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Signals collected from the magnetic scans of metal-loss defects have distinct
patterns. Experienced pipeline engineers are able to recognize those pat-
terns in Magnetic Flux Leakage (MFL) scans of pipelines, and use them to
characterize defect types (e.g., corrosion, cracks, dents, etc.) and estimate
their lengths and depths. This task, however, can be highly cumbersome to
a human operator, because of the large amount of data to be analyzed. This
paper proposes a solution to automate the analysis of MFL signals. The
proposed solution uses pattern-adapted wavelets to detect and estimate the
length of metal-loss defects. Once the parts of MFL signals corresponding to
metal-loss defects are isolated, artificial neural networks are used to predict
their depth. The proposed technique is computationally efficient, achieves
high levels of accuracy, and works for a wide range of defect shapes.
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1. Introduction

Oil and gas pipelines are an important component of the energy sector
nowadays. In the US, 70% of all petroleum transported in 2009 was carried
by pipeline [4]. In Canada, 97% of all natural gas and crude oil production is
currently being transported by pipeline [14]. However, despite being consid-
ered as one of the safest and cheapest ways to transport oil and gas [13, 14],
pipelines are still prone to a variety of metal-loss defects such as corrosion,
cracks, and dents. These defects are mainly due to factors, such as extreme
temperature and pressure inside the pipeline, exposure to highly corrosive
chemicals, water, etc. The repercussions of not detecting and repairing such
defects on time can be very serious: huge financial losses, damage to the en-
vironment, health and life hazards, etc. Given the size of an average pipeline,
and the amount of data generated from magnetic scans, relying on human
operators to sift through the data and find defects is a highly challenging
and error-prone task.

This paper describes a solution to automate the process of inspecting
MFL data [16, 17, 18] generated through the scanning of oil and gas pipelines.
The proposed solution uses a technique based on pattern-adapted wavelets [15,
36] to detect, locate, and estimate the length of metal loss defects along the
pipeline. Once a defect is located, a number of features are extracted from
the corresponding MFL signal. Those features are then fed into an artificial
neural network which returns an estimate of the defect depth. The obtained
depth and length are then used to assign a severity rating to the detected
defect, and decide whether or not urgent repairs are due. The severity rating
is assigned using industry standards such as ASME.BG31 [3], which provides
a formula to evaluate a defect’s severity given its dimensions, the operating
pressure inside the pipeline, and other properties of the steel used to build
the pipeline.

Related work. The development of techniques to assess the safety of oil and
gas pipelines has attracted the attention of many researchers over the last
several years [17, 18, 46, 41, 51, 20, 39, 50]. Results on this topic are very
diverse in terms of what they achieve, the specific problems they address,
and the approaches they use. Figure 1 provides a high-level summary of the
research landscape in this area. Following the notation in Figure 1, we can
divide the literature on this topic into three main groups:

Group I. Numerical techniques to determine defect sizes.
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Figure 1: Summary of Related Work and Comparison to this Paper.

Group II. Non-numerical techniques to detect and locate defects (sizing
problem not considered).

Group III. Non-numerical techniques to detect, locate, and determine the
opening length of defects. Some of the work in this category does also
provide ways to classify defects and other pipeline features into different
types (e.g., holes, valves, junctions, etc.).

It is worth noting at this point that work listed under Groups II and
III includes cases where the application domain is not related to oil and gas
pipelines. Some of the techniques, for example, relate to the detection and
location of defects in underground power cables. In some cases also, the
signals being analyzed are not MFL signals (e.g., electrical, acoustic, and
pressure wave signals). None of the non-numerical methods found in the
literature considered the problem of determining defect depths.
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In the following, we summarize each of the group of techniques listed
above, and show the similarities and differences with the work in this paper.

Group I : Numerical techniques to determine defect sizes. The work in [17,
18, 46] considered numerical methods, not based on wavelets, to address the
problem of defect sizing from MFL signals. These methods however only
apply to defect shapes for which analytical models are known. The approach
proposed in [17, 18, 46] is to express the relationship between MFL signals
and defect geometries through an equation of the form:

BMFL = F(D) (1)

where BMFL denotes the MFL signals, D the defect geometry, and F(·) the
analytical model describing the behavior of the MFL signals in relation to the
defect geometry. Determining the size of a defect, then, reduces to inverting
Equation (1) and finding D given BMFL and F(·). This approach is straight-
forward, but has a number of limitations: (i) Equation (1) may have several
solutions, which could lead to several plausible defect geometries; (ii) solving
Equation (1) has a high computational cost — at least cubic in the size of
the MFL signals matrix BMFL [29]; and (iii) the analytical model F(·) itself
is not always available. In fact, apart from a limited number of simple de-
fect shapes (e.g., cylindrical, spherical, spheroidal, and cuboidal [18, 46, 29]),
analytical models for general arbitrary defect shapes are still hard to de-
rive [18, 46]. This is due to the fact that deriving analytical models requires
solving Maxwell’s equations of magnetism [1], which is not easy for defects
of general arbitrary shapes.

The authors in [17, 18, 46] demonstrate their approach on a number of
simple defect shapes, and solve the sizing problem using techniques such as
the Finite Element Method (FEM) [48], linear algebra, and machine learning.
However, as explained above, it is hard to apply this approach to defects of
arbitrary shapes.

