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Abstract - In this project, we implemented machine learning 
models to provide an assessment of the Unified Parkinson’s 
Disease Rating Scale (UPDRS) from clinical tests on patients 
affected by the Parkinson disease.  The Unified Parkinson's 
Disease Rating Scale (UPDRS) is often used to track Parkinson 
disease symptoms progression in patients. To provide an 
estimation for the UPDRS based on machine learning models, 
we implemented linear and polynomial regression, Support 
Vector Regression (SVR) and deep neural networks models. In 
particular, we used the Parkinson’s Telemonitoring dataset [2], 
and applied data preprocessing and feature selection algorithms. 
Subsequently, we applied linear and polynomial regression as a 
baseline algorithm, followed by SVR and deep neural networks 
models to obtain better predictions for the motor UPDRS test 
variable (T1), and total UPDRS score test variable (T2). Using 
the Neural Network model, applying Ridge regularization, and 
6-best feature selection from polynomial features of degree 2 
added to 16 original features of dataset, we obtained a Mean-
Squared-Error (MSE) of 0.004 UPDRS units for the motor 
UPDRS variable and 0.187 UPDRS units for the total UPDRS 
score.  
Github: https://github.com/NicolasAG/MachineLearning-
project4  
 
Index Terms - Machine Learning, unified Parkinson’s disease 
rating scale (UPDRS). Mean-Squared-Error (MSE), Linear 
Regression, Polynomial Regression, Support Vector Regression 
(SVR), Neural Networks. 
 
 

1. Introduction 
 

Clinical tests are essential for the treatment of patients 
susceptible of developing the Parkinson’s disease or affected 
by the Parkinson’s disease. Currently, multiple clinical tests 
exist for patients with the Parkinson’s disease. Nevertheless, 
as addressed in [1], clinical examinations require multiple 
clinical visits for the patients and these examination are time 
consuming for the medical staff. Therefore, a remote and 
autonomous clinical test represents a good alternative for 
improving clinical tests time efficiency and to provide 
Parkinson’s disease clinical tests at a larger scale. Some 
research has addressed this issue in a less explicit way. 
Indeed, using voice recordings from healthy patients and 
patients affected with the Parkinson’s disease, machine 
learning classifiers were applied in [3] to classify patients 
with Dysphonia, a symptom of the Parkinson's disease. In 

addition, it was shown in [4] that a bootstrapped classifier 
could be applied for detecting voice disorder on voice 
recordings from healthy patients and patients affected by the 
Parkinson’s disease.  
In this paper, we apply linear and polynomial regression, 
support vector regression, and deep neural networks models 
to the Parkinson’s Telemonitoring dataset [2]. The dataset has 
22 attributes and consists of 5875 voice recordings from 42 
individuals with early-stage Parkinson’s disease [2]. In more 
detail, as described in [2], the features of this dataset consist 
on the subject age (Integer value); subject gender: '0’ for  
male and ‘1' for female; test time: Time since recruitment 
into the trial; motor_UPDRS: Clinician's motor UPDRS 
score; total_UPDRS: Clinician's total UPDRS score; 
Jitter(%), Jitter(Abs), Jitter: RAP, Jitter: PPQ5, Jitter: DDP: 
measures of variation in fundamental frequency; Shimmer, 
Shimmer(dB), Shimmer: APQ3, Shimmer: APQ5, 
Shimmer:APQ11, Shimmer: DDA: measures of variation in 
amplitude; NHR and HNR: measures of ratio of noise to 
tonal components in the voice; RPDE: a nonlinear dynamical 
complexity measure; DFA: signal fractal scaling exponent; 
PPE: a nonlinear measure of fundamental frequency 
variation. In this project, we predicted the total_UPDRS 
score value and the motor UPDRS score using linear and 
polynomial regression, SVR and deep neural networks 
models. Note that, the UPDRS serves to map Parkinson’s 
disease symptoms severity in patients [1]. In theory, the total 
UPDRS score range is 0-176 and the motor UPDRS score 
range is 0-108 [1], however in our data set, we found the 
following statistical measures:  
 

