
Page 1

Machine Learning methods to predict the Unified Parkinson’s
Disease Rating Scale

Comp 598: Applied Machine Learning Final project

Andres Felipe Rincón Ryan Razani Nicolas Angelard-Gontier
 260584148 260631628 260532513

Abstract - In this project, we implemented machine learning
models to provide an assessment of the Unified Parkinson’s
Disease Rating Scale (UPDRS) from clinical tests on patients
affected by the Parkinson disease. The Unified Parkinson's
Disease Rating Scale (UPDRS) is often used to track Parkinson
disease symptoms progression in patients. To provide an
estimation for the UPDRS based on machine learning models,
we implemented linear and polynomial regression, Support
Vector Regression (SVR) and deep neural networks models. In
particular, we used the Parkinson’s Telemonitoring dataset [2],
and applied data preprocessing and feature selection algorithms.
Subsequently, we applied linear and polynomial regression as a
baseline algorithm, followed by SVR and deep neural networks
models to obtain better predictions for the motor UPDRS test
variable (T1), and total UPDRS score test variable (T2). Using
the Neural Network model, applying Ridge regularization, and
6-best feature selection from polynomial features of degree 2
added to 16 original features of dataset, we obtained a Mean-
Squared-Error (MSE) of 0.004 UPDRS units for the motor
UPDRS variable and 0.187 UPDRS units for the total UPDRS
score.
Github: https://github.com/NicolasAG/MachineLearning-
project4

Index Terms - Machine Learning, unified Parkinson’s disease
rating scale (UPDRS). Mean-Squared-Error (MSE), Linear
Regression, Polynomial Regression, Support Vector Regression
(SVR), Neural Networks.

1. Introduction

Clinical tests are essential for the treatment of patients
susceptible of developing the Parkinson’s disease or affected
by the Parkinson’s disease. Currently, multiple clinical tests
exist for patients with the Parkinson’s disease. Nevertheless,
as addressed in [1], clinical examinations require multiple
clinical visits for the patients and these examination are time
consuming for the medical staff. Therefore, a remote and
autonomous clinical test represents a good alternative for
improving clinical tests time efficiency and to provide
Parkinson’s disease clinical tests at a larger scale. Some
research has addressed this issue in a less explicit way.
Indeed, using voice recordings from healthy patients and
patients affected with the Parkinson’s disease, machine
learning classifiers were applied in [3] to classify patients
with Dysphonia, a symptom of the Parkinson's disease. In

addition, it was shown in [4] that a bootstrapped classifier
could be applied for detecting voice disorder on voice
recordings from healthy patients and patients affected by the
Parkinson’s disease.
In this paper, we apply linear and polynomial regression,
support vector regression, and deep neural networks models
to the Parkinson’s Telemonitoring dataset [2]. The dataset has
22 attributes and consists of 5875 voice recordings from 42
individuals with early-stage Parkinson’s disease [2]. In more
detail, as described in [2], the features of this dataset consist
on the subject age (Integer value); subject gender: '0’ for
male and ‘1' for female; test time: Time since recruitment
into the trial; motor_UPDRS: Clinician's motor UPDRS
score; total_UPDRS: Clinician's total UPDRS score;
Jitter(%), Jitter(Abs), Jitter: RAP, Jitter: PPQ5, Jitter: DDP:
measures of variation in fundamental frequency; Shimmer,
Shimmer(dB), Shimmer: APQ3, Shimmer: APQ5,
Shimmer:APQ11, Shimmer: DDA: measures of variation in
amplitude; NHR and HNR: measures of ratio of noise to
tonal components in the voice; RPDE: a nonlinear dynamical
complexity measure; DFA: signal fractal scaling exponent;
PPE: a nonlinear measure of fundamental frequency
variation. In this project, we predicted the total_UPDRS
score value and the motor UPDRS score using linear and
polynomial regression, SVR and deep neural networks
models. Note that, the UPDRS serves to map Parkinson’s
disease symptoms severity in patients [1]. In theory, the total
UPDRS score range is 0-176 and the motor UPDRS score
range is 0-108 [1], however in our data set, we found the
following statistical measures:

Table 1: Dataset statistics

Data set MOTOR
UPDRS

TOTAL
UPDRS

Min 5.0377 7

Max 39.511 54.992

Range 34.4733 47.992

Mean 20.871 27.576

Std. 8.12858964 10.6993726

Variance 66.0739696 114.476573

Page 2

2. Methodology

2.1 Pre-processing, Feature design and Selection.

The only pre-processing that was applied was the
standardization of the data in the case of the neural networks
algorithm. Indeed, for each feature in the dataset, we
removed the mean and scaled to unit variance as following:

!!"!"#!=
!!"!"#!–!!!!