More recently, the authors in [42] have used numerical methods to study
the relationship between MFL signals and defect geometries (length and
depth). They conclude their paper by confirming the non-linear nature of the
relationship between MFL signals and defect geometries. They do also point
out the difficulty of using numerical methods for determining defect depths
from MFL signals, since several defect geometries can lead to the same MFL
signal characteristics (e.g., maximum peak amplitude).
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Building on the observations of [42], the work in [44] uses numerical meth-
ods to estimate the worst-case defect depth corresponding to a given MFL
signal. The proposed method is applied to an MFL model generated from a
non-linear FEM approximation. The authors conclude by pointing out that
the accuracy of the worst-case defect depth depends on the quality of the
MFL model being used, and that for defects deeper than 70% of the wall’s
thickness, the solutions found by their method may not be correct.

Finally, the work in [27] describes a model to estimate defect depths as
a quadratic function of the MFL peak values. The parameters of the model,
however, are obtained by computing an FEM approximation of the MFL field
for a given defect shape. The experimental results reported by the authors
show that their method achieves an estimation error of less than 20% of the
pipeline wall’s thickness, which is acceptable by industry standards. The
main limitation of [27] is that it relies on FEM-derived analytical models,
which can be obtained only for simple defect shapes.

The work presented in this paper does not require analytical models, and
uses pattern-adapted wavelets [36, 37] and machine learning techniques [22,
38] that can be applied to any defect shapes.

Group II : Non-numerical techniques to detect and locate defects (no sizing).
The authors in [41, 51] have used wavelets for the purpose of de-noising MFL
signals, as well as detecting, and locating defects oil and gas pipelines. The
problem of defect sizing however was not considered by these authors.

Wavelets have also been used in other applications, including the detec-
tion and characterization of faults in underground power cables [31, 35, 25, 6].
More precisely, the authors in [31, 35, 25, 6] have used wavelet transforms
to detect and locate faults, and classify them into a set of predefined fault
types. The work in [31, 35, 25, 6] is related to this paper, but there are two
important differences. In particular, the work in this paper models defects as
3D objects, and uses wavelets both to locate them and determine their sizes,
while the work in [31, 35, 25, 6] does not consider the sizing problem, since it
models faults as discrete points on a line. Moreover, the work in [31, 35, 25, 6]
uses general purpose mother wavelets, whereas this paper uses a customized
mother wavelet adapted to the reference pattern to be detected.

Wavelets [37] have also been used previously in the area of biology, for
example, to detect various health problems, such as brain and heart ill-
nesses [36, 2, 19]. Their usage in biology, however, was only to detect anoma-
lies, and not to quantify them. In other words, the problems considered
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in [2, 19] are mainly detection problems: i.e., the goal was to analyze signals
from biological measurements, and determine which parts of the signals are
normal, and which ones are abnormal.

Group III : Non-numerical techniques to detect, locate, and determine the
opening length of defects. The authors in [9, 39, 50] have used wavelets to
analyze other types of signals, namely pressure wave signals inside a pipeline,
for the purpose of detecting and locating holes and other features (e.g., valves,
junctions) in a pipeline network. The work in [20] uses similar signal pro-
cessing methods, namely, the Hilbert Transform (HT) [45] and Hilbert-Huang
Transform (HHT) [45], to detect and locate holes from pressure wave signals.

The solutions proposed in [9, 20, 39, 50] rely on the following physical
phenomenon. A leaking hole causes a local change in density in the fluid
flowing inside the pipeline, which in turn provokes reflections in the pressure
wave signal. These reflections can be detected as echoes. The techniques
in [9, 20, 50] infer the location of the defect from the time it takes for echoes
to arrive at some appropriately placed sensor. The solutions in [9, 50] use
two noise-filtering techniques (Kurtosis [5] and Cepstrum [11]) to make it
possible to recognize echoes in the wavelet transform, despite high levels of
noise in the pressure wave signals.

The work in [39] assumes a slightly different setting, where two sensors
are placed at two different locations on the pipeline, such that the distance
between the two is known. The pipeline is then excited with a pressure
wave, which propagates through the fluid inside the pipeline, and produces
a reflexive wave when encountering a hole. The technique in [39] estimates
the time difference it takes for the reflexive wave to arrive at each sensor.
Given this time difference and the wave speed, the authors in [39] infer the
location of the defect. The work in [39] conducts a fine-grained analysis of the
wave speed of direct waves (non-dispersive waves) and the reflective waves
(dispersive waves), thereby achieving higher precision than earlier methods
based on cross-correlation between the signals received at each sensor [40, 8].

While related, there are some important differences between the work
presented in this paper and those in [9, 20, 39, 50].

1. First, the goal of this paper is to detect not only holes and leaks, but
also defects that do not lead to a hole in the pipeline wall. This includes
for example, superficial metal-loss defects from corrosion, or construc-
tion defects inside the pipeline wall (i.e., an air gap inside the wall of
the pipeline that does not show any features on the external surface of
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the pipeline wall). In the case of a superficial metal-loss (e.g., from cor-
rosion), it is not clear if the resulting echoes in the pressure wave signals
would be important enough to be detected. For construction defects
(i.e., air gaps inside the pipeline wall), it is clear that pressure wave
signals cannot detect their presence. These two types of defects, as
well as holes, are however detectable using MFL signals. This is prob-
ably the reason why MFL scanning is the most widely used inspection
method in the oil and gas industry.

2. The authors in [39] indicate also that the method they propose is not
applicable to pipelines carrying incompressible fluids such as crude oil
because the used technique relies on a particular behavior of vibro-
acoustic waves in compressible fluids such as gas. The MFL signals
used in this paper do not have this constraint, and work on any type
of metallic pipelines regardless of the fluid or gas they carry.

