
Combinatorial Optimization -Comp 552 -Fall
2005

Professor Adrian Vetta
Scribe Matthew Drescher

January 31, 2006

Figure 1: P := {x : Ax ≤ b}

Exam 8 dec 2 pm.
We will be looking at problems of size say n. We have

G = (V, E)

if our problem is of size poly(n) we are happy. if exp(n) we are screwed. We
want efficient = polynomial ways of solving problems.

1



1 Matchings

A matching M in a graph G is a set of vertex disjoint edges. We say that
a v ∈ V is matched if it incident to some edge in M . Otherwise v is un-
matched

1.1 Maximum matchings

Augmenting path

A path P is augmenting with respect to M if
(i) The endpoints of P are unmatched.
(ii) Edges in P alternate between E −M and in M

Note that if P is an augmenting path with respect to M , then

M ′ := M ∪ P −M ∩ P := M ⊕ P

is also a matching with
|M ′| = |M |+ 1

.

Theorem 1. A matching M is of maximum size iff G contains no aug-
menting path with respect to it.

Proof. ⇒ |M ⊕ P | = |M |+ 1 ⇒

⇐
Suppose M is not a maximum matching which contains no augmenting path,
and let M∗ be a maximum matching. Now

M ⊕M∗ ⊆M ∪M∗

It is easy to see that
∀v ∈M ∪M∗, d(v) ≤ 2

2



(otherwise at least two edges from the same matching would be incident)

Thus M ⊕M∗ is a set of cycles and paths.
i) can not have any odd cycles, since then two edges from the same matching
would be incident
ii) cant have an augmenting path, otherwise M∗ is not maximum.

Thus we are restricted to even cycles and even paths, odd paths that are
not augmenting with respect to M∗.
We cannot have odd paths that are not augmenting for M∗, by the assump-
tion that M does not have augmenting paths. Thus |M | = |M∗| so M is
maximal.

Matching Algorithm

{
1.Start with M = Ø
2.Find augmenting path with respect to the current matching

3. Augment the current matching.

4. Repeat the above two steps as long as possible.

}

This is finite(exponential time). When it terminates we have a matching
with no augmenting paths, which is maximal by Theorem 1.

1.2 How to find an augmenting path

Edmonds’65
We look for augmenting walks between vertices in the set
S ⊆ V of unmatched vertices. walk: a not necessarily simple path.

Blossom–a cycle of length 2k + 1 which contains k matching edges.

Flower Consists of a blossom ,and an even length alternating path with
unmatched root.

3



Figure 2: flower

Given a Flower with blossom B, let G′ be the graph obtained by con-
tracting B to a single vertex. Call the resulting graph and matching G′ and
M ′.

1.3 Blossom: to reduce the size of our problem

.

Lemma 1. M is maximum in G iff M ′ is maximum in G′. (Note, this is
equivalent to not assuming we have a flower, but that M is disjoint from the
rest of B).

Proof. ⇒
Assume that M ′ is not maximum in G′. So there exists an augmenting path
p′ in G′. Then p′ contains B as vertex. But routing around B in one of the
directions gives an augmenting path p in G.

⇐
Suppose that M is not maximal in G. Again we have an augmenting path
p which again intersects B , or its easy. One of the endpoints of p is not
contained in the blossom.(since B has at most one unmatched vertex w). We
may assume that w is unmatched. (switch on the stem, if not the case). But
then p0 to w is an augmenting path in G′. Since every edge from (B, V −B)
is unmatched. w is the unmatched vertex in B.

1.4 Finding a Blossom

Recall S, the set of unmatched vertices.
We find an S to S alternating walk in G using the transformation:

4



for every path (v1, v2)(v2, v3) where (v1, v2) is matched, and (v2, v3) isn’t,add

directed edge (v1, v3) and remove (v1, v2), (v2, v3) .

(Really walk from S to N(S)).
This can be done in O(n) time using a breadth first search. BFS produces

shortest paths. add vertex r adjacent to all of S, then add t adjacent to all
of N(S) , we can find a shortest path from r → t

So we build this directed graph ~G using BFS.

Lemma 2. shortest S → S path gives an augmenting path or a blossom.

Proof. Suppose underlying walk (of the directed walk) has cycles. They can

not be of even length or it gives a cycle in ~G i.e. not a shortest path.
An odd cycle is a blossom. Every path is augmenting.

Theorem 2. There exists a polytime algorithm for maximal matching.

Proof. At most n
2

stages, since the maximum matching can contain at most n
2

edges. It takes O(m) time to find Blossom, or augmenting path. Contracting
blossom takes O(m) time. Find at most O(n) blossoms before an augmenting
path. As the number of vertices falls with a contraction. Total O(n2m).

2 Shortest path problem

Given a directed graph, G = (V, A), with arc costs ca. We would like to find
a S.P from a specified vertex s to every other vertex. We actually consider
shortest walks. We have 2 possibilities.
(1) We have negative cycles , then our cost is −∞.
(2) There exists a sv path ∀v that does not have cycles. (remove the cycles
they are of cost 0)

In case (1) The problem is NP-Hard, includes as a special case, Hamil-
tonian path
Can we instead say quickly when there are negative cost cycles?

Case(2): Can be negative cost arcs..

5



2.1 Bellman-Ford

We can test for negative cycles, find SPs using B-Ford algorithm.

d(s) = 0, d(v) =∞∀v 6= s, pred(v) = Ø

Bellman-Ford Algorithm
Repeat n-1 times:

for each arc (i, j) ∈ A{
if (dj > di + cij)
then Set dj = di + cij; pred(j) = i } .

Run Time
m arcs, n phases ⇒ O(mn)

Theorem 3. If there are no negative cost cycles, then B-F gives S.Ps.

Proof. By induction , we show that by phase t , the algorithm has found the
SP from s→ v that uses at most t arcs.

For t = 1, obviously true. Assume true for t = k. Try phase k + 1.
Let

P = s, v1, ..., vk−1, vk = v

be an SP s − v path of length k + 1. By induction , we considered the sub
path P ′, s → vk−1 in the previous phase, that is s →P ′ vk−1 → vk. So we
have SP from s to vk−1 using at most k arcs with cost at most c(P ′). Thus

d(vk) ≤ c(vk−1, vk) + c(P ′) = c(P )

If there is a negative cycle, then what? B-F gives shortest walks using
t− arcs.
Run n phases.dt

j := label at phase t
(A)if dn

j < dn
j we have a negative cycle .

Proof. Let W be the s − j walk corresponding to dn
j . dn−1

j is the cost of

the shortest s − j walk using at most n − 1 arcs. Hence dn
j < dn−1

j thus W
has n arcs. Therefore W has a cycle C ,since there are only n vertices with
c(C) ≥ 0. Thus W −C is a walk with less then n arcs and c(W −C) ≤ c(W ).
Therefore dn−1

j ≤ dn
j

6



.

(B)Conversely if dj = dn−1
j ∀j ∈ V so dn+1

j = dn
j = dn−1

j etc... thus @
negative cycles.

If (B) we have SPs.
If (A) we have negative cost cycle.

Observation,non negative cycle The dj at the end of B-F satisfy

dj ≤ di + cij∀ij ∈ A, (i, j) ∈ A

⇔ cd
ij := cij + di − dj ≥ 0∀ij ∈ A

Such a vector d is a potential. The cij are called reduced costs.
Shortest path d are potentials, but potential d is not necessarily shortest

path d. For example, if cij > 0, make ~d = 0.

SP optimality conditions

If dj are the lengths of some s− j paths ∀j, dj are SP − distances iff cd
ij ≥

0,∀ij ∈ A.

*Note. For a cycle C∑
ij∈C

cd
ij =

∑
ij∈C

(cij + di − dj)

=
∑
ij∈C

cij

.
min cost to time cycle problem(tramp steamer problem)

We have a profit πij or arc ij anda time tij. Want to maximize C∑
ij∈C πij∑
ij∈C tij

Set cij = −πij Now we want to minimize C∑
ij∈C πij∑
ij∈C tij

= u∗

We can solve the problem in polynomial time.

7



Corollary 1. Can find min mean cost cycle in polynomial time.

Lowest level Algorithm!
make guess for u∗

if u is too small guess higher
” big guess lower
if correct ”hurrah”
Can test this in polynomial time. Bisection search. Guess u, set lij =
cij − utij∀ij ∈ A
(1) there exists a negative length cycle, then∑

ij∈C

lij =
∑
ij∈C

(cij − utij) < 0

⇒ u >

∑
ij∈C cij∑

ij tij
≥ u∗

(2) All cycles are strictly positive.∑
ij∈C

lij =
∑
ij∈C

cij − utij > 0∀C

⇒ u <

∑
ij∈C cij∑

ij tij
= u∗

so guess higher.

(3) Min length cycle C has length 0.∑
ij∈C

cij − utij = 0

⇒ u =

∑
ij∈C cij∑

ij tij
= u∗

guess is correct.
Testing for (1) is easy. Run B-F to see if we have negative length cycle. If
not B-F gives SP distances dj from an arbitrary S.
Are we in case (2) or (3)? Set ldij = lij+di−dj By SP opt conditions ldij ≥ 0∀ij
Since ∑

ij∈C

ldij =
∑
ij∈C

lij

8



we have no negative cycles with respect to ldij Case (2) lengths are greater
then 0. Case (3) equal to 0 for some C ⇒ all ldij = 0 ∈ C. Consider ij such
that ldij = 0 Look for cycle. If there is one we are in case (3), if not we are in
case (2).

run time Find negative cost cycle in O(mn) B-F.
Look for graph with residual Ld

ij = 0 and search for cycle in O(m).

Let deg+(v) := # arcs leaving v, deg−(v) := ” entering.
Assume deg+(v) ≥ 1∀v Since the graph is finite, we must eventually visit the
same vertex twice. O(m)

If ∃u such that deg+(u) = 0 we remove u. Update deg+(v) for each neigh-
bor of u. repeat until no vertices left or each vertex has deg+(v) ≥ 1. We
get an acyclic ordering.O(m).

How many guesses do we make? −u−−−−−−u∗−−−−−−−u use
a binary search . |Avrg cost| ≤ c̄, c̄ := max|cij|.

tij ∈ Z++,

∑
C cij∑
C tij

≤
∑

C c̄

|C|
= c̄

Let t̄ := max(tij)

Theorem 4. We make O(log(nt̄c̄)) = O(log(n) + log(t̄) + log(c̄)) guesses by
bisection method before finishing.