!!
 (2.0)

Where,!!! and δ! are the average and standard deviation
value respectively for feature j. Centering and scaling
processing on each feature is done by Scikit-learn [12].

In terms of feature design and feature selection, we created
new features using polynomial feature creation from the
sklearn library [8], and selected a few features using two
methods: univariate feature selection, and Recursive Feature
Elimination (RFE).

a) Feature Construction:
The polynomial feature creation allow us not only to see the
effect of individual features, but also to see the effect of
combinations of different original features on the target. For
our baseline algorithm we constructed polynomials of degree
2, 3 and 4. In particular we build 210 features from the
original 19 features for polynomial regression of degree 2,
1540 features for polynomial regression of degree 3, and
8855 features for polynomial regression of degree 4. These
features were built by using combinations of the original
features in the dataset. In addition, for the SVR algorithms
we only build features of polynomial 2 and 3 as the MSE
improvement was not worth the running time increase.
Eventually, in Neural Networks (NN), the first 4 columns of
the original data set, namely: “subject”, “age”, “sex”, and
“test_time” were not considered in the process as the
remaining 16 features resulted in better prediction. After
extending the train set to polynomial features of degree 2, 3,
4, 5 and 6; K best features were selected.

b) Feature Selection:
In terms of feature selection, the first method consisted on
selecting the ! highest scoring features, using univariate
linear regression tests taken from the machine learning
library sklearn [5]. These univariate linear regression tests
consisted on computing F-scores from correlation of the input
features with respect to the predicted variables [6]: motor
UPDRS score and total UPDRS score. In addition, recursive
feature elimination (RFE) was tested with k values from 2 up
to 19. This algorithm performs a greedy search in the feature
space: starting with all features, it removes one feature at a

time until it reaches k features. At each step, the algorithm
removes the feature that increased most the MSE. A
comparison of these two methods has been made for both
motor UPDRS (T1) and total UPDRS (T2) as we can see in
Figure 1 below.

Figure 1: Linear regression with different feature selection
algorithms

We noticed that for any k value, the univariate k-best method
produces a lower MSE so we continued our project with this
selected method.

2.2 Algorithms

2.2.1 Linear and Polynomial regression
In this project, we implemented linear and polynomial
regression as baseline algorithms. The linear regression
algorithm implemented is represented by the following
equation: !! = !!" where!! corresponds to the weight
vector, X corresponds to the feature matrix, and Y
corresponds to the target vector. For polynomial regression of
degrees 2, 3 and 4 we used a different X matrix with the same
amount of examples, but with more features. In particular, X
corresponds to the combination of the 19 original features,
and is of the following form:
[1, !!, . . . , !!", !!!, !!!!, . . . , !!!!", !!!, !!!!, . . . , !!!!", . . . , !!"!]
In addition, in order to avoid overfitting, we had to use some
kind of regularization for the polynomial features. We
recorded the resulting MSE for no regularization at all, Lasso
regularization, and Ridge regularization. The different cost
functions are the following [10]:

No regularization:

 !"!!!||!! − !||!² (2.1)
Lasso regularization:

!"!!! !
!!!"#$%&!

||!! − !||!² + !||!||! (2.2)

Ridge regularization:
!"!!!||!! − !||!²! + !!||!||!² (2.3)

Page 3

The results of these different cases are presented in the
section 3.1.1.
In order to choose the hyper-parameter ! that measures how
much weight to put on the weight size rather than the actual
squared error loss, we used 5-fold cross-validation. This
consisted on partitioning 80% of the dataset randomly into 5
subsets followed by cross validation iterations. At each
iteration, we performed validation on one retained subset
while training on the remaining 4 subsets.