3. Moreover, the method proposed in this paper provides an estimate of
the opening length and depth of a defect, and not only its location.
By contrast, the technique in [39] is mainly intended for locating hole
defects. However, that technique could be used to infer the opening
length of a defect, if the location of each edge of a defect is determined.

4. The work in this paper uses wavelets for a completely different purpose
than [9, 39, 50]. For instance, the work in [9, 50] use the wavelet
transform to filter out noise from pressure wave signals (which will
be further analyzed to find “spikes” in amplitude, or echoes, whose
coordinates indicate the location of holes on the pipeline). This work
on the other hand uses wavelet transforms to locate the occurrence of
a possibly dilated version of a reference pattern in the MFL signals.
Such an occurrence causes a local maximum in the Wavelet Transform.
This is possible, because the mother wavelet in this paper is built from
the pattern signal of the defect to be detected.1 The solutions in [9,
39, 50] on the other hand, use generic mother wavelets (Morlet and the
Mexican Hat), either to filter noisy signals, or to detect peaks in the
wavelet transform; the latter correspond to the arrival time of reflected
echoes.

5. Finally, the work in [20] uses Hilbert Transform (HT) and Hilbert-
Huang Transform (HHT) to analyze pressure wave signals. While the

1More details on the use of pattern-adapted wavelets are given in Section 3.2.
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patterns being detected in [20] are different from the ones in this paper,
further research needs to be done to see how those signal processing
techniques can be applied to MFL signals. The question of estimating
defect sizes (opening length and depth) using the techniques in [20]
needs to be further explored as well.

Summary of paper contribution. This paper presents a technique to detect
and locate defects in MFL data, and determine their lengths and depths. The
proposed technique is based on pattern-adapted wavelets [36, 37] and machine
learning [22, 38]. The solution in this paper does not rely on analytical
models, and can detect the occurrence of any reference pattern in the MFL
signal. As a result, the proposed technique can handle a wide range of defect
shapes, even those for which no analytical models are known. Unlike related
work in Groups II and III, this paper presents a technique to estimate defect
depths from MFL signals.

Paper outline. The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief overview on MFL scanning, and highlights the main idea
behind its use in the detection of metal-loss defects. Section 3 introduces
wavelets and shows how they are used to locate defects and estimate their
length. Section 4 describes the features extracted from the MFL signals of
detected defects, and the artificial neural network built to analyze them. It
also presents the performance results and compares them to those achieved
by the Linear Regressions technique. Section 6 provides a summary, and
discusses the performance of the overall solution. Finally, Section 7 provides
concluding remarks and ideas for extending this work.

2. MFL-based pipeline inspection

MFL scanning is a well established technique for inspecting pipelines
made from ferromagnetic material [3]. The technique makes it possible to
detect, locate, and estimate the size of metal loss defects present on a pipeline.
The idea behind MFL scanning is the following. When two strong magnets
of opposite polarity are held close to the surface of a pipeline, the latter is
magnetized, and lines of magnetic force flow through the walls of the pipeline,
from the south pole to the north pole. When the pipeline wall contains a
crack or a thinning (due to corrosion, for example), two new poles appear
at the edges of the crack: a north pole and a south pole, similar to when a
magnet is broken in two. As a result, the magnetic lines of force now flow
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through the ferromagnetic material of the pipeline wall, then through the
air gap created by the crack, then again through the ferromagnetic material
(Figure 2a). The set of magnetic lines of force flowing through these materials
(e.g., ferromagnetic steel, air) is called Magnetic Flux. And the density
of magnetic flux in each material depends on a physical property of the
material called Magnetic Permeability. Informally speaking, the Magnetic
Permeability of a given material denotes the degree to which magnetic flux
is able to flow through that material. This is very similar to the concept of
conductivity in electricity, or fluid permeability in porous materials such as
rocks.

Forromagnetic Material

Magnetic Flux

Magnetic Flux Leakage

Air gap

N

N
S

S

(a) Magnetic Flux Leakage around a
defect

: Magnetic Permeability of Air

: Magnetic Permeability of

µ0

µ1

µ1

µ1

1µ
µ1

1µ

Forromagnetic Material

0

S

N

> µ

S

N

(b) Magnetic permeability in air and steel

Figure 2: Magnetic Flux Leakage.

Different materials have different magnetic permeability. For instance,
ferromagnetic steel has a much higher magnetic permeability than air. There-
fore, the density of magnetic flux in the healthy parts of the pipeline is much
higher than the density of magnetic flux in the air gap created by the crack
(Figure 2b). As a result, the magnetic lines of force bulge out as they go
through the air gap, because air cannot absorb as much flux per unit volume
as the ferromagnetic material of the pipeline. This bulging of magnetic flux is
called Magnetic Flux Leakage; it is the physical phenomenon the pipeline in-
dustry relies on to detect defects in oil and gas pipelines. Figure 2a illustrates
the magnetic flux leakage phenomenon.

In MFL-based inspection, a scanning tool equipped with strong magnets
and magnetic sensors is sent inside a pipeline. The walls of the pipeline are
magnetized, and sensors are used to measure any magnetic flux leakage. The
sensors are equally-distributed around the circumference of the pipeline, and
move with the inspection tool parallel to the axis of the pipeline. The use of
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several sensors around the circumference of the pipeline makes it possible to
precisely locate the angular position of a defect. Figure 3 shows a rolled-out
representation of the pipeline, and how the MFL sensors are equally spaced
along the x-axis, above the pipeline. Any magnetic flux leakage detected by
the sensors indicates the presence of a defect. The MFL signals measured by
the sensors are recorded, and later analyzed to locate possible defects, and
determine their sizes and severity levels. MFL signals are the main input
data to the solution presented in this paper.
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Figure 3: MFL Measurement Setting.