Proof. Want to show that if internal size is < 1
t̄2n2 then there is a ≤ 1 feasible

solution. Suppose ∃C1, C2 giving different ratios in the current interval.

|c(C1)t(C1)− c(C2)

t(C2)
| < 1

t̄2n2

= |c(C1)t(C2)− c(C2)t(C1)

t(C1)t(C2)
| > 1

t̄2n2

Start from 2c̄ (interval size) finish at 1
t̄2n2 ⇒ O(log(nt̄c̄)) guesses.

9



3 Maximum Flows

3.1 path packing

Given a digraph G = (V, A) and vertices such that

Theorem 5. max # arc disjoint s-t paths = min # arcs in an s-t cut

see diagram...

Proof. G = G0, i = 0 Repeat until there does not exist an s − t path in
Gi. Find Pi , an s − t path in Gi. Reverse the arcs of Pi to get Gi+1.
Gi+1 = Gi ← Pi.
Observation 1
for any s.t cut S we have

|δ+
Gi+1

(S)| = |δ+
Gi

(S)| − 1

Observation 2
Let S∗ be the set of vertices in Gk+1 that are reachable from s. Then δS∗ is
a min s− t cut in G. Follows from observation 1.

So we have an algorithm to find the minimum cut. It remains to show
that P1P2...Pk ”give” k disjoint paths in G. Let Hi := set of arcs that appear
in reverse in Gi plus i copies of (t, s).

Claim: Hi is Eulerian. (in deg = out deg ∀v).

Proof. By induction. true for H1. Assume true for Hr. Observe that

H ′r+1 := Hr + Pr+1 + (t, s)

Hr+1 ⊆ H ′r+1 and is Eulerian by induction. Hr+1 is obtained from H ′r+1 by
removing an arc a if a and its compliment appear in H ′r+1. Hr+1 is Eulerian
(just removing cycles). So we can decompose it in to cycles. Remove k copies
of (t, s) to get k disjoint s− t paths.

Corollary 2. There exists a O(m2) algorithm to find a maximum collection
of arc-disjoint s-t paths.

10



Proof. It takes O(m) time to find an s-t path in Gi (by DFS,BFS). We find
at most m paths (allow multiple copies of arcs).

Suppose we have a capacity ua on arc a. An s-t flow is a set of s-t paths
p1, ..., pk, such that arc a is at most ua of the pi. To solve this , replace each
arc →ua by ua copies.

Corollary 3. Max s-t flow = Min s-t cut.

How long does this take? #arcs ≤ ū ·m where ū = max ua ⇒ O(m2 · ū)
time. We can do a bit quicker as # of iterations is ≤ min s− t cut.

min s− t cut ≤ n · ū

⇒ O(nmū)

Pseudopolytime, poly(m,n).Homework analyze faster method.

3.2 Residual Graphs

Let P1, ..., Pk be an s-t flow f . Let fa be the number of paths using a.
fz(fa1, fa2, ..., fan). The residual graph Gf has arcs (i, j) ∈ Gf if fij < uij

(residual)capacity uij − fij. (j, i) ∈ Gf if fij > 0 (residual)capacity fij.

3.3 Blocking Flows

Can we reduce the number of iterations? Must find more paths per itera-
tion. Does this help? Gain in number of iterations, probably lose in time per
iteration.
Trick
Only augment paths in Gi for which every arc is in a shortest s-t

path

see picture ”trick”

S
T

Figure 3: flower

11



Let G∗i be the arcs on shortest s-t paths. A blocking flow Fi := (P1P2...Pri)
is a set of disjoint s-t paths in G∗i such that G∗i − Fi has no s-t paths.

Algorithm
(1) Find G∗i --O(m)
(2) Find blocking flow Fi in G∗i--O(m)
(3) Reverse arcs in Fi. Repeat on Gi+1? = Gi ← Fi

We will show that after step (3) the shortest s-t distance increases.

dGi(s, t) < dGi+1(s, t)−−n− iterations

therefore O(mn) algorithm.
(1) Find G∗i in O(m) time.
Run BFS from s. d(s, i)−−O(m)
Run BFS into t. d(i, t)−−−O(m)
is (i, j) on a shortest path? O(1)→ total O(m)
If d(s, i) + d(j, t) = d(s, t)− 1 YES.

(2)Find blocking flow in G∗ in O(m) time. Observe G∗i is acyclic. Run
DFS , let A be the arcs we search , and P1 the shortest s-t path we find.

S
T

P1

X

X

X

Figure 4: dfs

A1 Repeat on G∗i − A1 Looking for A2, P2. Find blocking flow Fi =
P1 ∪ ... ∪ Pri in G∗i . If not , then there exists st P in G∗i − Fi. Now P must
use some arc of some Aj. Let atP be the first arc of P we discarded. But
we discarded (i, j) because we were stuck. But there is a path still from j to t.

This only takes O(m) time. We only consider each arc once. We found a
path a ∈ Pi or we discarded a.

12



(3) dGi+1(s, t) > dGi(s, t) Consider Gi ∪ (reversed?)Ḡ∗i now a ∈ Ḡ∗i is not in
any shortest s-t path. We find a blocking flow Fi ∈ G∗i . But Gi+1 ⊆ Gi ∪ Ḡ∗i
The shortest s-t path in Gi+1 is not in G∗i − Fi So there exists a ∈ P − G∗i
This arc is only in a path from s to t of length greater then dGi(s, t). So
dGi+1(s, t) > dGi(s, t).

3.4 Vertex disjoint paths

take each vertex v replace it with an edge (v1, v2), run the algorithm, to find
an arc disjoint set, which gives us max number of vertex disjoint paths.
Application max bipartite matching.

Theorem 6. there exists a O(m
√

n) algorithm to find maximum matching
in bipartite graph.

3.5 Bipartite Matchings

Suppose M∗ is an optimal matching, and we have a matching M . Take
M∗ ⊕M is a set of even cycles and paths.

|M∗| = |M |+ (# of odd length paths := k)

|M | = |M∗| − k

We have k vertex disjoint s-t paths in Gf where f is a flow for M .

Theorem 7. there exists an O(
√

nm) algorithm for bipartite matching.

Proof. We use the Blocking Flow algorithm.
(i) After i =

√
n phases, we have dGi(s, t) ≥

√
n. Some Dj has size ≤

n√
n

=
√

n. Any Dj is an s-t cut. because any left-right moves from Dj to

Dj+1. i.e. there exists an s-t vertex cut containing at most
√

n vertices.
Therefore we have at most

√
n vertex disjoint paths from s to t. Therefore

|M | ≥ |M∗| −
√

n from here I use at most
√

n more phases. Thus 2
√

n
phases. Thus we have O(

√
nm) algorithm.

13



3.6 Min cost Flows

Cost cij is per unit flow.

(*1) bv = flowout(v)− flowin(v)
(*2) ∑

u∈δ+(v)

fvu −
∑

u∈δ−(v)

fuv = bv

.
G = (V, A) , arc cost cij, arc capacity uij, node supply / demand bv.
eg, bs = 1, bt = −1, bv = 0, v ∈ V − {s, t}.

Find min cost:=
∑

ij∈A cijfij, f satisfying (*).

Generalizes max flow problem. maximize val(f) subject to:
flow bs = val(f), bt = −val(f), bv = 0

We can assume only bs, bt 6= 0.

bs =
∑

v:bv>0

bv

bt =
∑

v:bv<0

bv

Observe, if max flow = bs then there is a solution. If max flow is less then
bs there is no solution. Residual graphs help us here too. Given flow f of
value bs, then Gf is (i, j) ∈ Gf if fij < uij capacity: uij − fij cost: cij

(j, i) ∈ Gf if fij > 0 capacity: fij cost : −cij

Suppose we find a cycle C in Gf . Pushing flow along C still gives a flow.
Flow out− Flow in = bv

If cost C < 0 in Gf then pushing flow around(augment) C saves money.

f → f ′, cost(f ′) = cost(f) + cost(c)

Keep augmenting on negative cycles

f1 →c1 f2 →c2 f3 →c3 ...f∗optimal

If fi is not optimal is there a negative cycle Ci in Gfi?

14



Theorem 8. f is a min cost flow iff Gf has no negative cost cycle.

Proof. If negative cost cycle , then f is not optimal. Suppose Gf has no
negative cost cycle. Take the optimal flow f ∗ and consider f ∗ − f .f ∗ − f
Decomposes into positive and negative arcs. Suppose
(uij ≤)f ∗ij > fij ⇒ ij ∈ Gf cost cij ,
0 ≤ f ∗ij < fij ⇒ ji ∈ Gf cost − cij.
It follows that f ∗ − f decomposes into cycles in Gf . Therefore

cost(f ∗) = cost(f) +
∑

cost(cycles)

thus there exists a negative cycle in Gf or f is optimal.

This gives us an algorithm, repeatedly augment on negative cycles. Cost
of initial flow is at most c̄ū i.e. at most c̄ := max cij · ū := max uij iterations.
Find min cost cycle is NP-hard.

Find minimal mean cost cycle in poly-time.

3.7 min-flow cont

Start with f = 0
Find min mean cost cycle in Gf . Augment C as much as possible f ′ ← f .
Note tight(bottle neck) arc is not in Gf . Let µf be the min mean cost of a
cycle in Gf . The algorithm terminates when µf ≥ 0.
The following claims will help us analyse the algorithm:

Claim 1. if µf > −1
n

then f is optimal.

Proof. Any negative cost cycle has cost at most −1, and at most n arcs.

Claim 2. If f ′ is obtained from f by augmenting C then µf ′ ≥ µf .

Proof. Let C be the min mean cost cycle in Gf , C ′ in Gf ′ . Suppose

c(C ′)

|C ′|
<

c(C)

|C|

f ′ differs from f only on arcs in C. Now C ′ uses some arc not in Gf . Oth-
erwise C ′ was min mean cost cycle in Gf . Let

B := {a ∈ C ′ : a /∈ Gf} 6= Ø

15



B̄ := {āreverse : a ∈ B}

Observe that B̄ ⊆ C ( (*) did something to arcs in B̄ for their reverses to
appear in Gf ) Consider the circuit(set of arcs where in deg = out deg) C∪C ′.
The mean cost of these is

c(C) + c(C ′)

|C|+ |C ′|
< max(

c(C)

|C|
,
c(C ′)

|C ′|
).

note
min ai

Ai
≤
Pk

i=1 ai
Pk

i=1 Ai
≤ maxi

ai

Ai
= µf now C ∪C ′ can be decomposed into cycles.