2.2.2 Support Vector Regression (SVR)
Moreover, since the variables motor UPDRS (T1) and total
UPDRS (T2) are continuous, we used a regression version of
SVM, implemented in the sklearn machine learning library,
called SVR. Like in regular SVM, the SVR algorithm tries to
minimize the weight vector ||!||. Furthermore, this method
tries to learn a function !(!) that is at most ! units away
from the actual output !. Thus, we don’t care for points that
do not exactly lie on the learned function, as long as they are
at a distance less than or equal to ! [9]. This allow us to be
slightly more tolerant in our predictions. Eventually, for
points that are further than ! we introduce new variables (!!
and !!∗) that measure the distance from ! that the point is [9].
Thus, these kind of points are ! + !! away from the actual
output !! and we try to get as few as possible of them. The
amount of these ‘incorrect’ points is controlled by a constant
!. This is like performing a regularization task as previously
described in polynomial regression. As a whole, the SVR
algorithm for linear regression consists on solving the
following optimization problem [9]:

!"#! !! ||!||
! + ! (!! + !!∗)!

!!! (2.4)

Subject to: < !, !! > +! − !! ≤ ! + !!∗
−< !, !! > −! + !! ≤ ! + !!

!!!!∗ ≥ 0

Where ! is the weight vector, ! determines the flatness of
the prediction curve, !! is the distance that point i is from the
tolerated margin of error:!!, and < !, !! > +! is the
prediction made for point !! based on ! and !.
Eventually, like in regular SVM, to allow for non-linear
learning functions we put this optimization problem in its
dual form by using the Lagrangian multipliers, and perform
the “Kernel trick”, that maps points to another dimension.
The kernel used in this study is the Radial Basis Function
(RBF): !(!! !!!, !) from the sklearn library [7]. Therefore,
two parameters were estimated to apply SVR: ! and !. As
mentioned above, the SVM parameter C represents the trade
off between, bias and variance: a high C means that we try to
learn correctly most of the training points (so lot of support
vectors, high variance and low bias) while a low C aims at
building a smoother learning function (few support vectors,

low variance and high bias) [7]. In addition, the kernel
parameter gamma represents the influence of a single training
point on others: a large ! means that the influence is small, so
the distance |! − !′| has to be small for !′ to be affected by
!, while a small ! means that the influence on a single
training point is large [7]. The estimation of these two
parameters are discussed in section 3.1.2.

2.2.3 Deep Neural Network
We also implemented deep neural networks (DNN) trained
by backpropagation with mean square error cost function. It
is expected from DNN to have better performance than
baseline algorithms since it allows to learn complex/nonlinear
function of input data.
 For the task of regression, each node in the output layer is
considered as a neuron with a linear activation function to
predict continuous values of motor UPDRS (T1) and total
UPDRS (T2). The activation function of hidden layers
considered to be linear and nonlinear function which will be
discussed in more details in section 3.1.3. Among several
transfer functions, sigmoid function; (!), and linear function
turned out to be more effective in our prediction problem.
The equation of these activation functions are as following:

Sigmoid function: ! ! = ! !
!!!"#(!!) (2.5)

Linear function: ! !" + ! = !" + ! (2.6)

In our feedforward neural network structure each weight is
learnt by stochastic gradient descent on the error. Mean
Square Error (MSE) of the network output is calculated as:

 ! = !
! ! !! − !! !

!∈! = ! "!! Ok -Ot
!!!!! (2.7)

Lasso regularization:

 !"!!! !! !! − !! |!! + ! ! |!!!!!!!!!!!!!!!!!!!!!!(2.8)
Ridge regularization:

!"!! !!! !||!! − !!||!²! + !!||!||!² (2.9)

Where, K is the number of nodes at the output layer. Ok is
the prediction value at node k from output layer and Ot is the
actual UPDRS target value corresponding to the same node in
the output layer.
After predicting the target values the error will be calculated
and propagates back through the network to adjust the
weights in the direction that reduces it.

!!!"
(!) = −"! !!!!!"

 (2.10)

!!"
(!)(! + 1) = !!"

(!)(!) + "!!!"
(!)(!) (2.11)

Page 4

This procedure known as Backpropagation (BP) is most
widely used algorithm for supervised learning of neural
networks [11]. Its idea is based on repeated application of the
chain rule to compute the influence of each weight in the
network with respect to an error function.

