The maximum edge-disjoint paths PROBLEM IN BOUNDED TREEWIDTH GRAPHS

Chandra Chekuri, Guyslain Naves, Bruce Shepherd

Bellairs workshop, April 2011

Maximum Edge-Disjoint Paths problem

(MEDP for short)

Input:

- a graph G,
- capacities c: $E(G) \rightarrow \mathbb{N}$,
- pairs $\left(s_{i}, t_{i}\right)$ of commodities, with weights w_{i}.

Output: $-\mathcal{P}$, family of $\left(s_{i}, t_{i}\right)$-paths in G,

- at most $c(e)$ paths of \mathcal{P} contain e $(e \in E(G))$.

Goal: Maximize $\sum_{i \in I_{\mathcal{P}}} w_{i}$, where $I_{\mathcal{P}}=\left\{i:\right.$ there is an $\left(s_{i}, t_{i}\right)$-path in $\left.\mathcal{P}\right\}$.

General results

MEDP...

- is APX-hard, even in trees (Garg, Vazirani, Yannakakis, 1997),
- is hard to approximate within $\Omega\left(m^{\frac{1}{2}-\varepsilon}\right)$ in directed graphs (Guruswami, Khanna, Rajaraman, Shepherd, Yannakakis, 1999),
- is hard to approximate within $\Omega\left(\log ^{1 / 2-\varepsilon} n\right)$ in undirected graphs (Andrews, Chuzhoy, Khanna, Zhang, 2005),
- has $\Omega(\sqrt{n})$ integrality gap, for the natural LP (Guruswami,...), $O(\sqrt{n})$ in undirected graphs (Chekuri, Khanna, Shepherd, 2005)
- has approximation ratio $O(\sqrt{m})$ (Kleinberg, 1996).

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.
McGill

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

2-approximation in trees

(Garg, Vazirani, Yannakakis, 1997)

Idea: route the deepest possible demand.

MEDP on trees: results

- APX-hard and
- 2-approximation, no weight, (Garg, Vazirani, Yannakakis, 1997)
- 4-approximation with weight (Chekuri, Mydlarz, Shepherd, 2003).

Both algorithms have a bottom-up approach.

Planar graphs

A bad example (\sqrt{n} integrality gap):

Planar graphs

A bad example (\sqrt{n} integrality gap):

Planar graphs

A bad example (\sqrt{n} integrality gap):

Congestion

In the previous example, multiplying the capacities by 2 leads to an integral solution matching the fractional optimum.

Definition

Congestion: maximum ratio allowed between the number of paths taking an edge and its capacity.

MEDP on planar graphs

Theorem (Chekuri, Khanna, Shepherd, 2006)
O(1)-approximation with congestion 4 in planar graphs.

- Find a disc \mathcal{D} with properties:
- capacity of $\delta(\mathcal{D}) \ll$ flow routed inside \mathcal{D},
- $\frac{1}{10}$ of the flows routed inside \mathcal{D} can be routed to the boundary of \mathcal{D}.
- Charge the flow crossing $\delta(\mathcal{D})$ to \mathcal{D}.
- Remove \mathcal{D} and recurse.
- On \mathcal{D}, use the routing to the boundary, plus Okamura-Seymour theorem.

Bounded treewidth graphs

- Trees $=$ graphs of treewidth 1 ,
- Graphs of treewidth $2 \subset$ planar graphs,
- $O(k \log k \log n)$-approximation for graphs of treewidth k (Chekuri, Khanna, Shepherd 2006).
- Getting rid of the $\log n$ factor?
- Extending planar result to minor-closed classes of graphs?

Bounded treewidth graphs

- Trees = graphs of treewidth 1 ,
- Graphs of treewidth $2 \subset$ planar graphs,
- $O(k \log k \log n)$-approximation for graphs of treewidth k (Chekuri, Khanna, Shepherd 2006).
- Getting rid of the $\log n$ factor?
- Extending planar result to minor-closed classes of graphs?

Theorem
For graphs of treewidth k, α_{k}-approximation with congestion β_{k}.

A graph with treewidth 2

Bags...

Every bag contains at most $k+1$ vertices.

... and vertices

The bags containing a given vertex form a subtree.
Two adjacent vertices have non-disjoint subtrees.

Intersection of adjacent bags

Intersection of adjacent bags

Intersection of adjacent bags

Intersection of adjacent bags

Intersection of adjacent bags \Longrightarrow cutset of size k

Proof of $O(1)$-approx, $O(1)$-congestion

Let x be a fractional optimum solution.

Definition

Marginal flow at v : value of the flow paths in x having extremity v.

Main ideas:

- Bottom-up approach,
- Cutting along a sparse cut and charging to the inside,
- Clustering.

The clustering tool

Suppose there is a flow to r with these marginal values.

