
Sentiment Analysis on Movie Reviews

Nicolas Angelard-Gontier
260532513

McGill University
nicolas.angelard-gontier@mail.mcgill.ca

Abstract

In this paper we explore and compare the ac-
curacy of two different types of algorithms
on two movie review sentiment classification
tasks. The first algorithm that we try is a Ran-
dom Forest classifier with bag-of-word fea-
tures and word-to-vec features. The second is
a Long Short-Term Memory (LSTM) Recur-
rent Neural Netowrk (RNN). We first classify
IMDB movie reviews in a binary format: pos-
itive (1) or negative (0) and observe a final ac-
curacy of 87%. The second task consists of
classifying Rotten-Tomatoes reviews into five
sentiment classes: positive (4), somewhat pos-
itive (3), neutral (2), somewhat negative (1),
negative (0). For this much harder task we
will observe a final accuracy score of 61%.
We conclude by observing that the LSTM
network only slightly improves the Random
Forest classifier accuracy, and that combining
both IMDB and Rotten-Tomatoes data sets is
usually better.

1 Introduction

People express their emotions with language that is
often obscured by sarcasm, ambiguity, and some-
times inside jokes. The sentiment analysis challenge
consists of capturing the author’s emotion in a text
by classifying its sentences into positive or negative
statements. More recently the challenge has been to
also classify neutral sentiments. Natural language
being so subtle, it makes sentiment analysis a chal-
lenging task in machine learning and can also be
very misleading for humans.

In this project, we dig into sentiment analysis of
movie reviews. The work of this project is inspired

by two Kaggle competitions (Kaggle, 2014a; Kag-
gle, 2014b) closed in 2015. The idea is to collect
data from both competitions to have a big training
corpus, and experiment with a Random Forest and
an LSTM Recursive Neural Network (RNN) algo-
rithm to classify each competition’s test data set.
Our first hypothesis is that extending each training
set with the other should yield better results (ie:
more data is better). Furthermore we would like
to test how well does the LSTM network performs
compared to a simpler classification algorithm: Ran-
dom Forest. To do so we will make prediction sub-
missions to both of the Kaggle competitions and see
how well our algorithms perform on each test set.
Note that even if a Kaggle competition is closed we
can still submit prediction files. Our score will not
be added to the leader board but we are able to get
accuracy feedback.

2 Method

In this section we describe the data set we use, and
the models that we implement.

2.1 Data set

In this project we used two publicly availabe movie
reviews data sets. One is made of IMDB reviews1

and the other is made of Rotten-Tomatoes reviews2.
In the rest of this paper we will refer to these two
data sets as the ‘IMDB’ data and the ‘Rot-Tom’ data
respectively.

The IMDB data is composed of 25, 000 binary

1https://www.kaggle.com/c/word2vec-nlp-tutorial/data
2https://www.kaggle.com/c/sentiment-analysis-on-movie-

reviews/data

mailto:nicolas.angelard-gontier@mail.mcgill.ca


labeled training reviews, 50, 000 unlabeled training
reviews, and 25, 000 unlabeled test reviews. The
goal of the competition is to use the 75, 000 training
reviews to make some predictions on the 25, 000 test
reviews. Each review in this data set is a full length
string written by a human. A label in this case is a
binary flag indicating if the review is positive (1) or
negative (0). Note that we have the same amount of
positive and negative reviews in the labeled training
set (ie: 12, 500 for each label).

The Rot-Tom data is composed of 8, 544 reviews
divided into 156, 060 labeled training samples and
3, 310 reviews divided into 66, 291 unlabeled test
samples. The goal of the competition is to use
the training samples to make some predictions on
the test set. Socher et al. (2013) used Amazon’s
Mechanical Turks to create fine-grained labels for
all parsed phrases in the corpus. A label is an integer
between 0 and 4 indicating if the review is positive
(4), somewhat positive (3), neutral (2), somewhat
negative (1) or negative (0). In this data set, each
review has been truncated into smaller parts. Thus,
each sample is either a full sentence or a few words
that was in a sentence. For example we can find “A
series of escapades demonstrating the

adage that what is good for the goose

is also good for the gander , some of

which occasionally amuses but none of

which amounts to much of a story.” with
a score of 1 as well as “good for the goose”
with a score of 3. Note that this data suffers from
the class imbalance problem since we have 7, 072
negative, 27, 272 somewhat negative, 79, 556 neu-
tral, 32, 927 somewhat positive and 9, 206 positive
samples.