3. Testing and Validation
In order to perform the testing and validation of the
algorithms, we partitioned the dataset into two sets: a training
and validation set containing 80% of the examples of the
dataset, and a test set containing 20% of the examples of the
dataset. For each algorithm, we used the training and
validation set to estimate the parameters and perform feature
selection.

3.1 Parameter Estimation and feature reduction
This section shows the parameter estimation for the
algorithms implemented.

3.1.1 Linear and Polynomial regression
To pick the best ! regularization hyper parameter and the
optimal number of features of the linear and polynomial
regression algorithms, we performed 5-fold cross validation
on 80% of the dataset (randomly selected). We tested the
following ! rates for polynomial regression with both ridge
and lasso regularization: 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5,
1e-4, 1e-3, 1e-2, 1e-1, 1.0, 1e+1. After picking the best !
rate for each cases we measured the MSE (without any
feature selection yet) as described in Table 2 below:

Table 2: MSE values for different polynomial regression and
regularization

The polynomial of degree 4 was only tested on the ridge
regularization because without any regularization we
suspected the MSE to be ridiculously high (because of
overfitting, like in the degree 3 case) and with the lasso
regularization, the running time to pick the best ! rate was
too long. Moreover, we can see that even with regularization,

degree 4 features start to overfit because of the huge number
of features created. Overall we noticed that Ridge
regularization was giving us slightly better results so we
decided to continue our work with this technique.

In terms of feature selection, we tested ! best features with k
from 2 up to 19, among 19 attributes from the original
dataset. In the case of polynomial regression, we did the same
thing and constructed our polynomial features based on the
top k original features. It is true that this method may have
missed a few ‘ideal’ feature combinations, but we decided to
do that for our baseline algorithm in order to better compare
the MSE for our predictions on the motor UPDRS (T1) and
the total UPDRS (T2) in one graph as we can see in Figure 2.

Figure 2: MSE of linear and polynomial regression using k
best feature selection and Ridge regularization

The above plot shows that we reach the best MSE with
polynomial features of degree 4, with 8-best features, giving
MSE (motor UPDRS) ~ 35 and MSE (total UPDRS) ~ 60.

3.1.2 SVR
For the parameter estimation of SVR with the Radial Basis
Function (RBF) kernel, we performed 5-fold cross validation
on 80% of the dataset (randomly selected) and we tested the
following values for the C parameter: 0.01; 0.1; 1; 10; 100;
1,000; 10,000; 100,000; and 1,000,000. For the ! parameter,
we tested the following values: 0.01, 0.1, 1, 10 and 100.

Table 3: Estimation of the C and !parameters of SVR (with
linear features) using the MSE from the motor UPDRS (T1)
and total UPDRS (T2)

Page 5

We first tried the algorithm on the original 19 features, by
performing multiple trials with combinations of the
parameters mentioned above. Such results can be found in the
Table 3. We found that the best value for the C parameter
was 1000, and 0.1 for the parameter. After fixing those
parameters for our linear feature case, we performed the k-
best feature algorithm with different k from 2 to 19, and
decided which k will give the lowest MSE based on 5 fold
cross validation as we can see in Figure 3.

Figure 3: k-best features from linear features with SVR (RBF
kernel, C=1000, != 0.1)

By doing so, we found that the lowest MSE was performed
with the best 8 features, giving an overall MSE of 12.326 for
motor UPDRS and 15.975 for total UPDRS.

Furthermore, we performed the same parameter selection
technique for polynomial features of degree 2 and 3. The
MSE results for degree 2 features can be found in Table 4
below.

Table 4: Estimation of the C and !parameters of SVR with
polynomial features of degree 2
MSE(T1),)
MSE(T2)) C=100) C=1,000) C=10,000) C=100,000)