3. Pattern-adapted wavelets for the detection and sizing of metal-

loss defects

3.1. MFL signal patterns around defect edges

MFL signals recorded in the neighbourhood of a metal-loss defect have
a distinct shape. Figures 4 and 5 show sample MFL signals simulated for
cylindrical and cuboidal defects, respectively. Figure 5 displays the individual
MFL signals simulated for each of the sensors passing above the defect. The
X and Y axes in Figures 4 and 5, as well as the sensors trajectories and
direction of magnetization, are as indicated in Figure 3. The MFL signals
in Figures 4 and 5 were simulated in MATLAB [34] using analytical models
described in [16, 17, 18, 29].

As can be seen in Figure 4, the sensor passing directly above the center
of the defect (i.e., along x = 0) has the MFL signal for which the axial and
radial components have the highest amplitude. This amplitude gets lower
for sensors further away from the center of the defect. The MFL signals
of other regularly-shaped defects (such as spheroidal and spherical defects)
have patterns similar to the ones in Figures 4 and 5.
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Figure 4: MFL scan of cylindrical (top) and cuboidal (bottom) defects.

As can be noted in Figures 4 and 5, MFL signals show a distinct behavior
around defect edges. For example, peaks in the tangential and radial compo-
nents (Bx and Bz) of the MFL signal mark the location of defect edges. The
technique proposed in this paper uses the MFL behavior around metal-loss
defects as a reference pattern. The next subsection explains how this refer-
ence pattern is used in connection with wavelet transforms to automate the
detection and location of defect edges.

3.2. Wavelets as a technique to represent and analyze signals

Wavelets are a powerful mathematical tool with a wide variety of appli-
cations ranging from high-efficiency data compression [12] to data analysis
and classification [49, 41, 9, 50, 39, 51]. Informally speaking, a wavelet trans-
form provides a mechanism to compute the degree of similarity a signal and
reference pattern. There is a rich body of work in the literature detailing
the theoretical foundations of wavelets [15, 32, 37]. For the purpose of this
paper, however, only a few important facts about wavelets are highlighted.
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Figure 5: MFL signals from each of the sensors passing above a defect.

For a signal f(x), the wavelet transform of f , with respect to mother
wavelet ψ(x), is defined as:

(Wf) : R+∗ × R −→ C

(a, b) 7−→ (Wf)(a, b) =

∫
∞

−∞

f(x)ψa,b(x) dx
(2)

Where ψa,b(x) ≡ |a|
1/2ψ(a(x− b)).

For a function ψ(x) to be an admissible mother wavelet, it is sufficient
that the following conditions [37, 15] be satisfied:

ψ(x) is real, ψ(x) ∈ L1 ∩ L2, xψ(x) ∈ L1, and

∫
∞

−∞

ψ(x) dx = 0 (3)

Where L1 and L2 denote the the space of integrable and square integrable
functions over R, respectively.

Following are a few important properties of the wavelet transform.
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• The mother wavelet, which is chosen in the setup phase, specifies the
reference pattern of the wavelet transform.

• The parameters a and b in the the wavelet transform (Wf)(a, b) de-
note the width of the pattern being tested, and the location where the
pattern is centered, respectively.

• A local maximum in the wavelet transform at coordinates (a0, b0) indi-
cates the presence of an instance of the reference pattern of width a0,
at location b0.

Figure 6 shows a sample MFL signal from a pipeline containing three de-
fects of cuboidal shape. The reference patterns used to detect those defects
are shown at the top of Figure 7. Since these patterns do not necessarily
satisfy the admissibility conditions in (3), they cannot be used directly as
mother wavelets. The mother wavelets are constructed instead as an approx-
imation of the reference patterns. Following is a description of the procedure.
Let f denote a reference pattern, such that f is a square integrable real func-
tion with a compact support. Let [u, v] denote the interval containing the

support of f . Let ψ̂ be the function defined as: ψ̂ : [u, v] −→ R, x 7−→

f(x) − 1

v−u
×

∫
R
f(x) dx. It can be easily seen that the function ψ̂ defined

above satisfies the admissibility conditions stated in (3). The mother wavelet

ψ is finally chosen as a normalized version of ψ̂. That is

ψ : [u, v] −→ R

x 7−→
ψ̂(x)

‖ψ̂‖
=

ψ̂(x)√∫
R
ψ̂2(x) dx

(4)

The function ψ is an admissible mother wavelet. Moreover, it is adapted
to the reference pattern f , and preserves its shape.

The computation of the pattern-adapted mother wavelet ψ has been
performed in practice using the pat2cwav function provided in the Matlab
Wavelet Toolbox [34]. Additional methods for constructing pattern-adapted
wavelets can be found in [37].

Figure 8 shows the y-component of an MFL signal with three defects (top)
and its wavelet transform (bottom). The coordinates of the local maxima in
the wavelet transform are highlighted. The horizontal coordinates indicate
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Figure 6: Sample MFL scan of a pipeline with three metal-loss defects of
cuboidal shape.
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Figure 7: Reference patterns and admissible mother wavelets for defects of
cuboidal shape.

the center of the detected defects, while the vertical coordinates are used to
determine the width of each defect.