Table 1: Dataset statistics 
 

Data set MOTOR 
UPDRS 

TOTAL 
UPDRS 

Min 5.0377 7 

Max 39.511 54.992 

Range 34.4733 47.992 

Mean  20.871 27.576 

Std. 8.12858964 10.6993726 

Variance 66.0739696 114.476573 
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2. Methodology 
 
2.1 Pre-processing, Feature design and Selection. 
 
The only pre-processing that was applied was the 
standardization of the data in the case of the neural networks 
algorithm. Indeed, for each feature in the dataset, we 
removed the mean and scaled to unit variance as following: 

!!"!"#!=  
!!"!"#!–!!!!

!!
                             (2.0)                                                               

Where,!!! and δ! are the average and standard deviation 
value respectively for feature j. Centering and scaling 
processing on each feature is done by Scikit-learn [12]. 

 
In terms of feature design and feature selection, we created 
new features using polynomial feature creation from the 
sklearn library [8], and selected a few features using two 
methods: univariate feature selection, and Recursive Feature 
Elimination (RFE). 
 

a) Feature Construction: 
The polynomial feature creation allow us not only to see the 
effect of individual features, but also to see the effect of 
combinations of different original features on the target. For 
our baseline algorithm we constructed polynomials of degree 
2, 3 and 4. In particular we build 210 features from the 
original 19 features for polynomial regression of degree 2, 
1540 features for polynomial regression of degree 3, and 
8855 features for polynomial regression of degree 4. These 
features were built by using combinations of the original 
features in the dataset. In addition, for the SVR algorithms 
we only build features of polynomial 2 and 3 as the MSE 
improvement was not worth the running time increase. 
Eventually, in Neural Networks (NN), the first 4 columns of 
the original data set, namely: “subject”, “age”, “sex”, and 
“test_time” were not considered in the process as the 
remaining 16 features resulted in better prediction. After 
extending the train set to polynomial features of degree 2, 3, 
4, 5 and 6; K best features were selected. 
 

b) Feature Selection: 
In terms of feature selection, the first method consisted on 
selecting the ! highest scoring features, using univariate 
linear regression tests taken from the machine learning 
library sklearn [5]. These univariate linear regression tests 
consisted on computing F-scores from correlation of the input 
features with respect to the predicted variables [6]: motor 
UPDRS score and total UPDRS score. In addition, recursive 
feature elimination (RFE) was tested with k values from 2 up 
to 19. This algorithm performs a greedy search in the feature 
space: starting with all features, it removes one feature at a 

time until it reaches k features. At each step, the algorithm 
removes the feature that increased most the MSE. A 
comparison of these two methods has been made for both 
motor UPDRS (T1) and total UPDRS (T2) as we can see in 
Figure 1 below. 

 
Figure 1: Linear regression with different feature selection 
algorithms 

 
We noticed that for any k value, the univariate k-best method 
produces a lower MSE so we continued our project with this 
selected method. 
 
2.2 Algorithms 
 
2.2.1 Linear and Polynomial regression 
In this project, we implemented linear and polynomial 
regression as baseline algorithms. The linear regression 
algorithm implemented is represented by the following 
equation: !! = !!" where!! corresponds to the weight 
vector, X corresponds to the feature matrix, and Y 
corresponds to the target vector. For polynomial regression of 
degrees 2, 3 and 4 we used a different X matrix with the same 
amount of examples, but with more features. In particular, X 
corresponds to the combination of the 19 original features, 
and is of the following form: 
[1, !!, . . . , !!", !!!, !!!!, . . . , !!!!", !!!, !!!!, . . . , !!!!", . . . , !!"!] 
In addition, in order to avoid overfitting, we had to use some 
kind of regularization for the polynomial features. We 
recorded the resulting MSE for no regularization at all, Lasso 
regularization, and Ridge regularization. The different cost 
functions are the following [10]: 
 
No regularization: 

  !"!!!||!! − !||!²                               (2.1) 
Lasso regularization: 

!"!!! !
!!!"#$%&!

||!! − !||!² + !||!||!               (2.2) 

Ridge regularization: 
!"!!!||!! − !||!²! + !!||!||!²                  (2.3) 
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The results of these different cases are presented in the 
section 3.1.1. 
In order to choose the hyper-parameter ! that measures how 
much weight to put on the weight size rather than the actual 
squared error loss, we used 5-fold cross-validation. This 
consisted on partitioning 80% of the dataset randomly into 5 
subsets followed by cross validation iterations. At each 
iteration, we performed validation on one retained subset 
while training on the remaining 4 subsets. 
   