ɤ=0.000001) 32.349,
57.850

21.450,
39.209 >1h too long

ɤ=0.00001) 10.023,
16.084

8.560,
13.259

9.708,
15.322

9.296
14.278

ɤ=0.0001) 24.914,
41.533

24.772,
41.214

24.986,
42.065

ɤ=0.001) 48.827,
85.073

48.897,
85.003

47.871,
83.424

ɤ=0.01) 62.908,
110.732

63.068,
110.657

From this table we can see that in this case the best values for
C and ! are 1000 and 1e-5 respectively. However, we noticed
that the best MSE (without any feature selection) for
polynomial features of degree 3 was not better than for
polynomial features of degree 2. This is shown in Table 9 of
the appendix. In addition, the running time was greatly
increased with degree 3 features, so we decided not to
perform feature selection for this case. On the other hand, for
polynomial features of degree 2, we greatly reduced our MSE

by performing 5-fold cross validation with k-best feature
selection: k from 2 to 210 as we can see in Figure 4.
From this figure, we can see that the best MSE is found with
81 < k < 116, this is why we zoomed on this region to better
see that the best MSE is obtained by choosing the best 115
features from the 210 polynomial features. The resulting
mean squared errors are 1.329 for motor UPDRS and 2.156
for total UPDRS.

Figure 4: k-best features from polynomial features of degree

2 with SVR (RBF kernel, C=1000, != 1e-5)

3.1.3 Neural Networks
When using neural networks, we excluded 3 attributes from
the dataset: the age, the sex of the individuals and the
duration of the clinical tests (test_time). Moreover, we
selected the best features of data set for the neural networks
algorithm based on k highest score of univariate linear
regression test.
To identify the best hyperparameters for feed forward neural
network, 5-fold cross validation is applied to the training set
which enabled us to save time and achieve very low MSE
values. The MSE results of validation set of Shallow Neural
Network (SNN) and DNN using Ridge or Lasso
regularization were compared in Table 8 presented in
Appendix. It is shown that DNN performs much better due to
its advantage of learning nonlinear functions. The sigmoid
transfer function and linear transfer function are referred to
‘Sig’ and ‘Lin’, respectively. Target 1, and 2 were predicted

Page 6

at the same time with same NN architecture, hence the output
layer consists of 2 nodes.
It is observed that the number of hidden units is an important
hyper-parameter to consider since high number units in
hidden layers can cause overfitting. In contrast, just few
neurons in the hidden layer does not allow the network to
train well and capture nonlinear/complex functions of inputs
and the system will be less robust to noise.
In the case of NN, we primarily started the preprocessing by
keeping k best features first and creating the polynomial
features of degree d on the selected features as shown in
Table 5 of Appendix. However, we noticed that by changing
the order we could improve the performance as shown in
Table 6, 8 and figure 5. Hence, we generated a new feature
matrix consisting of all polynomial combinations of the
features with degree d [8], and chose the K best features as a
train set. For most cases, it is shown the MSE values with L2
(Ridge) regularization is slightly better than L1 (Lasso).
In Figure 5, the best NN structure from Table 5 was
considered. Several possible subsets of polynomial features
were created, and the performance of the best k features was
measured on the validation set.

Figure 5: Effect of feature selection and polynomial features

on MSE

Finally, the best ten MSE results of validation set of DNN
using 5-fold cross validation is shown in Table 6. This table
shows different choice of hyper parameters such as hidden
layer/hidden nodes, learning rate and ridge regularization
constant. These results were obtained when 6 best features
were selected after polynomial features of degree 2 were
extended to raw data. It implies that the best DNN
architecture for our regression problem is a network with 2
hidden layers of 400 sigmoid units followed by 5 linear units.
The optimization technique in implementing neural network
is based on stochastic gradient descent, which with
appropriate choice of hyper parameters the running time can
be reduced. Mini-batch size and number of training iteration
play key role as hyperparameter in training time. To achieve
the above results, we used 30 mini batch and 10 iteration.
Larger mini batch size yield in faster computation but
consumes more examples to reach to the same error than with

smaller mini batch size. Optimum number of training can be
obtained by observing the training and validation behaviour
and set the number of iteration to the point that validation
error starts to increase.

Table 6: preliminary MSE results on validation set for
Target1 and Target 2 predictions

3.2 Experimental results
In this section, we show the prediction results in the test set
for linear and polynomial regression, SVR and neural
networks. These results were obtained by training our
algorithms on 80% of the data (what we used for parameter
selection in previous sections), and predicting on 20% of the
data (the test set). The following Table 7 summarizes these
results for each of the algorithms that were implemented.