These cycles are C1C2...Ck all in Gf plus 2-cycles with one edge in B, the
other in B̄ by (*). Cost of digons = 0 so c(C) + c(C ′) =

∑k
i=1 c(Ci) + 0.

Hence

0 ≥ µf >
c(C) + c(C ′)

|C|+ |C ′|
≥

∑k
i=1 c(Ci)∑k
i=1 |Ci|

So

µf >

∑
c(Ci)

|Ci|
≥ mini

c(Ci)

|Ci|
but Ci ∈ Gf ...⇒⇐.

Claim 3. After m augmentations the f ′ we obtain has µf ′ > (1− 1
n
)µf

Proof. Set Lij=cij−µf . There are no negative mean length cycles, therefore
no negative cycles. So there exist shortest paths with respect to lij ( from S)
plus shortest path distances d. So dj ≤ di + lij = di +(cij−µf ). Observation:
Set Cd

ij = cij + di − dj then Cd
ij ≥ µf . Cd

ij ≥ cij + dv − (cij + di − µf ).
cd
ij ”reduced cost”. Recall ∑

ij∈C

cij =
∑
ij∈C

cd
ij

Each time we augment we ”saturate” an arc and it gets removed from the
residual graph.

−Cd
ij = −Cd

ji

If every edge has reduced cost ≥ 0 in Gf then Gf has no negative cycles.
Suppose we augment on C and C only has arcs with cd

ij < 0. Suppose this
happens 2m times in a row. We remove at least 1 arc and add arcs with

16



cd
ij > 0. After m or all arcs have cd

ij > 0 and f is optimal. Once every m
steps ≥ 1 arc in C has cd

ij > 0.

c(C)

|C|
=

∑
ij∈C cij

|C|
=

∑
cd
ij

|C|
≥ (|C| − 1)µf + 1

|C|

=
|C| − 1

|C|
· µf

≥ (1− 1/n)µf

We can find min mean cost cycle in time

O(mn(logn + logc̄))

Every m steps we improve µf by factor (1− 1
n
)

” m · n ” ........” ≈ e−1

i.e. done in log(nC̄Ū) of these. i.e. Run time O(m2n2log(nc̄ū)) (weakly
polynomial time). In fact the alg is strongly polynomial

O(m3n3logn)

see Schrijver.

4 Polyhedral Methods

min cx

such that
Ax ≤ b

x ≥ 0

A polytope is
{x : Ax ≤ b}

is integral. Assume its bounded. If each ”vertex” of the polytope is integral.
A vertex x is a point of P such that it cant be expressed as a convex combi-
nation of points in P .

17



It is the solution to N linearly independent equations A∗x = b∗ where
x ∈ RN . where A∗ ⊆ A, b∗ ⊆ b.

Observe for integral P an optimal solution to max(cx : x ∈ P ) occurs at
an integral point(i.e. a vertex). We want to solve max(cx : Ax ≤ b, x ∈ Z+)
we can relax to obtain max(cx : Ax ≤ b, x ≥ 0) by LP in poly time if P is
integral, we have solved our original problem.

4.1 The Matching problem

The incidence vector χn of a matching m is defined as

χm
e = 1 if e ∈ m, 0 if /∈ m

The perfect matching polyope PM(G) is the convex hull of incident vec-
tors of perfect matchings in G. Matching polytope M(G) is the convex hull
of m for all matchings m.

Let
P (G) := {x : xe ≥ 0,

∑
e∈δ(v)

xe = 1}

Theorem 9. For bipartite Graphs, P (G) = PM(G)

Proof. PM(G) ⊆ P (G) since its vertices are all the perfect matchings. M ∈
P (G)∀p.m M . Want to show that

P (G) ⊆ PM(G)

The smallest counter example G such that P (G) * PM(G) has a vertex of
P (G), x, such that x /∈ PM(G).
i) xe > 0 otherwise throw e away and G− e is a counter example.

x ∈ P (G− e)

but
PM(G− e) ⊆ PM(G)

ii) xe < 1∀e
if xe = 1 remove u, v to have a smaller counter example. x restricted to
G − u − v is a convex combination of PMs in G − u − v therefore x is
a convex combination of PMs in G. So xe > 0 is fractional. Therefore

18



deg(v) ≥ 2∀v ∈ G Therefore G has a cycle(M1,M2) which is even because
its bipartite. There exists an ε such that

x1 = x + ε(M1−M2) ∈ P (G)

x2 = x− ε(M1−M2) ∈ P (G)

But

x =
1

2
x1 +

1

2
x2

Which contradicts the assumption that x is a vertex.

So using LPs we find a max weight PM. We can max(wx|
∑

e∈δ(v) xe >

1, x ≥ 0) .
Let

Q(x) = {x|xe ≥ 0∀e,
∑

e∈δ(v)

xe ≤ 1,∀v}

Theorem 10. For bipartite graphs M(G) = Q(G)

Proof. Clearly M(G) ⊆ Q(G). We want to show that any vertex x of Q(G)
is a convex combination of matchings. let G′ be the auxilery graph G′ ob-
tained by taking a copy of G and edges connecting v′ and v with weight
1−

∑
e∈δ(v) xe. Note

∑
e∈δ(v) x′e = 1∀v ∈ G′.

x′ ∈ P (G′) = PM(G′)

therefore x′ is a convex combination of perfect matchings in G′ . Restrict x′

to G to see that x′ is a convex combination of perfect matchings in G.

4.2 Matching Polytope: General Graphs

PM(G)

P (G) = {x : xe ≥ 0∀e,
∑

e∈δ(v)

= 1∀v,
∑

e∈δ(S)

≥ 1∀S, |S| odd ≥ 3}

Theorem 11. PM(G) = P (G) for non-bipartite graphs.

19



Proof. PM(G) ⊆ P (G) by A.C . Meta theorem...

Take smallest counter example with P (G) * PM(G) so

∃e.p. x ∈ P (X)− PM(G)

i) xe > 0∀e, as before, by minimality.
ii) xe < 1∀e as before, by minimality.
Therefore every edge has degree at least 2. Suppose deg(v) = 2∀v. Then G
is the union of disjoint cycles , all of which are even of (*) is violated. Even
cycles are bipartite, so x ∈ PM(G) by the previous theorem.

suppose ∃v, deg(v) ≥ 3 then

2m =
∑

v

deg(v) ≥ 2n + 1

iii) m > n
iiii) n is even or we violate the definition of P (G) for S = V .
Thus we can rewrite

P (G) = {x : xe ≥ 0∀e,
∑

e∈δ(v)

= 1∀v, (∗)
∑

e∈δ(S)

≥ 1∀S, |S||V−S| ≥ 3 for |V | even}

x is a vertex so x satisfies m linearly independent constraints with equal-
ity. Thus there exists an odd S, |S| ≥ 3, |V − S| ≥ 3, s.t,

∑
e∈δ(S) xe = 1.

Consider G1 → x1 obtained by contracting V − S,G2 → x2 obtained by con-
tracting S. x1 satisfies constraints for P (G1). So x1 is a convex combination
of PMs in G1 as |G1| < |G|. Similarly x2 is a convex combination of PMs in
G2.

x1 =
1

k1

k1∑
i=1

m1
i

m1
i is pm in G1

x1 =
1

k2

k2∑
i=1

m2
i

we can assume k1 = k2. Let e ∈ δ(S) . Then the # of matchings M1
i

containing
e = # of matchings M2

i containing e

20



Only one edge in δ(S) appears in any M1
i or M2

i .
e1 ∈ δ(S), e2 ∈ δ(S), e3 set Mi = M1

i ∪M2
i . This is a perfect matching in

G and x = 1
k

∑Mi. thus x is a convex combination of PMs in G.

4.3 Matching polytope

Q(G) = {x : xe ≥ 0∀e,
∑

e∈δ(v)

≤ 1∀v,
∑

e∈δ(S)

≤ 1∀S odd}

∑
e∈E(S)

xe ≤
|S| − 1

2
∀S odd

Theorem 12. Q(G) = M(G)

Proof.
xM ∈ Q(G)∀matchings min G

Want Q(G) ⊆ M(G) pick vertex x ∈ Q(G), make 2 copies of G as before,
get x′ as before. G, x → G′, x′ So ∀v ∈ V,

∑
e∈δ(v) x′e = 1, x′e Want to show

that x′ is a convex combination of PMs in G′. If so then , as before , x is a
convex combination of matchings. Need x′ to satisfy∑

e∈δ(s)

x′e ≥ 1∀odd S ∈ G′

Claim 4.
x′(δ(S)) ≥ x′(δ(S1 − S2)) + x′(d(S2 − S1))

Proof. x′(W ) =
∑

e∈W x′e, S = S1 ∪ S2. S1 − S2 is the set of vertices in S1

minus the copies that are in S2. We have 4 types of vertex. v ∈ S1 − S2, v ∈
S1∩S2, v ∈ S2−S1, v /∈ S1cupS2. S ′, G′ mirrors of S, G so each edge on RHS
contributes same to LHS.

|S| = 2k + 1 = |S1 − S2|+ |S2 − S1|+ 2|S1 ∩ S2|

one of the first to summands must be odd. Assume WLOG that T = |S1−S2|
is odd.

|T | =
∑
v∈T

x′(δ(v))

21



= x′(δ(T )) + 2x′(E(T ))

= x′(δ(T )) + 2x(E(T )) ≤ x′(δ(T )) + |T | − 1

⇒ x′(δ(T )) ≥ 1⇒ x′(δ(S)) ≥ 1

max(cx|x ∈ Q(G)) has an exponential number of constraints! This makes
it a bit tricky to solve by conventional methods.

5 Weighted Matching in Bipartite Graphs

We are dealing now with Bipartite graphs (A, B) with weights on the edges.

5.1 Hungarian Method

This is a general method that includes the augmenting path approaches we
have seen. Au, Bu are unmatched vertices in A, B respectively . Multiply
cost of edges that arent in the matching by −1, and direct the other edges
towards A, call the resulting graph G′. Find a shortest path from Au to Bu

in G′. Let M ′ = M ⊕ P .