2.2.2 Support Vector Regression (SVR) 
Moreover, since the variables motor UPDRS (T1) and total 
UPDRS (T2) are continuous, we used a regression version of 
SVM, implemented in the sklearn machine learning library, 
called SVR. Like in regular SVM, the SVR algorithm tries to 
minimize the weight vector ||!||. Furthermore, this method 
tries to learn a function !(!) that is at most ! units away 
from the actual output !. Thus, we don’t care for points that 
do not exactly lie on the learned function, as long as they are 
at a distance less than or equal to ! [9]. This allow us to be 
slightly more tolerant in our predictions. Eventually, for 
points that are further than ! we introduce new variables (!! 
and !!∗) that measure the distance from ! that the point is [9]. 
Thus, these kind of points are ! + !! away from the actual 
output !! and we try to get as few as possible of them. The 
amount of these ‘incorrect’ points is controlled by a constant 
!. This is like performing a regularization task as previously 
described in polynomial regression. As a whole, the SVR 
algorithm for linear regression consists on solving the 
following optimization problem [9]:  
 

!"#! !! ||!||
! + ! (!! + !!∗)!

!!!                (2.4) 
 

Subject to: < !, !! > +! − !! ≤ ! + !!∗ 
−< !, !! > −! + !! ≤ ! + !! 

!!!!∗ ≥ 0 
 

Where ! is the weight vector, ! determines the flatness of 
the prediction curve, !! is the distance that point i is from the 
tolerated margin of error:!!, and < !, !! > +! is the 
prediction made for point !! based on ! and !. 
Eventually, like in regular SVM, to allow for non-linear 
learning functions we put this optimization problem in its 
dual form by using the Lagrangian multipliers, and perform 
the “Kernel trick”, that maps points to another dimension. 
The kernel used in this study is the Radial Basis Function 
(RBF): !(!! !!!, !) from the sklearn library [7]. Therefore, 
two parameters were estimated to apply SVR: ! and !. As 
mentioned above, the SVM parameter C represents the trade 
off between, bias and variance: a high C means that we try to 
learn correctly most of the training points (so lot of support 
vectors, high variance and low bias) while a low C aims at 
building a smoother learning function (few support vectors, 

low variance and high bias) [7]. In addition, the kernel 
parameter gamma represents the influence of a single training 
point on others: a large ! means that the influence is small, so 
the distance |! − !′| has to be small for !′ to be affected by 
!, while a small ! means that the influence on a single 
training point is large [7]. The estimation of these two 
parameters are discussed in section 3.1.2. 
 
2.2.3 Deep Neural Network 
We also implemented deep neural networks (DNN) trained 
by backpropagation with mean square error cost function. It 
is expected from DNN to have better performance than 
baseline algorithms since it allows to learn complex/nonlinear 
function of input data.  
 For the task of regression, each node in the output layer is 
considered as a neuron with a linear activation function to 
predict continuous values of motor UPDRS (T1) and total 
UPDRS (T2). The activation function of hidden layers 
considered to be linear and nonlinear function which will be 
discussed in more details in section 3.1.3. Among several 
transfer functions, sigmoid function; (!), and linear function 
turned out to be more effective in our prediction problem. 
The equation of these activation functions are as following: 
 

Sigmoid function: ! ! = ! !
!!!"#(!!)              (2.5) 

Linear function: ! !" + ! = !" + !      (2.6)
       

In our feedforward neural network structure each weight is 
learnt by stochastic gradient descent on the error. Mean 
Square Error (MSE) of the network output is calculated as: 
 

 ! = !
! ! !! − !! !