The first thing we did in this project is to ex-
pand each data set with the other. We did so by
taking positive (4) and somewhat positive (3) sen-
tences (and not part of sentences) from the Rot-Tom
data and included those into the IMDB data as pos-
itive reviews. Similarly, we took negative (0) and
somewhat negative (1) sentences from the Rot-Tom
data and included those into the IMDB data as nega-
tive reviews. This resulted into 15, 771 negative and
16, 102 positive IMDB reviews.
When extending the Rot-Tom data we took all pos-
itive IMDB reviews and marked them as positive
(4) Rot-Tom samples. Similarly we included all

negative IMDB reviews as negative (0) Rot-Tom
samples. This resulted in 19, 572 negative, 27, 272
somewhat negative, 79, 556 neutral, 32, 927 some-
what positive, and 21, 706 positive samples. Note
that we didn’t add any IMDB review to the some-
what positive or somewhat negative classes as they
already had a lot of samples. Thus we tried to mini-
mize the class imbalance problem.

Eventually, we preprocessed each review from
both data sets by removing punctuation, putting ev-
ery word to lower case, removing hyperlinks or any-
thing that wasn’t word or numbers. We sometimes
removed stop words from the reviews as well.

2.2 Models
In this section we present the two classification al-
gorithms we implemented to solve the two proposed
Movie Review Sentiment Analysis tasks.

2.2.1 Random Forest
We first explored the Random Forest algorithm on

the two classification tasks. The first step was to
represent each review as a set of features. We con-
sidered two different sets of features: bag-of-words
(BoW) features and word-to-vec (W2V) features.

In the BoW case, we first learn a vocabulary of
words from all train reviews. We then model each
review as a vector of word counts for each vocabu-
lary word. Note that in order to limit the vocabulary
size we removed stop words, and took the 10, 000
most frequent words from the corpus.

In the W2V case, we used the python library ‘gen-
sim’ 3 to learn word embeddings for our corpus.
A word embedding is a parametrized function that
maps words to high dimensional vector space. To
learn such a function we used the skip-gram model
described by Mikolov et al.(2013) with 10 surround-
ing words. In our case we learned word embeddings
of dimension 500. We used both labeled and un-
labeled (only available for IMDB data) training re-
views without removing stop words to learn the em-
beddings. Once we have a vector representation for
each word in our vocabulary, we created a feature
vector for each review by averaging all word em-
beddings present in that review. Note that at test
time, if a word doesn’t have any embedding (ie: it
wasn’t seen during training time) we simply ignore

3https://pypi.python.org/pypi/gensim



Figure 1: Random Forest Simplified from (Be Expert in Min-

utes, 2016)

this word when computing the average word embed-
ding for that review.

Eventually, once we defined the features we will
use, we started to look at the Random Forest algo-
rithm using the python library ‘scikit-learn’ 4. This
is an ensemble method consisting of a large collec-
tion of decision trees (500 in our case). Each de-
cision tree is trained on multiple random subsets of
training reviews. As shown in Figure 1, once each
tree has been trained, the Random Forest algorithm
classify an input review according to each of its trees
by outputting the majority class for which that re-
view has been classified.

2.2.2 LSTM RNN

Figure 2: LSTM unit details from (Olah, 2015)

The second algorithm we implemented is an
LSTM recurrent neural network using the python

4http://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html

library ‘theano’ 5. The advantage of using LSTM
hidden units (as described in Figure 2) instead of
regular tanh units is to better capture long-term de-
pendencies in each review. The idea is to use pre-
vious events (words in our case) in order to inform
later ones, allowing information to persist over time.
Here each review represent a time series of event
where each event is “observing a word”. In our
model an LSTM unit at time t is made of a forget
gate ft, an input gate it, a cell state Ct, and an out-
put gate ot, each defined like so:

ft = σ(Wf · xt + Uf · ht−1 + bf )

it = σ(Wi · xt + Ui · ht−1 + bi)

Ct = tanh(WC · xt + UC · ht−1 + bC)

ot = σ(Wo · xt + Uo · ht−1 + bo)

where Wf,i,C,o and Uf,i,C,o are weight matrices and
bf,i,C,o are bias vectors, xt is the observed word at
time step t, and ht−1 is the representation of the re-
view from the previous LSTM unit. The forget gate
first decides what to forget in the cell state by out-
putting a 0 or a 1 for each value in the cell state
Ct−1, the input gate then decides what to update in
Ct−1 while the cell state at time t will output a set of
values to write. Eventually, the output gate decides
what information to output from our new cell state.
The actual output of the LSTM unit at time t is:

ht = ot × tanh(Ct)