Algorithm
Start with M0 = Ø
Repeat until Au −Bu path in G′

Find shortest Au −Bu path Pi

Mi+1 = Mi ⊕ Pi

Let M0, M1, ...,Mn/2 be the matchings we obtain. We claim that the max
weight of these is a max weight matching. Towards this goal, we say M is
extreme if M has max weight amongst all matchings of size |M |.

Theorem 13. Each Mi is extreme.

Proof. True for M0, M1 Let Mi+1 := Mi ⊕ Pi i.e. (Mi is extreme). Take M
of size |Mi+1| = i + 1.

|M | = |Mi|+ 1

thus
Mi ⊕M

22



has an augmenting path P .

Mi = M ⊕ P

Since Pi is shortest path
L(Pi) ≤ L(P )

Now M ⊕ P is a matching of size i Therefore

w(M ⊕ P ) ≤ w(Mi)

Putting together
w(Mi+1) = w(Mi)− L(Pi)

≥ w(Mi)− L(P )

≥ w(M ⊕ P )− L(P ) = w(M)

Hence Mi+1 is extreme.

Is the algorithm polynomial time? n/2 iterations, shortest paths, do we
have negative cycles in G′. A negative cycle is even alternating C. Mi ⊕ C,
is a new matching, M , with |Mi| = i edges of weight w(Mi)−L(C) > w(Mi)
but Mi is extreme.

Run time⇒ O(n2m)

Use data structures to get O(nm + n2log(n)).

6 Linear Programming

An LP is a problem of the following form:

max(cx|Ax ≤ b, x ≥ 0)

A vast number of other problems can be formulated as LPs. An LP can be
solved in polynomial time in m, n.
Lower bound: Any feasible x gives opt ≥ ctx

Upper bound: add constraints so that their coefficients are greater then
c. Thus we are

min(yb|yA ≥ c, y ≥ 0)

This gives us
Weak Duality

23



Proof.
cx ≤ yAx ≤ yb

Farkas Lemma 1. Take an m × n matrix A, and an m − vector b. (x :
Ax = b, x ≥ 0) has a solution iff ∀w, wA ≥ 0⇒ btw ≥ 0.

Proof. Geometrically, if Ax 6= b∀x ≥ 0 then b is not in the cone generated
by the columns a1, ..., an of A.

cone(A) := cone(a1, ..., an) := {λ1a1 + λ2a2 + ... + λnan, λi ≥ 0∀i}

if b is not in cone(A) then we must be able to find a hyperplane which
separates b from cone(A).i.e. a separating hyperplane h such that b and
cone(A) are on different sides of h.

Let w be the normal to h. So wtb < 0 and wtai ≥ 0∀i.

Farkas Lemma 2. (x : Ax ≤ b, x ≥ 0) has a solution iff∀w ≥ 0, wA ≥
0⇒ btw ≥ 0.

Proof. Let A′ := [A, I], x′ = [x, z]t Apply Farkas Lemma (1).

(x : A′x′ = b, x ≥ 0) has solution iff∀w(A′)tw ≥ 0⇒ btw ≥ 0

this is saying

[A, I][x, z]T = b = Ax + z ≤ b⇔ Ax ≤ b, x ≥ 0

Therefore
[AT , I]w ≥ 0⇒ bT w ≥ 0

AT w ≥ 0, w ≥ 0⇒ bT w ≥ 0

Strong Duality 1. If there exists an optimal solution

cx∗ = y∗b

Proof. Want feasible x, y such that cx ≥ yb.

∃ solution to (x : Ax, x ≥ 0) iff ∀w ≥ 0wA ≥ 0→ wb ≥ 0

We want x, y ≥ 0 s.t.(∗) :

[A, 0; 0− AT ; −cT bT ]T [x y]T ≤ [b − c 0]T

24



(*) is true iff (A)

[AT 0 − c; 0 − A b; ]T [w1 w2 x]T ≥ 0,∀w1, w2, x ≥ 0

this implies
b̂T w ≥ 0

b̂T w := [bT − cT 0][w1, w2 λ]T ≥ 0

bT w1 − cT w2 ≥ 0

bT w1 ≥ cT w2

(B)
(A)⇒ (B) then we are done.

AT w1 − c ≥ 0

−Aw2 + b ≥ 0

w1, w2, λ ≥ 0

we know
AT w1 ≤ λc

Aw2 ≤ λb

Want to show
bT w ≥ cT w2

Case 1:
λ > 0

bT w1 =
1

λ
λbT w1

≥ 1

λ
(Aw2)

T w1 =
1

λ
wT

2 AT w1

≥ 1

λ
wT

2 λc = wT
2 c

Case 2:
λ = 0
Take the feasible x0, y0 (exist by assumption)

Ax0 ≤ b, x0 ≥ 0

25



AT y0 ≥ c, y0 ≥ 0

wT
1 b ≥ wT

1 Ax0 = (AT w1)
T x0 ≥ λcT x0..??erasedlastpart

wT
2 c ≤ wT

2 AT y0 = (Aw2)
T y0

≤ λby0 = 0 ≤ wT
1 b

Also max(cT x : Ax = b, x ≥ 0) = min(bT y : AT y ≥ c)
max(cT x : Ax ≤ b) = min(bT y : AT y = c, y ≥ 0)

7 Applications of LP duality

7.1 Shortest s-t paths

Consider the following relaxation:

min
∑
e∈E

cexe

such that ∑
e∈δ−(v)

xe −
∑

e∈δ+(v)

xe

xe ≥ 0

= −1, for v = s, = 0 for v 6= s, = 1 for v = t

We claim that this ”relaxation” is in fact modeling the entire problem,
and not adding new feasible area. This can be seen since the vertex of the
polytopes are integral. Any solution to primal is a fractional s.t. flow. Any
flow decomposes into ≤ m paths ( and cycles in general). So we have flow
= P1, P2, ..., Pk, with weights λ1, λ2, ..., λk ≥ 0. Thus

∑
λi

= 1. So

Flow =
∑

i

λiPi λi ≥ 0,
∑

i

λi = 1

∑
e∈E

cexe =
∑

i

λic(Pi)

26



so there exist path Pj such that c(Pj) ≤
∑

e∈E cexe So solving LP gives
optimal solution.

Consider the dual of LP.
min cT x

Ax = b

x ≥ 0

A is the vertex, edge incidence matrix. the dual is

max
∑
v∈V

bvyv

AT y ≤ c

y unrestricted

we have constraints
∀(i, j) ∈ E,−yi + yj

and we are maximizing yt − ys . Add constant to each yv has no affect.
Assume ys = 0. Now we have got

max dt

s.t. dj ≤ di + cij ∀e = (i, j)

ds = 0

We can see that we are actually maximizing the shortest path distances.
dt ≤ min cost s-t path = distance of t from s.

di = distance of i from s

⇒ max dt = min cost path s− t

⇒ Shortest path from s − t has length equal to distance t from s. This
is nonsense! well in fact this information gives us some insight into algo-
rithms...primal dual algorithms. P −D gives us something else here. Given
d set

sp = {v : dv ≤ p}∀p = 0, 1, ..., dist(t− 1)

Consider the cuts
δ+(S0), δ

+(S1), δ
+(S2)

27



each arc e = (i, j) is in at most ce of these cuts.

dj ≤ di + cij

otherwise
dj > di + cij

So

Lemma 3. Length of shortest s − t path equals the max packing of s-t cuts
δ+(c0), ..., δ

+(c12) such that e is in at most ce cuts.

this is not nonsence!.rather interesting.

7.2 Max Flow

we have
max s− t flow problem

max f =
∑

e∈δ−(t)

xe −
∑

e∈δ+(t)

xe

such that∑
e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = −f for v = s, 0̄ for v 6= s, t, = t, for v = t

xij ≤ vij∀ij ∈ A, xij ≥ 0 ∀ij ∈ A

find dual. This is integral (opt solutions given by our combinatorial algo-
rithms are integral). Find dual A = the edge incidence matrix on top of the
edge identity matrix. we dont need some constraints we can just have∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 for v 6= s, t

find dual y = [z, w]

min bT y =
∑
ij∈A

uij · wij

zi unrestricted , wij ≥ 0

AT y ≥ c

28



ce = 1 if e ∈ δ−(t), 0 otherwise. Dont need arcs coming out of t or going
into s. So we never have −1 in c. So

min
∑
e∈E

uewe

s.t. − Zi + Zj + wij ≥ 0

Zj + Wsj ≥ 0

−Zj + wjt ≥ 1

wij ≥ 0

Now Zs, Zt dont appear but we could add them back in as shown. Set
Zs = 0, Zt = −1 Now add 1 to all Z ′s

mineuewe

s.t.Zi ≤ Zj + wij∀i, j ∈ E

Zt = 0

Zs = 1

8 Dual of Max Flow

min
∑
e∈E

uewe

s.t. zi ≤ zj + wij ∀ij ∈ E

zt = 0, zs = 1, wij ≥ 0∀ij
What do solutions to D look like? Note that z, w have the following

property? Given wij thezi are shortest path distances to t. The distance
from s to t is 1. From last time( shortest path-cut packing theorem)

min S.P = Max packing of cuts(s− t) s.t. (i, j) in atmost wij cuts

(weighted version) i.e. cuts δ+(S1), δ
+(S2).... weights λ1, λ2...

∑
(λi) = 1, λi ≥

0.

min
∑
ij∈E

uijwij ≥
∑
ij∈E

uij(
∑

S:ij∈δ+(S)

λs)

29



=
∑

s

λs

∑
ij∈δ+(s)uij

=
∑

s

λSCapacity(.+(s))

convex combination of cut capacities.

Max Flow = Min dual ≥
∑

s

λscapcity(s)

but max flow ≤ capacity of any s − t cut. So max flow = min cut. Our
dual variables are z = χs, w = χδ+(s), wij = 1 if ij ∈ δ+(S), 0 otherwise.

9 Ellipsoid Method

Suppose we wish to optimize a linear function cx over some convex body
K. It suffices to find a feasible point in K. Basic idea, impose cx ≥ α,
if there exists a point in K ∩ {x : cx ≥ α} choose larger α. Else choose
smaller α. Bisection search then gives solution in polytime. (To as small ε as
you want poly(n,m, 1/ε)). We know this already for LP ′s i.e. feasibility =
optimality. Find (x, y) such that

Ax ≤ b, AT y ≥ c, y ≥ 0, x ≥ 0, cT x ≥ bT y

feasible for this, is optimal for P by duality. The ellipsoid can find feasible
points in K (under some conditions on K). Here we show it works for
polyhedra of the form Ax ≤ b. This leads to polytime algorithm for LP .
(Assume here P is bounded)

P := {x|Ax ≤ b}

Suppose P ⊂ E1 an ellipsoid with center z1. if z1 ∈ P then we are done, if
not in P then we can separate z1 from P , so aiz1 > bi for some constraint
aix ≤ b. Let H1 := {x : cix ≤ aiz1} So P ⊆ E1 ∩ H1. Now find E2 the
smallest(volume) ellipsoid containing E1 ∩H1. See if z2 center of E2 is in P .
Repeat...