Table 7: Test set results

Algorithms)

MSE)motor)

UPDRS)

variable)

MSE)total))

UPDRS)

variable)

Linear)Regression,)19Ebest)features) 54.954 93.257

Polynomial)regression)of)degree)2,)

ridge)α=1eE3,)19Ebest)features)
47.052 82.856

Polynomial)regression,)degree)3,)

ridge)α=1eE1,)17Ebest)features)
34.604 64.52

Polynomial)regression,)degree)4,)

ridge)α=1eE1,)8Ebest)features)
33.314 60.624

SVR,)C)=)1000,)ɤ=1eE1,)Linear)

features,)8Ebest)features)
11.266 13.475

SVR,)C=1000,)ɤ=1eE5,)polynomial)

features)of)degree)2,)115Ebest)

features)

0.829 1.563

NN,)learning)rate=0.0009,)L2) 0.004 0.187

We can conclude this project by saying that the best
algorithm found is Neural Networks (NN), which has an
MSE of 0.004 for the motor UPDRS variable and an MSE of
0.187 for the total UPDRS variable. The result is obtained
where the polynomial features of degree 2 are added to raw
dataset and 6 best features are elected. The structure of NN
was shown to be optimized by having 2 hidden layers of 400
and 5 neurons respectively.

Page 7

4. Discussion

In this paper, we presented three different regression based
algorithms to predict Unified Parkinson's Disease Rating
Scale along with their mean square error performance and
choice of hyperparameters. We were able to achieve a mean
squared error (MSE) of 0.004 for predicting motor UPDRS
and 0.187 for predicting total UPDRS. In comparison with
previous and accurate studies, our approach improved
significantly the prediction of the motor and total UPDRs
variables. Indeed, in [1] the predicted results were about 7.5
UPDRS units from the clinician’s tests. An idea that should
be further studied would be to see if learning the motor
UPDRS score first, making a prediction about it, and then
learning the total UPDRS score with our predictions of motor
UPDRS would increase our prediction accuracy for the total
UPDRS. We tried to implement such idea in our baseline
algorithm by adding a new column to our X matrix:
“predicted motor UPDRS”, but we didn’t notice much
difference on the MSE of total UPDRS. Thus, we believe that
a good future work for this dataset would be to study in more
details how those two features are related.

We hereby state that all the work presented in this report is
that of the authors.

Statement of Contribution:
Andres Felipe Rincon Gamboa: participated on making the
report. Nicolas Angelard-Gontier: worked on the
implementation of the Linear and Polynomial Regression,
SVR and the corresponding sections in the report. Ryan
Razani: implemented Neural Network and wrote the
corresponding sections of the report.

5. References

[1] A Tsanas, MA Little, PE McSharry, LO Ramig (2009)
'Accurate telemonitoring of Parkinson’s disease progression by non-invasive
speech tests',
IEEE Transactions on Biomedical Engineering (to appear).

[2] Archive.ics.uci.edu, 'UCI Machine Learning Repository: Parkinsons
Telemonitoring Data Set', 2015. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring.
[Accessed: 01- Dec- 2015].

[3] Little MA, McSharry PE, Hunter EJ, Ramig LO (2009), ”Suitability of
dysphonia measurements for telemonitoring of Parkinson's disease”, IEEE
Transactions on Biomedical Engineering, 56(4):1015-1022.

[4] Little MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM.
“Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice
Disorder Detection”, BioMedical Engineering OnLine 2007, 6:23 (26 June
2007).

[5] Scikit-learn.org, '1.13. Feature-selection-scikit-learn-0.17-
documentation', 2015. [Online]. Available: http://scikit-
learn.org/stable/modules/feature_selection.html#univariate-feature-selection.
[Accessed: 02- Dec- 2015].

[6] Scikit-learn.org, 'sklearn.feature_selection.f_regression-scikit-learn-0.17-
documentation', 2015. [Online].Available:http://scikit-
learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.ht
ml#sklearn.feature_selection.f_regression. [Accessed: 04- Dec- 2015].

[7] Scikit-learn.org, '1.4. Support Vector Machines — scikit-learn 0.17
documentation', 2015. [Online]. Available: http://scikit-
learn.org/stable/modules/svm.html#svr. [Accessed: 05- Dec- 2015].