!∈! = ! "!! Ok -Ot
!!!!! (2.7) 

     
Lasso regularization: 

 !"!!! !! !! − !! |!! + ! ! |!!!!!!!!!!!!!!!!!!!!!!(2.8) 
Ridge regularization:  

!"!! !!! !||!! − !!||!²! + !!||!||!²             (2.9) 
       
Where, K is the number of nodes at the output layer. Ok is 
the prediction value at node k from output layer and Ot is the 
actual UPDRS target value corresponding to the same node in 
the output layer.  
After predicting the target values the error will be calculated 
and propagates back through the network to adjust the 
weights in the direction that reduces it. 
      

!!!"
(!) = −"! !!!!!"

                                 (2.10) 

!!"
(!)(! + 1) = !!"

(!)(!) + "!!!"
(!)(!)            (2.11) 

 



Page 4 
 

This procedure known as Backpropagation (BP) is most 
widely used algorithm for supervised learning of neural 
networks [11]. Its idea is based on repeated application of the 
chain rule to compute the influence of each weight in the 
network with respect to an error function. 
 

3. Testing and Validation 
In order to perform the testing and validation of the 
algorithms, we partitioned the dataset into two sets: a training 
and validation set containing 80% of the examples of the 
dataset, and a test set containing 20% of the examples of the 
dataset. For each algorithm, we used the training and 
validation set to estimate the parameters and perform feature 
selection. 
 
3.1 Parameter Estimation and feature reduction 
This section shows the parameter estimation for the 
algorithms implemented. 
 
3.1.1 Linear and Polynomial regression 
To pick the best ! regularization hyper parameter and the 
optimal number of features of the linear and polynomial 
regression algorithms, we performed 5-fold cross validation 
on 80% of the dataset (randomly selected). We tested the 
following ! rates for polynomial regression with both ridge 
and lasso regularization: 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 
1e-4, 1e-3, 1e-2,  1e-1, 1.0, 1e+1. After picking the best ! 
rate for each cases we measured the MSE (without any 
feature selection yet) as described in Table 2 below: 
 
Table 2: MSE values for different polynomial regression and 
regularization 

 
 
The polynomial of degree 4 was only tested on the ridge 
regularization because without any regularization we 
suspected the MSE to be ridiculously high (because of 
overfitting, like in the degree 3 case) and with the lasso 
regularization, the running time to pick the best ! rate was 
too long. Moreover, we can see that even with regularization, 

degree 4 features start to overfit because of the huge number 
of features created. Overall we noticed that Ridge 
regularization was giving us slightly better results so we 
decided to continue our work with this technique. 

 
In terms of feature selection, we tested ! best features with k 
from 2 up to 19, among 19 attributes from the original 
dataset. In the case of polynomial regression, we did the same 
thing and constructed our polynomial features based on the 
top k original features. It is true that this method may have 
missed a few ‘ideal’ feature combinations, but we decided to 
do that for our baseline algorithm in order to better compare 
the MSE for our predictions on the motor UPDRS (T1) and 
the total UPDRS (T2) in one graph as we can see in Figure 2. 
 
Figure 2: MSE of linear and polynomial regression using k 
best feature selection and Ridge regularization

 
The above plot shows that we reach the best MSE with 
polynomial features of degree 4, with 8-best features, giving 
MSE (motor UPDRS) ~ 35 and MSE (total UPDRS) ~ 60. 
 
3.1.2 SVR 
For the parameter estimation of SVR with the Radial Basis 
Function (RBF) kernel, we performed 5-fold cross validation 
on 80% of the dataset (randomly selected) and we tested the 
following values for the C parameter: 0.01; 0.1; 1; 10; 100; 
1,000; 10,000; 100,000; and 1,000,000. For the ! parameter, 
we tested the following values: 0.01, 0.1, 1, 10 and 100. 
 
Table 3: Estimation of the C and !parameters of SVR (with 
linear features) using the MSE from the motor UPDRS (T1) 
and total UPDRS (T2) 
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We first tried the algorithm on the original 19 features, by 
performing multiple trials with combinations of the 
parameters mentioned above. Such results can be found in the 
Table 3. We found that the best value for the C parameter 
was 1000, and 0.1 for the parameter. After fixing those 
parameters for our linear feature case, we performed the k-
best feature algorithm with different k from 2 to 19, and 
decided which k will give the lowest MSE based on 5 fold 
cross validation as we can see in Figure 3. 
 