For this to work quickly we need
(1) find E1.

30



(2) in polytime check feasibility of give violated constraint(separating hyper-
plane).
(3) find E2 given H1, E1.
(4) Use polynomial number of iterations. (Ei shrink quickly).

Note P ⊆ Ei∀i as Ei shrink we terminate with feasible point if P > 0.

9.1 Background(proof method is not tested material)

An ellipsoid E(A, a) is defined as

E(A, a) = {x : (x− a)T A−1(x− a) ≤ 1}

where a is center and A is positive definite. The following are equivalent:
(1) A is p.d.
(2) A is symmetric and xT Ax > 0∀x 6= 0
(3) A−1 is p.d.
(4) A = BBT for non singular B (write B =

√
A).

Unit ball is E(I, 0). We need

Lemma 4. E(A, a) =
√

AE(I, 0) + a

Proof. Suffices to show E(A, 0) =
√

AE(I, 0)

xT x = (
√

A
−1√

Ax)T (
√

A
−1√

Ax)

= xT
√

AT
√

A−1
T√

A−1
√

Ax

= xT
√

AT (
√

A
√

A
T
)−1
√

Ax

= (x
√

A
T
)A−1(

√
Ax)

= yT A−1y

where y =
√

Ax.

We now prove the algorithm works. First the ellipsoids shrink ”quickly”.

Theorem 14. if E ′ is smallest ellipsoid containing E(A, a)∩{x : cT x ≤ cT a}
then

V ol(E ′)

V ol(E)
≤ e

−1
2(n+1)

31



Proof. Using linear transformations we may assume that E(A, a) = E(I, α)(volume
ratios preserved under linear transformations). By symmetry assume c =
(1, 0, 0, 0, 0, ..., 0). It is well known that E(A′, a′)

a′ =
−1

n + 1

c√
cT 2

= (− 1

n + 1
, 0, 0, ..., 0)

A′ =
n2

n2 − 1
(I − 2

n + 1

ccT

√
cT c

) =
n2

n2 − 1
M

M :=

1− 2
n+1

a0

0 a...

now
V ol(E ′)

V ol(E)
=
|det
√

A′|Vn

Vn

= |det
√

A′| =
√

det(A′)

det(A′) =
n2

n2 − 1

n

(1− 2

n + 1
) =

n2

n(n−1
n+1

)

=
n2

(n + 1)(n− 1)

n−1
n

n + 1

2

= (1 +
1

n2 − 1
)n−1(1− 1

n + 1
)2

≤ e
n−1

n2−1 · e
−2

n+1 = e
1

n+1 e−2 · something = e−
1

n+1

(1) Know ellipsoids shrink by e
−1

2(n+1)

P has ”large” volume, initial ellipsoid,E0 is not too big.

(i) Let µ be the number of bits used to store an n × n sub-matrix of A
(and corresponding part of b). So E0 = E(2µI, 0) contains P . (ii)

Lemma 5. V ol(P ) ≥ 2−n3µ

Proof. Assume P is full dimensional so it contains n + 1 affinely indepen-
dent vertices, x0, ..., xn. V ol(P ) is bigger than the volume of the simplex
con.hull(x0, ..., xn). the formula for the volume of the simplex is 1

n!
det(M)

where M is n× n 1 with the row x0, ..., xn.

32



What is a vertex? xi is a solution to subset of n rows of [A : b], Aixi = bi

. So by Crammers rule , xij =
|Aij |
|Ai|

We can substitute this into M to obtain

1

n!

1

|A0||A1|...|An|
det(M)

det(M) ≥ 1 due to affine independence, and integrality.

≥ 1

n!

1

|A0||A1|...|An|

Now |Ai| ≤ n!2nµ. So

V ol(P ) ≥ 1

(n!)n+1

1

2n+1
≥ 1

nµn+1

1

2µn+1

≥ 1

2µn3

Count the number of iterations...

V ol(Et) ≤ 4µne
−t
2n

≤ 22µn− t
2n ≤ e−µn3

Set
t = O(n4µ)

Now µ = n2L where L is the number of bits/entry. It takes O(mn) time
to test feasibility (linear time to find ellipsoids).O(mn7L) this is more like
O(mn3L) if we are more careful (problem: used

√
s in finding ellipsoids. Get

around it by rounding the center point and slight blowing up the ellipsoid(still
contains P )).

9.2 Applications

Note, to use the ellipsoid method we only need to
(i) state yes x ∈ P .
(ii) state no x /∈ P and give a violated constraint, in polytime.

33



It may be possible to do (i) even if the number of constraints is exponen-
tial.
Weighted Matching
(P)

max cx

(1) xe ≥ 0

(2)
∑

e∈δ(v)

xe = 1

(3)
∑

e∈δ(S)

xe ≥ 1 ∀S, |S| odd

(P) is integral. Solve P to get max PM . But P has exponential number
of constraints. (1),(2) are easy to check. What about (3)? Given x see if x
satisfies (3) or give a violated constraint. (3) relates to min cuts... Let xe be
a capacity on e. Find min cut δ(S∗) using max flow algorithm. Try for all
pairs (s, t).

x(δ(S∗)) ≥ 1 for all odd cuts ≥ 1. ⇒ (3) is satisfied. So x(δ(S∗)) < 1 if
|S∗| is odd we have a violated constraint. What if |S∗| is even?

Lemma 6. let S∗ be a min cut. Then there exists a min odd cut S such that
S ⊆ S∗ or S ⊆ V − S∗.

Proof. There are 4 types of vertices. In S∗∩S, V −S∗∩S ,S∗ /∈ S, V −S∗ /∈ S
WLOG assume |S ∩ S∗| = even, |S ∩ V − S∗| = odd.

x(δ(S∗)) + x(δ(S)) ≥ x(δ(S ∩ S∗)) + x(δ(V − S − S∗))

by minimality
x(δ(S∗)) ≤ x(δ(V − S − S∗))

So x(δ(S)) ≥ x(δ(S ∩ S∗)). So S ∩ S∗ is a min odd cut.

So find min cut(even) S∗ and split into 2 problems, S∗ → G1, V −S∗ → G2

For G1 we contract S∗, for G2 we contract V − S∗ |G| > |G1|, |G| > |G2| as
S∗, V − S∗ are both even. Suppose min odd cute ⊆ S∗. know S contains at
least one vertex of S∗, S contains at least 1 vertex of S∗. Look for min s− t
cut where s, t ∈ S∗,∀pairsinS∗ (So dont find cut (V − S∗, S∗)) min cut we
find has value ≤ min odd cut. If odd cut then done. If even cut, recurse.
Repeat until we find odd cut. Can’t miss S as it is subset of even cuts.

34



Use recursion.

f(n) = nmax flowsp(n)time for max flow + f(|S∗|+ 1) + f(n + 1− |S∗|)

this is polynomial. So we have a separation oracle. (what if we find a
fractional optimal solution? see hmw).

10 Shortest r-arborescences

Given a directed graph G = (V, A) and a root r, an r − arborescence is a
directed spanning out tree rooted at r. Costs ca on each arc. Find min cost
r− arb. For undirected graphs finding MST is easy. Here things are a little
harder.
Min-Max relation
We say δ−(S) is an r− cut if r /∈ S. Assume integral costs. Assume ca ≥ 0∀a
(if not add a constant to every arc).

Theorem 15. Min cost of r − a− b = Max packing of r-cuts. (arc is in at
most ca of the r-cuts).

Proof. Show Max ≤Min. Let T be an r− arb. Make ca copies of each arc.
Take packing S = {S1, ..., ST}. |δ−(Si) ∩ T | ≥ 1 as there exists a path from
r to each vertex in T . Cost(T ) = number of arcs in picture. Remove one arc
copy for each arc in δ−(Si) ∩ T∀i Then we remove atleast 1 arc per cut so
#Cuts ≤ #arcs = cost(T ).

Show Max ≥Min
by induction

∑
a∈A ca. Let A0 be the zero cost arcs. If A0 contains an r−arb,

the |packing| = 0 ≥ cost(T ∗) = 0. So assume A0 has no r − arb. Consider
the strongly connected components of G[A0]. There is at least 2 strongly
connected components or there exists a 0 cost r − arb.

r is in a strongly connected component that doesnt have a path to all
other strongly connected components. There exists a strongly connected
component S that we can not reach from r. So δ−(S) contains no arcs from
A0. So every arc δ(S) has cost ≥ 1.

Let c′a = ca − 1 ≥ 0, if a ∈ δ−(S), and ca otherwise. So by induction
there exists an r−arb T with c′(T ) = R, and there exists S ′ = {S1, ..., Sk} of
r-cuts such that a is in at most ca of the cuts in S ′. Suppose |T ∩ δ−(S)| ≥ 2.
Then for any a ∈ δ−(S) we have that (T−a)∪A0 contains an r−arb T ′ , this
has cost c′(T ′) = c′(T )− c′a ≤ c′(T ) So |T ∩ δ−(S)| = 1. c(T ) = c′(T ) + 1 =

35



k+1. (S ′ = {S1, ..., Sk})∪S is a packing of size k+1. This is a valid packing
as any a ∈ δ−(S) it was in at most ca−1 of the cuts in S ′. Any arc a /∈ δ−(S)
is not in δ−(S).

10.1 r-a- polytope

(PG)

min
∑
a∈A

caxa

∑
a∈δ−(S)

xa ≥ 1∀r − cuts S

xa ≥ 0

Given r − arb T . Clearly χT is a feasible solution to P (G). Claim Any
minimal vertex of P (G) is an r − a− b.

P (G) = conv{χT : T is r − arb}+ Rm
+

Proof. Suppose P (G) is not integral. So there exists some non integral so-
lution x. So there exists integral cost function c (scale if neccessary) So opt
with respect to c only occurs at fractional solution x.

min(cT x : x ∈ P (G))

cT x < minT is−̊arb cT χT = maxS packingw.r.t c|S|

cT x =
∑
a∈A

caxa

≥
∑
a∈A

(
∑

S∈′S′:a∈δ−(S)

1)xa

=
∑
S∈′S′

∑
a:a∈δ−(S)

xa

≥
∑
S /∈′S′

1 = |′S ′|

which is a contradiction.