Figure 9 shows fragments from the MFL signal of Figure 8, corresponding
to the detected metal-loss defects. All three components (Bx, By and Bz) of
the MFL signal are given. It can be easily seen how these signals are dilated
and translated versions of the reference patterns shown in Figure 7.

The same method is applied to a noisy MFL signal with a Signal-to-
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Figure 8: Wavelet transform of an MFL signal with respect to a pattern-
adapted wavelet basis.
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Figure 9: Portions of the MFL signal in Figure 8 corresponding to metal-loss
defects.

Noise Ratio2 (SNR) = 10dB. The results of the detection and the signal
fragments corresponding to the detected defects are shown in Figures 10
and 11, respectively. The level of precision achieved at locating defects and

2SNR ≡ 10 log10(PSignal/PNoise), where P denotes power.
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estimating their lengths, both for noisy and noiseless signals, demonstrates
the robustness of the method.

The extracted signal fragments (Figures 9 and 11) will be further analyzed
to estimate the depth of the detected defects. This is described in section 4.
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Figure 10: Defect detection in MFL signal with White Gaussian Noise
(SNR = 10 dB).
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Figure 11: Portions of the MFL signal in Figure 10 corresponding to metal-
loss defects.
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4. Artificial neural network to estimate defect depths

4.1. Motivation

Depth and length are very important factors to determine the severity
of a metal-loss defect. Industry standards, such as ASME B31G-1991 [3],
provide criteria (c.f., Figure 12) to determine the severity of a defect from its
length and depth, given information such as the operating pressure, and the
physical properties of the material from which the pipeline is made. Defect
lengths were determined in the previous section. This section will focus on
finding defect depths.

Figure 12: Parabolic criteria for classifying corrosion defects based on length
and depth, for a given pipeline material and operating pressure [3].

By observing the MFL signals of metal-loss defects it can be noted that
the magnitude of the signals is much higher for defects with larger depths.
Figure 13 shows, for instance, the MFL signals of two cylindrical defects
with the same radius, and depths 0.1 and 1.2 length units, respectively3. As

3The locations of the zero-crossings in the By graph of Figure 13 indicate the actual
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can be seen in Figure 13, the magnitude of the MFL signals of the defect of
depth 1.2 is about 10 times higher than those of the defect of depth 0.1. The
relationship between defect depths and the magnitude of MFL signals is not
a linear one, however. In fact, this relationship is still not well understood,
and defect depths may depend on other features of the MFL signal.
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(a) Cylindrical defect of Radius = 0.75 and
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Depth = 1.2

Figure 13: Difference in MFL magnitude for cylindrical defects of same radius
and different depths.

A lot of research has been dedicated to understanding the relationship
between MFL signals and defect depths [46, 16, 17, 18], but the problem
unsolved to this day. The work in [18] gives a number of arguments as to
why analytical models expressing depth as a function of the MFL signal
cannot always exist. Following the arguments in [18], this work explores the
use machine learning techniques to predict defect depths from MFL signals.

The focus of this work is not to find the best possible machine learn-
ing (ML) technique for the task, but rather to find a technique that gives
reasonably good results. Artificial neural networks (ANN) [22] have been
chosen as a candidate ML technique because of their generality and ability
to learn complex relations. For comparison purposes the prediction task was
also performed using Linear Regression [22].

limits of the defect opening.
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4.2. Overview on Artificial Neural Networks

Artificial Neural Networks (ANNs) [22] are a popular algorithmic tool
that attempts to mimic the architecture of neural networks in the human
brain. ANNs have proved to be effective in a variety of tasks such as data
fitting, function approximation, time series prediction, data classification,
data clustering, etc. Generally speaking, ANNs can be thought of as a com-
putational tool capable of approximating a function having multiple inputs
and outputs. It consists of a graph of neurons linked to each other by edges.
Each neuron computes a function (called Activation function) on the values
received on its input edges, and sends the result forward on its output edge.
In addition, each neuron Ni in the network has a bias bi, and each edge
linking neuron Ni to Nj has a weight Wij. Let Ai() denote the activation
function of neuron Ni, and let Ii1, · · · , Iik denote its inputs. The output of
neuron Ni is computed as Oi = Ai(bi +

∑k
j=1WijIj). Figure 14 shows an

example of an artificial neural network.
The network of neurons described above is augmented with a search al-

gorithm that determines the optimal weights and biases that minimize the
error between the final output of the network, and the output of the function
to be approximated. Let F denote the function to be approximated. The
search for the optimal weights and biases is an iterative process that loops
through pairs of input-output data {(Xℓ, F (Xℓ)), ℓ ∈ [1,M ]}, and adjusts the
weights and biases so that the output of the network on inputs Xℓ is closer
to F (Xℓ). This phase, when the network parameters are being adjusted, is
called the training phase, and the set of pairs {(Xℓ, F (Xℓ)), ℓ ∈ [1,M ]} is
called the training data. When the training phase is complete, the resulting
neural network can be used to predict F on fresh input data.

ANNs have been applied in a variety of fields, ranging from robotics [21],
to data science [10], to medicine [2, 26], and financial markets forecasting [28].
More details about ANNs can be found in [22].

4.3. Preparing the dataset

Raw MFL signals are vectors of arbitrary sizes and cannot be fed directly
to the ML techniques considered in this work. Instead, various features are
first extracted from the signals and then used to build a dataset. The next
section discusses the choice of features, and describes the feature extraction
procedure.
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Figure 14: Structure of an Artificial Neural Network.