Figure 3: k-best features from linear features with SVR (RBF 
kernel, C=1000, != 0.1) 

 
By doing so, we found that the lowest MSE was performed 
with the best 8 features, giving an overall MSE of 12.326 for 
motor UPDRS and 15.975 for total UPDRS. 
 
Furthermore, we performed the same parameter selection 
technique for polynomial features of degree 2 and 3. The 
MSE results for degree 2 features can be found in Table 4 
below. 
 
Table 4: Estimation of the C and !parameters of SVR with 
polynomial features of degree 2 
MSE(T1),)
MSE(T2)) C=100) C=1,000) C=10,000) C=100,000)

ɤ=0.000001) 32.349,  
57.850 

21.450, 
39.209 >1h too long 

ɤ=0.00001) 10.023, 
16.084 

8.560, 
13.259 

9.708, 
15.322 

9.296 
14.278 

ɤ=0.0001)   24.914, 
41.533 

24.772, 
41.214 

24.986, 
42.065 

ɤ=0.001)   48.827, 
85.073 

48.897, 
85.003 

47.871, 
83.424 

ɤ=0.01)     62.908,  
110.732 

63.068, 
110.657 

 
From this table we can see that in this case the best values for 
C and ! are 1000 and 1e-5 respectively. However, we noticed 
that the best MSE (without any feature selection) for 
polynomial features of degree 3 was not better than for 
polynomial features of degree 2. This is shown in Table 9 of 
the appendix. In addition, the running time was greatly 
increased with degree 3 features, so we decided not to 
perform feature selection for this case. On the other hand, for 
polynomial features of degree 2, we greatly reduced our MSE 

by performing 5-fold cross validation with k-best feature 
selection: k from 2 to 210 as we can see in Figure 4. 
From this figure, we can see that the best MSE is found with 
81 < k < 116, this is why we zoomed on this region to better 
see that the best MSE is obtained by choosing the best 115 
features from the 210 polynomial features. The resulting 
mean squared errors are 1.329 for motor UPDRS and 2.156 
for total UPDRS. 
 
Figure 4: k-best features from polynomial features of degree 

2 with SVR (RBF kernel, C=1000, != 1e-5) 

 

 
 
3.1.3 Neural Networks 
When using neural networks, we excluded 3 attributes from 
the dataset: the age, the sex of the individuals and the 
duration of the clinical tests (test_time). Moreover, we 
selected the best features of data set for the neural networks 
algorithm based on k highest score of univariate linear 
regression test. 
To identify the best hyperparameters for feed forward neural 
network, 5-fold cross validation is applied to the training set 
which enabled us to save time and achieve very low MSE 
values. The MSE results of validation set of Shallow Neural 
Network (SNN) and DNN using Ridge or Lasso 
regularization were compared in Table 8 presented in 
Appendix. It is shown that DNN performs much better due to 
its advantage of learning nonlinear functions. The sigmoid 
transfer function and linear transfer function are referred to 
‘Sig’ and ‘Lin’, respectively. Target 1, and 2 were predicted 
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at the same time with same NN architecture, hence the output 
layer consists of 2 nodes. 
It is observed that the number of hidden units is an important 
hyper-parameter to consider since high number units in 
hidden layers can cause overfitting. In contrast, just few 
neurons in the hidden layer does not allow the network to 
train well and capture nonlinear/complex functions of inputs 
and the system will be less robust to noise.  
In the case of NN, we primarily started the preprocessing by 
keeping k best features first and creating the polynomial 
features of degree d on the selected features as shown in 
Table 5 of Appendix. However, we noticed that by changing 
the order we could improve the performance as shown in 
Table 6, 8 and figure 5. Hence, we generated a new feature 
matrix consisting of all polynomial combinations of the 
features with degree d [8], and chose the K best features as a 
train set. For most cases, it is shown the MSE values with L2 
(Ridge) regularization is slightly better than L1 (Lasso). 
In Figure 5, the best NN structure from Table 5 was 
considered. Several possible subsets of polynomial features 
were created, and the performance of the best k features was 
measured on the validation set.  
 