[8] Scikit-learn.org, 'sklearn.preprocessing.PolynomialFeatures-scikit-learn-
0.17-documentation', 2015.[Online].Available:http://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeature
s.html. [Accessed: 12- Dec- 2015].

[9] Alex J Smola, Bernhard Scholkopf (1998), “A Tutorial on Support
Vector Regression”, NeuroCOLT2 Technical Report Series, NC2-TR

[10] Scikit-learn.org, "1.1. Generalized Linear Models — scikit-learn 0.17
documentation", 2015. [Online]. Available: http://scikit-
learn.org/stable/modules/linear_model.html#ridge-regression. [Accessed: 12-
Dec- 2015].

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error-propagation. In Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Volume 1, volume 1, pages
318-362. MIT Press, Cambridge, MA, 1986.

[12] Scikitlearn.org,. 'Scikitlearn.Org'. N.p., 2015. Web. 10 Nov. 2015.
http://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.Standar
dScaler.html#sklearn.preprocessing.StandardScaler.transform

Page 1

Appendix:
Table 5: preliminary MSE results on validation set for Target1 and Target 2 predictions

n-fo1d
cross

validation

Polynomial
Feature(d)

Hidden
Structure

Ridge
(L2)

MSE(L2)

Lasso(L1)

MSE(L1)
Learning

rate
Batch
size Iterations Features

all=16 [target1,
target2]

[target1,
target2]

5 1 [‘sig’:450] 0.7 4.84,
12.16 0.7

4.87,
0.01 30 10 all

11.89

5 1 [‘sig’:500] 0.7 6.14,
15.14 0.7 6.34,

15.69 0.01 30 10 all

5 1 [‘sig’:500] 0.7 17.12,
26.56 0.7 17.52,

27.03 0.001 30 10 all

5 1 [‘sig’:450,’Lin’:5] 0.6 4.35, 8.74 0.6 4.42, 9.02 0.0009 30 10 all

5 1 [‘sig’:450,’Lin’:6] 0.6 3.18, 9 0.6 3.18, 9 0.01 30 10 all

5 2 [‘sig’:20] 0.7 20.15,
37.15 0.7 20.84,

38.10 0.01 30 10 all

5 2 [‘sig’:20] 0.7 17.98,
35.21 0.7 18.08,

35.69 0.2 30 10 all

10 1 [‘sig’:450] 0.01 13.59,
25.97 0.01 13.9,

26.03 0.0009 30 10 all

10 1 [‘sig’:450,
’Lin’:6] 0.01 2.99, 8.02 0.01 2.99, 8.02 0.0009 30 10 all

15 1 [‘sig’:450,
’Lin’:6] 0.01 2.09, 5.86 0.01 2.19, 6.06 0.0009 30 10 all

11 1 [‘sig’:485,
’Lin’:6] 0.01 0.96, 2.55 0.01 0.96, 2.55 0.0009 30 10 10

10 1 [‘sig’:485,
’Lin’:6] 0.01 1.31,2.85 0.01 1.31,2.85 0.0009 30 10 9

10 1 [‘sig’:400,
’Lin’:6] 0.01 0.42, 1.5 0.01 0.42, 1.5 0.0009 30 10 9

Page 2

The best validation MSE score of the same NN structure based on selecting the best k features from polynomial feature of degree d added to 16 features of dataset.

Table 8: MSE performance for feature selection and polynomial features of degree 2,3,4,5, and 6

Table 9: Estimation of the C and !parameters of SVR with polynomial features of degree 3
MSE(T1),
MSE(T2) C=100 C=1,000 C=10,000 C=100,000 C=1,000,000 C=10,000,000

24.926,
42.136

19.118,
32.273

13.683,
23.051 >2h too long too long

13.085,
20.586

10.522,
16.463

10.349,
16.799

10.776,
17.839 9.992, 15.990 10.317, 16.230

26.907,
45.181

26.791,
44.930

26.698,
44.641

26.623,
44.550

expect ~26,
expect ~45

expect ~26,
expect ~45

48.439,
82.943

48.341,
83.359

48.555,
83.372

47.702,
81.269

expect ~48,
expect ~82

expect ~48,
expect ~82

61.653,
106.166

61.542,
106.167

61.604,
106.164

61.618,
106.155

expect ~61,
expect ~106

expect ~61,
expect ~106

