
The maximum edge-disjoint paths
problem in bounded treewidth graphs

Chandra Chekuri, Guyslain Naves, Bruce Shepherd

Bellairs workshop, April 2011

1



Maximum Edge-Disjoint Paths problem

(MEDP for short)

Input: a graph G ,
capacities c : E (G )→ N,
pairs (si , ti) of commodities, with weights wi .

Output: P , family of (si , ti)-paths in G ,
at most c(e) paths of P contain e
(e ∈ E (G )).

Goal: Maximize
∑

i∈IP wi ,

where IP = {i : there is an (si , ti)-path in P}.
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General results

MEDP. . .

is APX-hard, even in trees (Garg, Vazirani, Yannakakis,
1997),

is hard to approximate within Ω(m
1
2
−ε) in directed graphs

(Guruswami, Khanna, Rajaraman, Shepherd, Yannakakis,
1999),

is hard to approximate within Ω(log1/2−ε n) in undirected
graphs (Andrews, Chuzhoy, Khanna, Zhang, 2005),

has Ω(
√

n) integrality gap, for the natural LP
(Guruswami,. . . ), O(

√
n) in undirected graphs (Chekuri,

Khanna, Shepherd, 2005)

has approximation ratio O(
√

m) (Kleinberg, 1996).
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2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)
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Idea: route the deepest possible demand.
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MEDP on trees: results

APX-hard and

2-approximation, no weight, (Garg, Vazirani, Yannakakis,
1997)

4-approximation with weight (Chekuri, Mydlarz,
Shepherd, 2003).

Both algorithms have a bottom-up approach.
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Planar graphs

A bad example (
√

n integrality gap):
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Congestion

In the previous example, multiplying the capacities by 2 leads
to an integral solution matching the fractional optimum.

Definition
Congestion: maximum ratio allowed between the number of
paths taking an edge and its capacity.
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MEDP on planar graphs

Theorem (Chekuri, Khanna, Shepherd, 2006)

O(1)-approximation with congestion 4 in planar graphs.

Find a disc D with properties:

capacity of δ(D) � flow routed inside D,
1
10 of the flows routed inside D can be routed to the
boundary of D.

Charge the flow crossing δ(D) to D.

Remove D and recurse.

On D, use the routing to the boundary, plus
Okamura-Seymour theorem.
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Bounded treewidth graphs

Trees = graphs of treewidth 1,

Graphs of treewidth 2 ⊂ planar graphs,

O(k log k log n)-approximation for graphs of treewidth k
(Chekuri, Khanna, Shepherd 2006).

Getting rid of the log n factor?

Extending planar result to minor-closed classes of graphs?

Theorem
For graphs of treewidth k, αk-approximation with congestion
βk .
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A graph with treewidth 2
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Bags. . .

Every bag contains at most k + 1 vertices.
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. . . and vertices

The bags containing a given vertex form a subtree.
Two adjacent vertices have non-disjoint subtrees.
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Intersection of adjacent bags

Intersection of adjacent bags =⇒ cutset of size k

37



Intersection of adjacent bags

Intersection of adjacent bags =⇒ cutset of size k

38



Intersection of adjacent bags

Intersection of adjacent bags =⇒ cutset of size k

39



Intersection of adjacent bags

Intersection of adjacent bags =⇒ cutset of size k
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Proof of O(1)-approx, O(1)-congestion

Let x be a fractional optimum solution.

Definition
Marginal flow at v : value of the flow paths in x having
extremity v .

Main ideas:

Bottom-up approach,

Cutting along a sparse cut and charging to the inside,

Clustering.
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The clustering tool
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The clustering tool
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The clustering tool
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The clustering tool
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The clustering tool
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The clustering tool
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The clustering tool
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Clusters send a flow ≥ 1 to the root. . .
. . . so we can find edge-disjoint paths.
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Contracting the clusters

r

A B C D

1 1 1 1

Replace each cluster by a leaf.

Also contract the demands.

Then find an integral routing. . .

. . . and uncontract the edge-disjoint paths.

We get a 3-approximation with congestion 2.
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Uncontracting a path
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For a path satisfying a demand to the 0.2 blue node.
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Uncontracting a path
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Uncontracting a path
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Clustering: what we get

If we can route a fraction of the marginal flow to U ⊂ V ,

Then, move the demands to U ,

Up to constant approximation, constant congestion:

flow x in G flow x ′ in G ′
clustering

integral flow P ′ in G ′integral flow P in G
clustering
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The algorithm

Route the marginal values to the root of the decomposition
tree.

if success, then use clustering to conclude.

if fail, cut along a sparse cut.
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Easy case: a flow to the root

Root
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Easy case: solution

There is a flow f routing 1
10

of the marginal flow to the root.

Make clusters using this flow f fractional flow x ′.

The root has at most k + 1 vertices, that are the
terminals for x ′.

Select the pair (u, v) with maximum fractional flow x ′

between them.

Find a packing of dx ′(u, v)e disjoint (u, v)-paths,
uncontract them.

αk2-approximation with β congestion.
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Hard case: there is a sparse cut

T1

T2
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Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

Remove the flow through this cut.

Charge the lost flow to the demands inside X .

Recurse on G − X (smaller graph of treewidth k).

Apply clustering on the complete subtrees of X .

Contract the complete subtrees into cliques (congestion
k2).

Apply induction on the contracted graph (treewidth
k − 1).
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Hard case in action

76



Hard case in action

77



Hard case in action

78



Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

Remove the flow through this cut.
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What’s next?

weighted version,

better bounds for congestion and approximation
(exponential in the treewidth now),

extend it to minor-closed classes of graphs.
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The end

Thank you!
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