Figure 5:  Effect of feature selection and polynomial features 

on MSE  

 
Finally, the best ten MSE results of validation set of DNN 
using 5-fold cross validation is shown in Table 6.  This table 
shows different choice of hyper parameters such as hidden 
layer/hidden nodes, learning rate and ridge regularization 
constant. These results were obtained when 6 best features 
were selected after polynomial features of degree 2 were 
extended to raw data. It implies that the best DNN 
architecture for our regression problem is a network with 2 
hidden layers of 400 sigmoid units followed by 5 linear units. 
The optimization technique in implementing neural network 
is based on stochastic gradient descent, which with 
appropriate choice of hyper parameters the running time can 
be reduced. Mini-batch size and number of training iteration 
play key role as hyperparameter in training time. To achieve 
the above results, we used 30 mini batch and 10 iteration. 
Larger mini batch size yield in faster computation but 
consumes more examples to reach to the same error than with 

smaller mini batch size. Optimum number of training can be 
obtained by observing the training and validation behaviour 
and set the number of iteration to the point that validation 
error starts to increase. 
 
Table 6: preliminary MSE results on validation set for 
Target1 and Target 2 predictions 

    
 

3.2 Experimental results 
In this section, we show the prediction results in the test set 
for linear and polynomial regression, SVR and neural 
networks. These results were obtained by training our 
algorithms on 80% of the data (what we used for parameter 
selection in previous sections), and predicting on 20% of the 
data (the test set). The following Table 7 summarizes these 
results for each of the algorithms that were implemented. 

Table 7:  Test set results 

Algorithms)

MSE)motor)

UPDRS)

variable)

MSE)total))

UPDRS)

variable)

Linear)Regression,)19Ebest)features) 54.954 93.257 

Polynomial)regression)of)degree)2,)

ridge)α=1eE3,)19Ebest)features)
47.052 82.856 

Polynomial)regression,)degree)3,)

ridge)α=1eE1,)17Ebest)features)
34.604 64.52 

Polynomial)regression,)degree)4,)

ridge)α=1eE1,)8Ebest)features)
33.314 60.624 

SVR,)C)=)1000,)ɤ=1eE1,)Linear)

features,)8Ebest)features)
11.266 13.475 

SVR,)C=1000,)ɤ=1eE5,)polynomial)

features)of)degree)2,)115Ebest)

features)

0.829 1.563 

NN,)learning)rate=0.0009,)L2) 0.004 0.187 
 
We can conclude this project by saying that the best 
algorithm found is Neural Networks (NN), which has an 
MSE of 0.004 for the motor UPDRS variable and an MSE of 
0.187 for the total UPDRS variable. The result is obtained 
where the polynomial features of degree 2 are added to raw 
dataset and 6 best features are elected. The structure of NN 
was shown to be optimized by having 2 hidden layers of 400 
and 5 neurons respectively. 
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4. Discussion 
 

In this paper, we presented three different regression based 
algorithms to predict Unified Parkinson's Disease Rating 
Scale along with their mean square error performance and 
choice of hyperparameters. We were able to achieve a mean 
squared error (MSE) of 0.004 for predicting motor UPDRS 
and 0.187 for predicting total UPDRS. In comparison with 
previous and accurate studies, our approach improved 
significantly the prediction of the motor and total UPDRs 
variables. Indeed, in [1] the predicted results were about 7.5 
UPDRS units from the clinician’s tests. An idea that should 
be further studied would be to see if learning the motor 
UPDRS score first, making a prediction about it, and then 
learning the total UPDRS score with our predictions of motor 
UPDRS would increase our prediction accuracy for the total 
UPDRS. We tried to implement such idea in our baseline 
algorithm by adding a new column to our X matrix: 
“predicted motor UPDRS”, but we didn’t notice much 
difference on the MSE of total UPDRS. Thus, we believe that 
a good future work for this dataset would be to study in more 
details how those two features are related. 
 
