ¢t-1)

@ Pretrain the actor with ML objective:
T 5
Jactor = thl |0g P(Yt| Yl,...,tfl)
@ Pretrain the critic with samples from the pretrained actor

Sparse Reward Signal

Things to try:

@ Use ADEM to score sub-parts of generated response? May be really
bad, takes more time.

@ Monte Carlo roll-outs from each time steps to have a full sentence
before sending it to ADEM? Very time consuming!
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