4.4. Extracting features from MFL signals

There are many possible features that can be extracted from a given
signal. These can range from characteristics such as maximum magnitude
and peak-to-peak distance, to metrics such as mean-average and standard
deviation. The goal, however, is to compute the smallest set of features that
captures most of the information contained in the signal. Ideally, one should
be able to regenerate the signal right from the extracted set of features, while
keeping the latter small.

In this work, the following features were extracted because of their ap-
parent dependence on the defect depth.

• Maximum magnitude

• Peak-to-peak distance

• Mean average

• Standard deviation

• Integral of the normalized signal4

4The signal is first normalized with respect to the maximum magnitude, and then
normalized with respect to position. That is, the position of the two peaks are mapped
to −1 and +1, and the signal is shrunk to fit on the [-1,1] interval. This provides a better
way to compare signals on the same interval while preserving their overall shape.
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The above features do capture a lot of the information contained in the
signals, but not everything. To make sure, the maximum amount of infor-
mation about the signal is captured, polynomial series were used to approx-
imate the MFL signals. For this particular instance of the MFL signals,
polynomials of degrees 3, 6, and 6 provided the best approximation for Bx,
By, and Bz respectively. By convention, a degree n polynomial is writ-
ten P (X) ≡ anX

n + · · · + a1X + a0. The coefficients of the polynomial
approximations, along with the above features, give a total of 33 features
(33 = (5 × 3) + 4 + 7 + 7). To reduce the number of features and remove
redundancy, Principal Component Analysis (PCA) [24, 23] was conducted
on the data set. Table 1 gives the final number of features for noisy and
noiseless MFL signals. The initial dataset (with 33 features) is projected
along the principal components obtained through PCA, and the result is fed
to a machine learning algorithm.

Two machine learning techniques are considered in this paper: ANN and
Linear Regression. Non-linear parametric regression [47] is another technique
that was considered. It should be noted, however, that to use non-linear
regression, one needs to choose a parametrized non-linear model of the form
Y = f(X, β), where X is the predictors matrix, Y the values to be predicted,
and β a parameters vector. The goal then is to find the optimal value of the
parameters vector β that allows f to best fit the data. There are numerous
families of functions from which f can be chosen: exponential functions,
logarithmic functions, trigonometric functions, n-th root functions, rational
functions, polynomials of various degrees, etc. The first challenge is to find a
suitable family of functions to express f , that will allow it to fit the data with
an acceptable level of accuracy. This is not an easy task. All the non-linear
models that were tried in this work resulted in much lower accuracy than the
methods based on ANNs and linear regression. This is due to the fact that
the chosen models were not adequate for the data at hand. Finding the right
model is not easy, especially when many parameters are involved.

Neural networks on the other hand, are known for their ability to learn
non-linear relations, without requiring a model of those relations as an input.
The models obtained in this work, using neural networks, are in fact non-
linear, and their accuracy is much higher than that of linear models. In cases
where a model of the relationship between input and output is not known,
neural networks can be a practical alternative to non-linear prediction.
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Noiseless SNR = 10dB SNR = 5dB SNR = 3dB

Number of principal
components explain-
ing 95% of the vari-
ance in the data

7 8 9 10

Table 1: Number of principal components for noisy and noiseless data sets.

4.5. Defect depth prediction using ANNs

This work explored the use of FeedForward Neural Networks (FFNNs) [22].
Other types of neural networks will be considered in a future work. The
dataset comprises around 1300 data items (input features and target out-
put). Each data item corresponds to a cylindrical defect of a different size
(radius and depth). The dataset is first partitioned into three separate sets:
one for training, one for cross-validation, and one for testing. The parti-
tioning is performed using random sampling; the indices of the set are first
shuffled through a random permutation. Then the first 70% are assigned
to the training set, the next 15% to the validation set, and the remaining
15% to the test set. The neural network is trained using the Early Stopping
Cross-validation technique [43] which can be summarized in Figure 15.

4.6. Neural network size and architecture

A number of parameters can be fine-tuned to obtain the optimal neural
network configuration for the task at hand. These include parameters such
as:

1. The number of hidden layers, and the size of each layer.

2. The error performance function (e.g., Mean Squared Error, Sum Squared
Error, etc.)

3. The training algorithm (e.g., Gradient Descent [22, 38], Levenberg-
Marquardt [30, 33], etc.)

4. The transfer functions [22, 38] used in the hidden layer neurons (e.g.,
Log sigmoid, Hyperbolic Tangent sigmoid, etc.)

The experiments presented in this paper sought to optimize the ANN
with respect to the number of hidden layers and their sizes, and kept the
other parameters fixed as follows:

1. Error performance function: Mean Squared Error.
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Input: Dataset
Output: Trained ANN and error performance on test dataset

1 Initialize new ANN;
2 valError ←− +∞; /* MSE on validation vataset */

3 successiveFailsCounter ←− 0; /* Counts how many times, in */

4 /* a row, MSE on validation */

5 /* dataset has increased */

6 maxFails ←− 6; /* Denotes the max number of times */

7 /* the validation error is allowed to decrease */

8 /* before training ends. It can be set to any value */

9 repeat

10 Train ANN on training dataset only;
11 valError ←− MSE of resulting ANN on validation dataset;
12 Store new ANN configuration and valError ; /* Information */

13 /* is appended to previous data */

14 if valError > valError of previous round then

15 successiveFailsCounter++;
16 end

17 until successiveFailsCounter = maxFails;

18 Among all ANN configurations tried in the repeat loop, find optimal
ANN for which the validation error valError is minimum.