We hereby state that all the work presented in this report is 
that of the authors. 
 
Statement of Contribution: 
Andres Felipe Rincon Gamboa: participated on making the 
report. Nicolas Angelard-Gontier: worked on the 
implementation of the Linear and Polynomial Regression, 
SVR and the corresponding sections in the report. Ryan 
Razani: implemented Neural Network and wrote the 
corresponding sections of the report. 
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Appendix: 
Table 5: preliminary MSE results on validation set for Target1 and Target 2 predictions 

 

n-fo1d 
cross 

validation 

Polynomial 
Feature(d) 

Hidden 
Structure 

Ridge 
(L2) 

MSE(L2) 

Lasso(L1) 

MSE(L1) 
Learning 

rate 
Batch 
size Iterations Features 

all=16 [target1, 
target2] 

[target1, 
target2] 

5 1 [‘sig’:450] 0.7 4.84, 
12.16 0.7 

4.87, 
0.01 30 10 all 

11.89 

5 1 [‘sig’:500] 0.7 6.14, 
15.14 0.7 6.34, 

15.69 0.01 30 10 all 

5 1 [‘sig’:500] 0.7 17.12, 
26.56 0.7 17.52, 

27.03 0.001 30 10 all 

5 1 [‘sig’:450,’Lin’:5] 0.6 4.35, 8.74 0.6 4.42, 9.02 0.0009 30 10 all 

5 1 [‘sig’:450,’Lin’:6] 0.6 3.18, 9 0.6 3.18, 9 0.01 30 10 all 

5 2 [‘sig’:20] 0.7 20.15, 
37.15 0.7 20.84, 

38.10 0.01 30 10 all 

5 2 [‘sig’:20] 0.7 17.98, 
35.21 0.7 18.08, 

35.69 0.2 30 10 all 

10 1 [‘sig’:450] 0.01 13.59, 
25.97 0.01 13.9, 

26.03 0.0009 30 10 all 

10 1 [‘sig’:450, 
’Lin’:6] 0.01 2.99, 8.02 0.01 2.99, 8.02 0.0009 30 10 all 

15 1 [‘sig’:450, 
’Lin’:6] 0.01 2.09, 5.86 0.01 2.19, 6.06 0.0009 30 10 all 

11 1 [‘sig’:485, 
’Lin’:6] 0.01 0.96, 2.55 0.01 0.96, 2.55 0.0009 30 10 10 

10 1 [‘sig’:485, 
’Lin’:6] 0.01 1.31,2.85 0.01 1.31,2.85 0.0009 30 10 9 

10 1 [‘sig’:400, 
’Lin’:6] 0.01 0.42, 1.5 0.01 0.42, 1.5 0.0009 30 10 9 
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The best validation MSE score of the same NN structure based on selecting the best k features from  polynomial feature of degree d added to 16 features of dataset. 

Table 8: MSE performance for feature selection and polynomial features of degree 2,3,4,5, and 6

 
 
 

Table 9: Estimation of the C and !parameters of SVR with polynomial features of degree 3 
MSE(T1), 
MSE(T2) C=100 C=1,000 C=10,000 C=100,000 C=1,000,000 C=10,000,000 

 
  

 

24.926, 
42.136 

19.118, 
32.273 

13.683, 
23.051 >2h too long too long 

 
  

 

13.085, 
20.586 

10.522, 
16.463 

10.349, 
16.799 

10.776, 
17.839 9.992, 15.990 10.317, 16.230 

 
  

 

26.907, 
45.181 

26.791, 
44.930 

26.698, 
44.641 

26.623, 
44.550 

expect ~26, 
expect ~45 

expect ~26, 
expect ~45 

 
  

 

48.439, 
82.943 

48.341, 
83.359 

48.555, 
83.372 

47.702, 
81.269 

expect ~48, 
expect ~82 

expect ~48, 
expect ~82 

 
  

 

61.653, 
106.166 

61.542, 
106.167 

61.604, 
106.164 

61.618, 
106.155 

expect ~61, 
expect ~106 

expect ~61, 
expect ~106 