Our model is composed of a single LSTM layer
(of 300 units), followed by an average layer and a
logistic regression layer as illustrated in Figure 3.
From an input review with words x1, x2, ..., xn each
memory cell in the LSTM layer will produce a rep-
resentation h1, h2, ..., hn. These representations are
then averaged to get the final review representation
h, which will be fed to a logistic regression classi-
fier whose target is the class label associated with
that input review. The loss function that we try to
minimize is the average negative log probability of
the target class defined like so:

cost = − 1

n

n∑
i=1

log(ptargetclass + ε)

5http://deeplearning.net/software/theano/



Figure 3: LSTM Network model

with ε being a small constant to avoid having infi-
nite cost. We use ADAM as our optimizer since it
is an improved version of Stochastic Gradient De-
scent (Kingma and Ba, 2014). The training of the
model was done on 90% of the training data, keep-
ing 10% for the validation set. Training and vali-
dation scores were measured after each epoch and
the best parameters were saved. If no improvement
was done on the validation score for five consecu-
tive epochs we stopped training and produced test
set predictions with our best model parameters.

3 Results

When submitting our predictions to each competi-
tion we first noticed that the Rot-Tom data set was
much harder to predict than the IMDB one. Indeed,
having multiple sentiment classes increases the dif-
ficulty of the task. More over the Rot-Tom data is
composed of small parts of reviews of only a few
words which are very difficult to classify by them-
selves. In fact, complex time-series related models
like Recurrent Neural Networks (RNNs) are useless
for these kind of short reviews since the main idea
of RNNs is to capture dependencies on long time-
series. As we can see from Table 1 extending (e) one
data set with the other is usually better except when
using the LSTM network classifier where the orig-
inal data set by itself (o) produces better accuracy
scores. This suggests that the LSTM model is more
sensitive to training data, which may be explained
by the big amount of parameters to tune (tens of mil-
lions in our case). On the other hand we can see that

IMDB score Rot-Tom score
RF+BoW(o) 0.85904 0.58497
RF+BoW(e) 0.86088 0.59054
RF+W2V(o) 0.83492 0.570901
RF+W2V(e) 0.83704 0.59509

LSTM(o) 0.87379 0.61193
LSTM(e) 0.87376 0.59117

Table 1: Test accuracy for Random Forest, and LSTM network

the LSTM model outperforms the Random Forest
classifier, even if that baseline algorithm produced
quite strong accuracies. This is probably due to the
fact that both BoW and W2V features loose the word
order of a review in contrary to the LSTM model
which is based on that order. Eventually we can say
that in general BoW features seems to be better than
W2V features. This is mostly due to the fact that av-
eraging word vectors to represent a review loses the
word order, making it very similar to BoW features.
In addition, W2V features were originally trained on
a much bigger data set than this one (Mikolov et al.,
2013)

4 Discussion & Conclusion

We conclude by mitigating our initial hypothesis
since combining both IMDB and Rot-Tom data
is not always the best solution, especially for the
LSTM network. Further more, we can accept the
hypothesis that the LSTM network model performs
better than the Random Forest baseline, even if the
difference is small. One extension for the Random
Forest algorithm would be to use word2doc features
instead of averaging word2vec embeddings to try
keeping the words order. We were surprised to see
how small the difference was between the Random
Forest classifier and the LSTM network accuracies.
One extension to make our LSTM classifier more ro-
bust would be to use a more complex classifier than
a logistic regression at the top layer. One can also
think about stacking multiple LSTM layers or hav-
ing a recursive tree-structured network rather than
a recurrent network. This seems of particular inter-
est in the case of the Rotten Tomatoes data where
we sometimes have very short snippets of movie re-
views to classify.



Acknowledgments

Thank you to Professor Jackie Chi Kit Cheung for
the great class.

References
[Be Expert in Minutes2016] Youtube Be Expert in Min-

utes. 2016. Random forest based classification. [On-
line; accessed 10-November-2016].

[Kaggle2014a] Kaggle. 2014a. Bag of words meets bags
of popcorn. [Online; accessed 10-November-2016].

[Kaggle2014b] Kaggle. 2014b. Sentiment analysis on
movie reviews. [Online; accessed 10-November-
2016].

[Kingma and Ba2014] Diederik Kingma and Jimmy Ba.
2014. Adam: A method for stochastic optimization.

[Mikolov et al.2013] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Efficient estimation
of word representations in vector space.

[Olah2015] Christopher Olah. 2015. Understanding lstm
networks. [Online; accessed 10-November-2016].

[Socher et al.2013] Richard Socher, Alex Perelygin,
Jean Y. Wu, Jason Chuang, Christopher D. Manning,
Andrew Y. Ng, and Christopher Potts. 2013. Recur-
sive deep models for semantic compositionality over a
sentiment treebank. EMNLP 2013.


	Introduction
	Method
	Data set
	Models
	Random Forest
	LSTM RNN


	Results
	Discussion & Conclusion