36



So P (G) is integral (= conv(χT + RM
+ )).

polytime algo
Seperate

∑
a∈δ−(S) xa ≥ 1 (*)

We can solve this by ellipsoid method. Given x test (∗) in polytime? Use xa

as capacities. Find max flow from r to v ∀v 6= r, i.e. run n − 1 times. Get
min r − v cut if all min(s) ≥ 1 then feasible. If not r − v cut of value 1,
value of cut =

∑
a∈δ−(S) xa < 1 .

11 Max cut problem

Given G = (V, E) with weights we on edge e, find S ⊆ V such that
∑

e∈δ(S) we

is maximized. Consider the following (IP)

max
∑

e∈δ(S)

wexe

s.t.(1)
∑
e∈F

xe −
∑

e∈C−F

xe ≤ |F | − 1,∀circuits C and all odd F ⊆ E(C)

(2) xe ∈ {0, 1}∀e ∈ E

Claim that solutions to this are cuts(or subsets of cuts), (i.e. edge sets
are bipartite).
i) let χδ(S) be incidence vector for cut S. So take any circuit C and add
F ⊆ E(C) if at most |F | − 1 edges of |F | are in δ(S) then (1) is satisfied.

So suppose F ⊆ δ(S) , |C ∩ δ(S)| is even, |F | is odd, thus there exists an
edge in (C − F ) ∩ δ(S) so

∑
e∈C−F xe ≥ 1. So (1) holds.

ii) Take an integral vector E ′ satisfying (1). Show that E ′ is a subset of a
cut. i.e. show E ′ is bipartite If not then E ′ has an odd cycle C ′, consider C ′

and F ′ = C ′ then ∑
e∈F ′

xe −
∑

e∈F ′−C

xe =
∑
e∈F ′

xe = |F ′|

So E ′ is bipartite. The (maximal) vertices of the polytope are cuts. Relax
to 0 ≤ xe ≤ 1 and solve LP. Can we separate these constraints in polytime?
Given x, 0 ≤ x ≤ 1 is easy to check. How do we check (1)? Take two copies
of the graph G, G′ where xu′v′ = xuv but now add cross edges ∀(u, v) ∈

37



E, add (u, v′), (v, u′) and duv = xuv, du′v = 1 − xuv A circuit is a walk from
S to S ′. For each s, find a shortest path Ps from s to s′. Ps corresponds to
a circuit C in the original graph G. Let F be the set of edges in Ps from G
to G′. now

d(Ps) =
∑
e∈F

(1− xe) +
∑

e∈C−F

xe = |F |+
∑

e∈C−F

−
∑
e∈F

xe

|F |+
∑

e∈C−F

−
∑
e∈C

xe ≥ 1

if d(Ps) < 1 we have a violated constraint. Moreover if there is an F, C
that violates (1) then there exists a violating Ps path. So we can solve the
relaxation in polytime.

Can we show (LP) is integral? No. Max cut is NP-hard. But what if we
restrict the class of graphs? for example planar graphs

Theorem 16. CutPolytope(G) = LP relaxation iff G contains no K5 minor.

Corollary 4. CutPolytope(G)= LP relaxation if G is planar.

Corollary 5. max cut is polysolvable in planar graphs

12 Graph Connectivity

We say a digraph G = (V, A) is k−arc connected if there exists k arc disjoint
paths from i to j ∀i, j ∈ V . We have seen that

Theorem 17. G is k − arc connected iff Min− Cut = k.

Similarly G is k − vertex connected if there are k vertex disjoint paths
from i → j∀i, j. using the transformation a → v → d ⇒ a′ → v → v′ → d
for all such a, d.

Menger 1. G is k − vertex connected iff min seperator = k = vertex cut

We will consider undirected graphs here. We have corresponding defini-
tions of k − edge connectivity and k − vertex connectivity. using the trans-
formaion (u, v)undirected ⇒ (u, v)directed, (v, u)directed, our min max results also
hold.

How quickly can we find a mincut?
-All pairs:max flow O(n3m)

38



-s to every t ∈ V , O(n2m)
as s is separated from some t in the min-cut.
Can wedo better? (allow multiple edges). Let rij =min size of i− j cut.
mincut = minijrij, d(i, u) = #edges from i to u.
Order vertices v1, v2, ..., vn such that vj has max number of edges tp {v1, ..., vj−1}
amongst V − {v1, ..., vj−1} i.e. vj maximizes d(v, {v1, ..., vj−1})
Claim:

rvn−1,vn = deg(vn) = d(vn, {v1, ..., vn−1})

Proof. Take a vn−1 − vn cut S. Let x0 = v1, xi = vf(i) where f(i) is
the smallest index > i such that S separates vi and vf(i) and vf(i). Now
d(xi, {v1, ..., vi−1}) ≤ d(xi−1, {v1, ..., vi−1}). Either xi = xi−1 or xi−1 = vi.
|δ(S)| ≥

∑n−1
i=1 d(xi, vi)

=
∑

d(xi, {v1, ..., vi})− d(xi, {v1, ..., vi−1})

≥
∑

i

d(xi{v1, ..., vi} − d(xi−1{v1, ..., vi−1)}

= d(xn, (v1, ..., vn−1))−d(x0,Ø)

= d(vn, {v1, ..., vn−1}) = deg(vn)

if vn−1, vn are separated by min cut S∗ then |δ(S∗)| = rvn−1,vn = deg(vn)
So S∗ = {vn} is a min cut. Otherwise vn, vn−1 are on the same side of the
min cut. Contract them together. Repeat on new graph G′. Repeat until 2
vertices left. If we don’t find min cut in steps 1...i then S∗ is still consistent
with mergings by step i + 1.

13 Graph Connectivity-Gomory-Hu-Trees

So we can find a min cut in time O(mn) in an undirected graph = mini,j(rij).
If rij is edge connectivity from i to j, how quickly can we find rij and a min
i− j cut, for all pairs i, j. Clearly this can be done in time O(n2f(n)) where
f(n) is time for min-cut algorithm. However, we can do better...

A Gomory-Hu tree is a tree T on V such that ∀(i, j) ∈ E(T ), δ(Tij) is a
min i− j cut. Tij = component of T − (i, j), containing i

39



Theorem 18. For all graphs and edge capacities, ue, there exists G−H tree.

Before proving the theorem, observe that infact a G − H tree tells us
about all pairs i, j not just (i, j) ∈ E(T ).

Lemma 7. Let T be a G-H tree and take any s, t ∈ G. If s = v0, v1, ...., vr = t
is the s− t path in P and if (vi, vi+1) minimizes rvi,vi+1 = ri,i+1 on the path
then rs,t = ri,i+1 and δ(Ti,i+1) is a min s-t cut.

Proof. Take any set of vertices s = u0, u1, ..., up = t, (not necessarily a path)
we have the ”triangle inequality”

(∗)rst ≥ miniru,u+1

Any s-t cut separates some ui from ui+1 so (∗) follows. For G−H take vi, vi+1

as in Lemma statement. δ(Ti,i+1) is an s-t cut so rs,t ≤ ri,i+1 = minprj,j+1

By (*) rst ≥ minprj,j+1.

Pick any pair s, t ∈ V and find min s − t cut S. we have got a partial
tree

T := (S, V − S)

Label edge (S, V − S) by rst. Given a partial tree plus edge labels, pick
any node Z with at least 2 vertices in it. Contract each Ci into a vertex.
Call this graph G′. Find min x − y cut in G′ say δ(S). Let X = Z ∩ S
Y = Z ∩ (V − S), x ∈ X, y ∈ Y . Replace Z by X and Y . Label (X, Y ) by
rxy. Place Ci adjacent to X if Ci ⊆ S or adjacent to y if Ci ⊆ V −S. Repeat
until all nodes of T contain 1 vertex of V .

To show this gives a G−H tree we need the following lemma:

Lemma 8. let δ(S) be a min s − t cut. For any u, v ∈ S there exists min
u− v cut δ(U) with U ⊆ S.

Proof. Assume s ∈ U , otherwise switch labels u and v.
we have 2 cases: (i) t ∈ U , (ii) t /∈ U . let

|δ(A)| =
∑

e∈δ(A)

ue

There are 6 types of arcs |δ(U)|, |δ(S)|, |δ(U∩S)|, |δ(U∪S)|, |δ(U−S)|, |δ(S−
U)|
pictoral... (i) t ∈ U as S is a min s-t cut.

|δ(U − S)| ≥ |δ(S)|

40



therefore |δ(U)| ≥ |δ(S−U)| δ(S−U) is a u− v cut so it is a min u− v cut.

case (ii) t ∈ U

|δ(U ∪ S)| ≥ |δ(S)| ⇒ |δ(U)| ≥ |δ(S ∩ U)|

so δ(S ∩ U) is a min u− v cut.

Now we prove the theorem.

Proof. We show alg gives a G − H tree. We say x, y are representatives of
edge (X, Y ) ∈ T , if label of (X,Y ) is rxy. Claim is true for (S)→rst (V ′−S).
Proceed by induction: look at when Z splits into X and Y . around an x− y
cut. Why is a min cut in G′ = rxy? By the above lemma a min x−y cut in G.
If we contract C1 we still have some min x−y cut available then if we contract
C2 there is still an x − y cut available etc... ⇒ x, y are representatives for
(X, Y )
What about the edges adjacent to Z ?

Previously w, v were representatives for edge (B, Z) If v is in X then w, v
is still a rep for (B, X) Claim x, w are reps for (B, X) i.e. rx,w = rwv. (B, Z)
originally separates x and w so

rxw ≤ rvw

Want rxw ≥ rvw.. Let Gy be the graph obtained by contracting y to a vertex
y′. Then rxw ≥ ry

xw by lemma 3, where ry is connectivity in Gy by triangle
inequality (*)

ry
xw ≥ minry

xy′ , r
y
y′,w

want ≥ rvw. But v ∈ Y so ry
y′w ≥ rvw

Finally
ry
xy′ ≥ rxy ≥ rvw

as min x− y cut separates V and W . So rxw = rvw

We only usen− 1 min cut algorithms so run time is O(nf(n)).