The clustering tool

Take an arbitrary spanning tree.

The clustering tool

Find a lowest level node with marginal value ≥ 1.
Take just enough sons to get a value ≥ 1

The clustering tool

Find a lowest level node with marginal value ≥ 1. Take just enough sons to get a value ≥ 1, repeat.

The clustering tool

Again. . .

The clustering tool

Again. . . until the remaining marginal value is <3.

The clustering tool

Clusters send a flow ≥ 1 to the root...

The clustering tool

Clusters send a flow ≥ 1 to the root. .
...so we can find edge-disjoint paths.

Contracting the clusters

- Replace each cluster by a leaf.
- Also contract the demands.
- Then find an integral routing. . .
- ... and uncontract the edge-disjoint paths.
- We get a 3-approximation with congestion 2.

Uncontracting a path

For a path satisfying a demand to the 0.2 blue node.

Uncontracting a path

For a path satisfying a demand to the 0.2 blue node.

Uncontracting a path

For a path satisfying a demand to the 0.2 blue node.

Clustering: what we get

- If we can route a fraction of the marginal flow to $U \subset V$,
- Then, move the demands to U,
- Up to constant approximation, constant congestion:

$$
\text { flow } x \text { in } G \xlongequal{\text { clustering }} \text { flow } x^{\prime} \text { in } G^{\prime}
$$

integral flow \mathcal{P} in $G \xlongequal{\text { clustering }}$ integral flow \mathcal{P}^{\prime} in G^{\prime}

Clustering: what we get

- If we can route a fraction of the marginal flow to $U \subset V$,
- Then, move the demands to U,
- Up to constant approximation, constant congestion:

integral flow \mathcal{P} in $G \xlongequal{\rightleftarrows}$ clustering integral flow \mathcal{P}^{\prime} in G^{\prime}

The algorithm

Route the marginal values to the root of the decomposition tree.

- if success, then use clustering to conclude.
- if fail, cut along a sparse cut.

Easy case: a flow to the root

Easy case: solution

There is a flow f routing $\frac{1}{10}$ of the marginal flow to the root.

- Make clusters using this flow $f \Longrightarrow$ fractional flow x^{\prime}.
- The root has at most $k+1$ vertices, that are the terminals for x^{\prime}.
- Select the pair (u, v) with maximum fractional flow x^{\prime} between them.
- Find a packing of $\left\lceil x^{\prime}(u, v)\right\rceil$ disjoint (u, v)-paths, uncontract them.

Easy case: solution

There is a flow f routing $\frac{1}{10}$ of the marginal flow to the root.

- Make clusters using this flow $f \Longrightarrow$ fractional flow x^{\prime}.
- The root has at most $k+1$ vertices, that are the terminals for x^{\prime}.
- Select the pair (u, v) with maximum fractional flow x^{\prime} between them.
- Find a packing of $\left\lceil x^{\prime}(u, v)\right\rceil$ disjoint (u, v)-paths, uncontract them.
αk^{2}-approximation with β congestion.

Hard case: there is a sparse cut

雨 McGill

Hard case: there is a sparse cut

Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

- Remove the flow through this cut.

Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

- Remove the flow through this cut.
- Charge the lost flow to the demands inside X.

Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

- Remove the flow through this cut.
- Charge the lost flow to the demands inside X.
- Recurse on $G-X$ (smaller graph of treewidth k).

Hard case: there is a sparse cut

雨 McGill

Hard case: there is a sparse cut

雨 McGill

Hard case: there is a sparse cut

四 McGill

Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

- Remove the flow through this cut.
- Charge the lost flow to the demands inside X.
- Recurse on $G-X$ (smaller graph of treewidth k).
- Apply clustering on the complete subtrees of X.

Hard case: there is a sparse cut

雨 McGill

Hard case: there is a sparse cut

Hard case: there is a sparse cut

Hard case: there is a sparse cut

Hard case: there is a sparse cut

Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

- Remove the flow through this cut.
- Charge the lost flow to the demands inside X.
- Recurse on $G-X$ (smaller graph of treewidth k).
- Apply clustering on the complete subtrees of X.
- Contract the complete subtrees into cliques (congestion k^{2}).

Hard case: there is a sparse cut

Hard case in action

Hard case in action

Hard case in action

Hard case: there is a sparse cut

There is a sparse cut X separating terminals from the root.

- Remove the flow through this cut.
- Charge the lost flow to the demands inside X.
- Recurse on $G-X$ (smaller graph of treewidth k).
- Apply clustering on the complete subtrees of X.
- Contract the complete subtrees into cliques (congestion k^{2}).
- Apply induction on the contracted graph (treewidth $k-1$).

What's next?

- weighted version,
- better bounds for congestion and approximation (exponential in the treewidth now),
- extend it to minor-closed classes of graphs.

The end

Thank you!