19 return optimal ANN and its MSE on the test dataset

Figure 15: ANN Training using Early Stopping Cross-validation [43]

2. Training algorithm: Levenberg-Marquardt.

3. Transfer function: Log sigmoid.

It might be useful to conduct an optimization search with respect the
parameters above, but this is not in scope for this paper.

To find the optimal network size, an experiment was performed for ANNs
with 1, 2, and 3 hidden layers, where each layer had a number of neurons
ranging from 5 to 100. Each of the ANN configurations above was used to
analyze data from noiseless and noisy MFL signals with SNRs equal to 10dB,
5dB, and 3dB, and the error performance was recorded. All experiments
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1 Hidden Layer 2 Hidden Layers 3 Hidden Layers

Noiseless [40]/4.8e-05 [25,5]/8.3e-06 [45,5,25]/4.7e-06
SNR = 10dB [65]/0.0271 [15,5]/0.0181 [25,65,5]/0.0165
SNR = 5dB [85]/0.0285 [15,25]/0.0253 [45,45,5]/0.0271
SNR = 3dB [45]/0.0175 [45,35]/0.0172 [5,65,25]/0.0170

Table 2: Optimal ANN sizes and MSEs for noisy and noiseless data sets.

were done in MATLAB using the Neural Networks Toolbox [7]. The optimal
network sizes obtained from those experiments are shown in Table 2. The
depth prediction experiments presented in the remainder of this paper use the
optimal networks sizes shown in Table 2. The results of those experiments
are given in Section 5.3.

4.7. Defect depth prediction using Linear Regression

For the sake of comparison, the same datasets from the previous sections
were used to predict defect depths using Linear Regression (LR) [22]. To
make the comparison as precise as possible, the same partitions (training,
validation, and testing) used in the ANN experiments, were also used for
linear regression. The training datasets were used to compute the linear re-
gression models, and the test datasets to compute the error performance of
the linear regression. The results of the linear regression, as well as compar-
ison with the ANN performance are given in Section 5.3.

5. Performance results

5.1. Performance criterion

The performance criterion adopted in this paper is Prediction Accuracy
@80% Certainty, which is defined as the half width of the error interval that
the prediction method can guarantee for at least 80% of the test dataset. For
example, a prediction accuracy @80% of ±10% means that the prediction
error, for at least 80% of the dataset, is in the range ±10% of the real defect
depth. Accuracy at higher or lower levels of certainty (e.g., @95% or @70%)
can also be considered, depending on the sensitivity of the application. This
criterion is used to evaluate the accuracy of defect length and defect depth
predictions.
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5.2. Performance results of defect length prediction

Table 3 shows the accuracy @80% certainty of defect length predictions
based on the WT technique. The accuracy is given for noisy and noiseless
signals. The tables in Appendix A give the length sizing accuracy at 70%
and 90% certainty. As Table 3 shows, the length sizing accuracy of the
WT-based technique is almost perfect for noiseless signals, but decreases for
noisy signals. To improve the length sizing accuracy for noisy signals, the
defect lengths predicted by the WT technique were combined with features
extracted from defect signals, and fed to machine learning techniques (ANNs
and Linear Regression). More precisely, the features extracted in Section 4.4
were added to the defect lengths predicted by the Wavelet-based technique
of Section 3.2. PCA was then applied to the dataset, thereby reducing the
number of features from 34 to 7 or 10 depending on the noise level (c.f.,
Table 1). The projection of the dataset along the principal components was
then fed to one-layer and two-layer ANNs, as well as Linear Regression.

As can be seen in Table 3, the application of machine learning techniques
has drastically improved the length sizing accuracy, with the WT + 1-layer
ANN combination giving the best results. It is worth noting here that apply-
ing the ML techniques to the WT-predicted defect lengths alone did not lead
to any improvement in accuracy. Adding the extracted features produced
the improvements shown in Table 3.

Length Accuracy @80% Certainty
WT alone WT + LR WT + 1-lay. ANN WT + 2-lay. ANN

Noiseless ±2% ±2% ±1% ±2%
SNR = 10dB ±7% ±4% ±3% ±2%
SNR = 5dB ±20% ±7% ±5% ±5%
SNR = 3dB ±39% ±16% ±8% ±11%

Table 3: Length Prediction Accuracy @80% Certainty

5.3. Performance results of defect depth prediction

Table 4 shows the accuracy @80% achieved by two-hidden-layer and three-
hidden-layer ANNs, as well as the linear regression technique. All accuracy
figures in Table 4 were computed on the test Dataset. The network sizes
used for the two-hidden-layer and three-hidden-layer ANNs are the optimal
ones, indicated in Table 2.

25



Depth Accuracy @80% Certainty
2-Layer ANN 3-Layer ANN Linear Regression

Noiseless < ±1% < ±1% ±25 %
SNR = 10dB ±10% ±9% ±35 %
SNR = 5dB ±13% ±14% ±40 %
SNR = 3dB ±11% ±12% ±26 %

Table 4: Depth Prediction Accuracy @80% Certainty

Figures 16, 17, and 18 show the depth prediction accuracy performance of
2-layer ANN, 3-layer ANN, and the linear regression technique, obtained for
MFL signals with SNR = 10dB. The accuracy is shown for different levels of
certainty. The accuracy @80% certainty is highlighted in red. Tables showing
the depth prediction accuracy at 70 and 90% accuracy, obtained for noiseless
and noisy signals with SNRs = 10dB, 5dB and 3dB, are given in Appendix B.
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Figure 16: Depth Prediction Accuracy of 2-layer ANN – SNR = 10dB

6. Discussion

The solution described in this work consists of two parts. The first ac-
complishes three main tasks. It detects and locates metal-loss defects in the
MFL scan of a pipeline, and provides an estimate of the length of the opening
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Figure 17: Depth Prediction Accuracy of 3-layer ANN – SNR = 10dB
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Figure 18: Depth Prediction Accuracy of Linear Regression – SNR = 10dB

of each of those defects. The second part builds upon those findings, and
computes an estimate of the depth of each of the detected defects.