41



14 T-Joins

Given an undirected graph G = (V, E) and an even sized subset T ⊆ V we
say that J ⊆ E is a T − Join if (*) T is exactly the odd(odd degree) set of
vertices in G′ := (V, J).

Now given T and edge costs ce how do we find a min cost T − Join ?

Lemma 9. Any minimal T − Join is the union of |T |
2

edge paths pairing the
nodes in T .

Proof. J is acyclic as removing a cycle keeps the parities the same, so J is
a forest. Any tree has at least 2 leaves (as any tree induced by T has at
least 2 vertices), say u, v. All odd vertices in the tree R are also in T . So we
have an even number ≥ 2. Take the path Puv in R from u to v. Consider
J ′ := J − Puv is a T ′ − join where T ′ := T − u− v(as removing Puv changes
only the parities of u and v). By induction J ′ is a collection of disjoint paths
between pairs in T ′. Adding Puv gives disjoint paths for T .

Remark
Any set of |T |

2
paths pairing vertices in T is a T − join.

Now if ce ≥ 0∀e then a min cost T − Join is minimal.

Theorem 19. there exists a polytime algorithm for T − Join problem if
c ≥ 0.

Proof. Form a complete graph H on T . For i, j ∈ T , the weight wij of
(i, j) ∈ H is the shortest path distance from i to j in G. Find a min cost

perfect matching in H. This gives us a collection of |T |
2

paths. Removing
cycles(including 2-cycles), we still have a solution of less cost. Every cycle
must have cost of 0 otherwise we end up with a solution that gives a cheaper
P.M

What if some of the ce are negative? Convert to a problem with ce ≥ 0∀e
Pick all negative cost edges (call them E−) to be in J . If E− is a T − Join
we are done, if not E− has some parities wrong. So we have a new problem
in which the parities have changed. Let T ′ := T ⊕4. We have a T ′ − join
problem with c′e = |ce|. Choosing an edge in E− now corresponds to removing
it. i.e. e /∈ J , so cost is |ce|. Let J ′ be a T ′−Join, then J⊕E− is a T −Join
(J ′ ∪ E− is T − join-remove-digons).
Want: J ′ ⊕ E− to be min cost T − Joint.

42



Let J be a T − Join. Then J ⊕ E− is a T ′ − Join. So

c(J ⊕ E−) = c′(J ′) + c(E−) ≤ c′(J ⊕ E−) + c(E−)

As J ′ is mincost T ′ − join,
= c(J)

So J ′ ⊕ E− is a min cost T − Join

So we can solve T − Join problem for any c.

Corollary 6. There exist a polytime algorithm for finding the max cost T −
Join

Proof. set ce = −ce

14.1 Applcations

(1) Testing for negative cost cycles in an undirected graph. There is a nega-
tive cost cycle in G if and only if there exists an Ø− Join with cost < 0.(i.e.
T = Ø).

(2) Shortest path problem in undirected graphs. Finding SPs in directed
graphs (with non-neg cycles) is easy. For undirected graphs us the trans-
formation (u, v)undirected ⇒ (u, v)directed, (v, u)directed, but obviously this wont
work if we have negative edge weights. But, if we have negative edges we can
solve it using T − Joins. Set T := {s, t} min cost T join is s − t path plus
cycles. If there are no negative cycles then we have the min cost s− t path.
If there are negative cycles then we cant say anything about the cost of the
path. (if we could solve ham path problem which is NP-hard).

i.e. Can solve in polytime Shortest s − t path if there does not exist
negative cost cycles(we can have negative edges).

15 T-Joins and T-Cuts

We say δ(S) is a T −Cut if |S ∩ T | is odd. Clearly every T −Cut intersects
every T − join.

Theorem 20. If G is bipartite then min size of T − join is equal to the
maximum packing of disjoint T − Cuts.

43



Proof. max ≤ min, each T − Cut hits a different edge in min T-Join. -
Show min ≤ max. (The max packing occurs for a cross -free family of cuts
(S1, S2, ..., Sk)). cross free: one must be true
(1) Si ∩ Sj = Ø, (2) Si ⊆ Sj Sj ⊆ Si, Si ∪ Sj = V .

Let J be a min size T − join, define a length function

le = 1 if e /∈ J(add e t J), = −1 if e ∈ J(remove e from J)

If there is a negative length cycle then J⊕C is a T-Join with size |J |+l(C) <
|J |. Take a min length walk(path) p with the minimal number of edges. -the
end edges have l = −1
-v is adjacent to one −1 edge f , otherwise we get shorter walk.

Claim: any cycle C using v but not f has length > 0. -if C ∩ p = v
then l(C) > 0 Let u be the last vertex of p in C (before we get back to v).
-consider subpath p[u → v], l(p[u → v]) < 0 or we get a path of shorter
length and less edges.

So l(C[u→ v]) > 0, l(C[u← v]) > 0 or we get a negative cycle, therefore
l(C) > 0. This proves the claim.

contract v ∪ Γ(v) to get G′. (note v ∈ T ).T ′ := T ∪ v0 − (v ∪ Γ(v) if |T ∩
(V ∪ Γ(u)|isodd, 0 otherwise

Set J ′ := J − f Claim: J ′ is a min sized T ′ − join.

Proof. Suppose not. Then there is a circuit C ′ in G′such that |C ′ − J ′| <
|C ′ ∩ J ′| , (J ′ ⊕ C ′) is smaller then J ′.

C ′ must correspond to a circuit C in G that uses v, otherwise J⊕C gives
smaller T − join.

If C uses f then

|C ′ − J ′| − |C − J | − |C ∩ J | ≥ 0

(ii) C does not use f . By claim l(C) > 0 so l(C) ≥ 2 as C is bipartite.

|C ′ − J ′| = |C − J | − 2 ≥2edgesinC∩(v∪Γ(v)) |C ∩ J | = |C ′ ∩ J ′|

this proves the claim.
By induction on n + |T |, G′ has |J ′| ↑ T ′− cuts, S1, ..., S|J ′|, |J | = |T ′|+ 1

But {v} is a T − cut. It is not in G′ so is disjoint from S1, ..., S|J ′|

Consider the following polyhedron P (G)∑
e∈δ(S)

xe ≥ 1 ∀T − cuts S

44



xe ≥ 0

min
∑

e∈E cexe over P (G).

Theorem 21. P (G) = conv.hull(χJ : J is T − join) + Rm

Proof. χJ is in P (G) as T − joins intersect all T − joins.
Suppose P (G) * conv(T − join) + Rm

+

So ∃w ≥ 0 s.t. min wtx overP (G) is smaller then the min weight= α T−Join.
We may assume (by scaling up) that we is even ∀e ∈ E. Create new graph
G′ with edge e. Therefore G′ is bipartite (no odd cycles). Min #edges size
T − join in G′ = α (edge e of weight we replaced by we edges). So there
exist packing of α T-cuts Each T − cut in G′ corresponds to a T − cut in G.
and each edge e ∈ G is in at most we of these T − cuts.

As G′ basically has many copies of e, so a T − cut in G may correspond
to many T − cuts in G′. Let yS be the number of times S(in G) appears in
the packing of G′.

max
∑

S:T−cut

yS = α

∑
S:e∈δ(S)

yS ≤ we

yS ≥ 0

Choice of yS give optimal dual variables, i.e. min wT x ≥ α

16 Totally Unimodular matrices

We have seen many examples where we model a combinatorial problem by
an LP that has integral vertices. In these cases we could solve the problem
in polytime e.g. by the ellipsoid method. Are there other examples of this?
Here we will try to be more systematic.

A matrix A is totally unimodular if every sub-determinant has value
0, 1,−1.

Theorem 22. If A is T.U and b is integral, then the polyhedron P := {x :
Ax ≤ b} is integral.

45



Proof. Let F := {x : A′x ≤ b′} be a face of P . Where A′x ≤ b′ is a subsystem
of Ax ≤ b and A′ is full rank(can assume). Since A′ is full rank we can re-

order the columns so that A′ = [U, V ] where det(U) = ±1. So x =
(

U−1b′

0

)
is

integral.

Corollary 7. If A is TU andb, c are integral then both primal and dual
problems. max{cT x : Ax ≤ b, x ≥ 0} = min{bT y : AT y ≥ c, y ≥ 0} have
integral optimal solutions.

Proof. Follows from the facts that
(

A
I

)
is TU , and transpose of TU matrix is

TU .

Are there any interesting TU matrices? Yes e.g. let C be the vertex-arc
incidence matrix of a directed graph G. Let C be the vertex arc incidence
matrix.

Theorem 23. Any 0,±1 matrix with at most one −1 and 1 in any column
is TU .(e.g. C)

Proof. Take a k×k submatrix B of C. If k = 1 then det(B) = 0,±1. If k ≥ 2
then if some column of B that has only one non-zero entry then expanding
along that column gives the result. If not , then each column of B has one 1
and one −1, so summing all rows gives a 0− vector, i.e. det(B) = 0.

17 Applications

-Max Flow min cut theorem.

Theorem 24. Given directed graph G and vertices s, t and some integer k
the P := collection of k disjoint s− t paths (P1, ..., Pk)
C = collection of s− t cuts (not necessarily disjoint).

min

k∑
i=1

|Pi| = max| ∪s∈C δ(S)| −
∑
S∈C

(|δ(S)| − k)

Proof. Want

min
∑
a∈A

xa∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = (−k if v = s, k if v = t, 0 otherwise)

46



0 ≤ xa ≤ 1

min 1− x =: λ

s.t. [C,−I]T x ≤=
≥ [−k, k, 0, 0, ...,−1,−1, ...,−1]T

The dual is
max−

∑
a∈A

ya − kps + kpt

[CT ,−I][p, y]T ≤ 1

∀v, pv unconstrained ∀a ya ≥ 0

the dual constraints are

−pa + pv − ya ≤ 1∀a ≤ (u, v)

ya ≥ 0ps = 0

both have integral solutions as C is T.U . Now λ ≥ 0 so Pt ≥ 0, so
Pt = r ∈ Z+ For each j ∈ {1, 2, ..., r} let Sj = {v : pr < j} So we have r s− t
cuts (ps = 0, pt = r), S1, ..., Sr.

r∑
j=1

δ+(Sj) ≤
∑

a=(u,v)∈A,pu<pv<r

(pv − pu)

≤
∑

a∈A,pv>pu

(1 + ya) ≤ | ∪r
j=1 δ+(Sj)|+

∑
a∈A

ya

= | ∪r
j=1 δ+(Sj)|+ kpt − λ

Hence

λ ≤ | ∪r
j=1 δ+(Sj)| − (

r∑
j=1

(|δ+(Sj)| − k))

≤ max C

We know

min ≥≥ max| ∪ δ(s)| ≥ | ∪ δ+(s)| − (
∑
s∈C

δ+(s)− k)

≥ 0 as we have k disjoint s− t paths.