The above solution has been tested on MFL signals simulated using ana-
lytical models described in [16, 17, 18, 29]. The tests were conducted both on
noiseless and on noisy versions of the simulated signals. The noisy versions
had signal to noise ratios ranging from 3dB to 10dB.
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The first part of the solution (defect detection, location, and WT-based
length sizing) has achieved almost perfect accuracy for noiseless signals. The
accuracy of the WT technique was moderately affected for the noisy versions
of the signals. This is due to the fact that noise affects the smoothness
of the wavelet transform, and makes the WT surface more rugged and less
regular. This makes it more difficult to distinguish local maxima (in the WT)
corresponding to real defects, from those introduced by noise. To overcome
this limitation, defect lengths predicted by the WT technique were combined
with features extracted from the defect signals, and fed to machine learning
techniques (ANNs and Linear Regression). This combination has drastically
improved the length sizing accuracy as shown in Table 3.

The second part of the solution, which uses ANNs to analyze data from
MFL signals, achieved a depth prediction accuracy @80% certainty of less
than ±1% for noiseless signals, and ±10% to ±13% for noisy signals with
SNRs equal to 3dB, 5dB and 10dB. As shown in Table 4, the accuracy of the
ANN-based method is neatly superior to that of Linear Regression. Table 5
provides a summary of the best accuracy results achieved in this paper (all
methods included) both for length and depth prediction.

Accuracy @80% Certainty
Length Prediction Depth Accuracy

Noiseless ±1% < ±1%
SNR = 10dB ±2% ±9%
SNR = 5dB ±5% ±13%
SNR = 3dB ±8% ±11%

Table 5: Best Accuracy Results Achieved

To further improve the prediction accuracy for noisy signals, the following
measures will be explored:

• Using signal processing techniques to de-noise signals prior to the fea-
ture extraction step.

• Running the proposed solution again on MFL signals recorded at a
lower lift-off (i.e., height at which the MFL signals are recorded). The
MFL signals used in this work were simulated for a lift-off = 1 cm. MFL
signals recorded or simulated at a lower lift-off have higher amplitudes
and sharper features, and delineate defects much more closely.
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7. Conclusions and future work

The goal of this work has been to detect, locate, and estimate the size of
metal-loss defects from the MFL scans of oil and gas pipelines. The proposed
method is based on pattern-adapted wavelets and artificial neural networks,
and achieves high levels of accuracy and computational efficiency. The pro-
posed solution can detect any pattern in the MFL signal that is designated
as a reference pattern. In particular, it does not require knowledge of the
analytical models of the defect shapes to be detected. Because of this flexi-
bility, the proposed solution applies to a much wider range of defect shapes,
even those for which analytical models are not known. Another feature of
the proposed method is that defect detection and sizing are fully automated.

The results presented in this paper used the MFL signal of a cylindrical
defect as a reference pattern. In a future work, other defect shapes (e.g.,
spherical, spheroidal, and cuboidal) will be used as reference patterns, and
a comparative analysis will be conducted to determine which shape is best
suited for the detection and sizing of naturally-occurring arbitrarily-shaped
defects, such as surface corrosion. As highlighted in the previous section, var-
ious measures will be taken to further improve robustness to noise. The pro-
posed solution will be also applied to real MFL data from operating pipelines,
once such a data becomes available, and the results will be published.
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Appendix A. Length prediction accuracy performance

Length Accuracy @70% Certainty
WT alone WT + LR WT + 1-lay. ANN WT + 2-lay. ANN

Noiseless < ±2% < ±2% < ±1% ±1%
SNR = 10dB ±6% ±3% ±3% ±2.5%
SNR = 5dB ±12% ±5% ±3.5% ±4.5%
SNR = 3dB ±21% ±11% ±6.5% ±8%

Table A.6: Length Prediction Accuracy @70% Certainty

Length Accuracy @90% Certainty
WT alone WT + LR WT + 1-lay. ANN WT + 2-lay. ANN

Noiseless ±8% ±5% ±3.5% ±2.5%
SNR = 10dB ±12% ±5% ±5% ±5%
SNR = 5dB ±40% ±10% ±7% ±9%
SNR = 3dB ±65% ±22% ±11% ±15%

Table A.7: Length Prediction Accuracy @90% Certainty
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Appendix B. Depth prediction accuracy performance

Depth Accuracy @70% Certainty
2-Layer ANN 3-Layer ANN Linear Regression

Noiseless < ±1% < ±1% ±18 %
SNR = 10dB ±7.5% ±7.5% ±26 %
SNR = 5dB ±10% ±10% ±28 %
SNR = 3dB ±9% ±8.5% ±20 %

Table B.8: Depth Prediction Accuracy @70%

Depth Accuracy @90% Certainty
2-Layer ANN 3-Layer ANN Linear Regression

Noiseless ±2.5% < ±1% ±56 %
SNR = 10dB ±20% ±21% ±66 %
SNR = 5dB ±22% ±24% ±90 %
SNR = 3dB ±16% ±19% ±46 %

Table B.9: Depth Prediction Accuracy @90%
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