47



We have a similar result if we reverse the roles of cuts and paths.
We would like to extend these methods. We will need the following result

about C: Let C−i = C minus the ith row.

Lemma 10. An (n − 1) × (n − 1) sub-matrix B−i of C−i is a basis of C−i

iff the columns of B−i form a spanning tree on G.

Proof. So we will show

|B−i| = (±1 ifB−i is spanning tree, 0 otherwise)

Assume edges of B−i dont give a S.T , assume i = 1. If its not a spanning
tree, then there exists at least 2 components. ∃component S where vi /∈ S.
Summing the rows in S gives 0. So |B−i| = 0.

So assume B−i gives a spanning tree. Renumber the vertices such that
w1 6= vi is a degree 1 vertex with respect to B−i. Let wt 6= vi be degree 1
vertex in B−i−w1. w1 = v4, w2 = v3, w3 = v2 Let e1, e2 be the edges incident
to wi when they are removed. So ei = (wi, wi′) where i′ > i So B−i is lower
triangular. Since vi has end point ei we have |B−i| = ±1.

Theorem 25. P := {x : Ax ≤ b, x ≥ 0} is integral ∀b(integral) iff A is T.U

Proof. Exersize.

Now we look at a broader class of TU matrices.

17.1 Network Matrices

Given G := (V, A) and a tree T := (V 0, A0), V ⊆ V 0, but A0 * A Then the
network matrix M is defined as :
(1) rows of M indexed by arcs in A0

(2) columns of M indexed by arcs in A
(3) Ma0,a=(u,v) =
1 if (u ; v) in T use a0 forwards
−1 if (u ; v) in T use a0 backwards
0 does not use a0

Consider C−i and a basis B−i of C−i

note B−iM = C−i, and B ·M = C [B−i · C−i] and also [B−i, C−i] is TU as

48



there are at most one 1 and one −1 in each col. since |B−i| = ±1 we have
that B−i is a basis of [B−i · C−i] and [B−i, C−i]. Now ** if V is TU and W
is a basis of V then W−1V is TU. So [I(B−iC−i] = [IM ] is TU. So M is TU .

Examples of Network matrices:
(1) Node - arc adjacency matrix C. Take G and add a vertex s with directed
arc to each vertex in G, these arcs correspond to the vertices in G at their
end points. s and its edges are T , and M(T ) = C.

(2) Interval matrix(consecutive ones matrix) T = path G corresponds to
arcs which jump intervals.

a0
1 → a0

2 → a0
3...

(3) Vertex-edge incidence matrix of bipartite graph. (hmwk)
(want to set up so that there are 2 ones in each column).

max cT x

Ax ≤ b

x ≥ 0

=

min bT y

AT y ≥ c

y ≥ 0

So if A is TU, then ∀b both primal and dual are integral.
e.g. c = 1 = b then we have

max
∑
e∈E

xe = min
∑
v∈V

yv

s.t.
sume∈δ(v)xe ≤ 1 ∀v ∈ V, yu + yv ≥ 1

xe ≥ 0, yv ≥ 0

49



primal integral solution is a matching. Dual integral solution is a vertex
cover. If G is bipartite then A is totally unimodular so primal and dual have
integral optimal solutions.

Theorem 26. In a bipartite graph max matching = min size of vertex cover.

Proof.

i.e. Vertex cover is polytime in bipartite graphs. However Vertex Cover
is NP hard in general.

Auction
Sell plots of land on a waterfront. Assume bidder wants to buy one ”piece”
of land. Bidder i bids $bi for a ”piece” of land.

want to

max
n∑

i=1

bixi

s.t. A = Interval matrix.
Ax ≤ 1

says, accept at most one bid containing plot i. A is TU so we can maximize
revenue. (this is extremely rare for auctions)

So network matrices are TU . The reverse is almost true. Every TU
matrix A can be composed from Network matrices and two special S×S TU

matrices(look this up and insert).

1 a-
1

0 0 1

−1 a1−1 0 0
0 a-

1
1 −1 0

0 a0−1 1 −1
−1 a00 −1 1

1 a11 1 1
1 a11 0 0
1 a01 1 0
1 a00 1 1
1 a00 0 1

50



18 Total Dual Integrality

Recall TU matrices are those that have

P := {x : Ax ≤ b}

is integral for all integral b.
Here we look at something a bit weaker. Consider LP duality:

max(cx : Ax ≤ b) = min(yb : yA = c, y ≥ 0)

We say that the system Ax ≤ b is TDI(fixed rational A, b) if the dual
has integral optimum y , ∀ integral c. This may be of interest as the dual
may have combinatorial meaning, maybe this info helps us solve the primal
as well, e.g. primal-dual algorithms. It also says a lot about the primal...

Theorem 27. If Ax ≤ b is TDI, then for rational A, and integral b,

P := {x : Ax ≤ b}

is integral.

Proof. If b is integral, min bT y is integral by TDI. So max cT x is integral
∀c ∈ Z. Claim: A rational polytope P := {x : Ax ≤ b} is integral if and only
if ∀c ∈ Z, max cT x is integral. Necessity(⇒) is clear.
Sufficiency(⇐): Suppose ∀ integral c, max cT x is integral. Take vertex v of
P . Want to show that v is integral. So there exists c such that v maximizes
cT x over P (unique optimum), can assume c is integral by scaling if necessary.
Can also assume

cT v > cT u + u1 − v1∀ vertices u 6= v

since by uniqueness we have cT v > cT u, and then we can scale up. So v is
optimal for c′ := (c1 + 1, c2, c3, ..., cn) but c′v = cv + v1 is integral, so v1 is
integral. We can repeat this for the other coordinates.

For a combinatorial problem A, b are integral. TDI property for Ax ≤
b⇒ P = (x : Ax ≤ b) is integral. (in fact if b is not integral the TDI tells us
nothing).(see assignmet)

A TUM matrix is TDI as transpose is TUM

51



18.1 Orientations of Graphs

Theorem 28. Nash-Williams
A 2k − edge − connected indirected graph can be oriented to be k − arc
connected.

Proof. Take G and pick an arbitrary orientation. call this D. Primal:

max
∑
a∈A

caxa

such that ∑
a∈δ−(S)

xa −
∑

a∈δ+(S)

xa ≤ |δ−(S)| − k∀S ⊂ V

0 ≤ xa ≤ 1

(*)

|δ−(S)|+
∑

a∈δ+(S)

xa −
∑

a∈δ−(S)

xa ≥ k

xa = 1–switch orientation, xa = 0– keep orientation.
If (*) is true for integral solution ∀S we are done. We want to show that

the primal is integral. Putting x = 1
2

gives feasible solution is

1

2
(|δ+(S)|+ |δ−(S)|) ≥ 1

2
2k = k

So the LP is non-empty.
Show system is TDI:

[A, I]x ≤ [δ−(Si)− k...1]

where aij is 1 if coming out, 0 not in −1 if leaving the cut Sj.

min
∑

S

zS(|δ−(S)| − k) +
∑
a∈A

ya

such that
[A, I][z, y] ≥ c

z, y ≥ 0

∀a
∑

s:a∈δ−(S) zS −
∑

S:a∈δ+(S) zS + ya ≥ ca.

52



Look at dual variables zS. with zS > 0. We want to show that these cuts
are a cross - free family: Si ∩ Sj = Ø or Si ⊆ Sj or Sj ⊆ Si or Si ∪ Sj = V
Suppose S, T have zS, zT > 0 and they cross. Set zS = zS − ε
zT = zT − ε
zS∩T = ZS∩T + ε
zS∪T = zS∪T + ε

Claim - New z is feasible. New z gives better objective value.
(*) ∑

s:a∈δ−(S)

zS −
∑

S:a∈δ+(S)

zS + ya ≥ ca

case analysis: each case cancels out. So star holds. Observe

|δ−(S)|+ |δ−(T )| ≥ |δ−(S ∩ T )|+ |δ−(S ∪ T )|

(seen before)
So objective falls when we change z values for these 4 cuts. So repeatedly

un-crossing gives cross-free optimal solution. How does this help? So this
means the primal (complementary slackness say the i constraints for zS > 0
must be tight in primal). The primal only needs constraints such that zSi

> 0
where Si are cross-free family.

Claim: A is a network matrix. Take the cross free family, and construct
a tree with the outer face as the root and add a directed edge from outer
face to inner faces. The number of arcs in T equals the number of cuts. A is
TUM . So the primal is integral.

remark: the original matrix is not TUM , since we removed lots of rows.
excersize : Show how to separate these constraints (in primal).

19 Directed Cuts and Dijoins

A directed cut δ+(S) is directed if δ−(S) = Ø. A set of arcs T is a dijoin (or
directed cut cover/traversal) if T intersects every directed cut(dicut).

If T is a dijoin then (1) G ∪ T ′ is strongly connected.
(2) G/T is strongly connected.

So dijoins are fundamental objects in network design.

53



Theorem 29. min size of dijoin = max size of packing of disjoint directed
cuts.

Proof. Clearly τ(G) ≥ p(G). Take a minimal counter example G. (obviously
p(G) ≥ 1) So τ(G) = p(G) + 1
We use the following transformation. Replace each arc in B ⊆ A by a path
of 2 arcs. Observe that p(GA) = 2p(G) . So there exists a maximal B ⊆ A
such that p(GB) = p(G) as p(GØ) = p(G). So take any a ∈ A − B then
p(GB∪{a}) = p(G) + 1 by the maximality of B.

Moreover, since G is a minimal counter example:

p(G/a) = τ(G/a)

≥ τ(G)− 1 = p(G)

We take maximum packings of dicuts in both G/a and GB∪a (note these
are all cuts in GB). Call this set W . |W | = 2p(G) + 1 Each arc is in at
most 2 cuts. We show the ”shores” of the cuts (S is shore of δ+(S), form a
cross free family. If not, replace S, T by S ∩T, S ∪T . which are dicuts. Also
(χS is incidence vector of δ+(S)) χS + χT ≥ χS∈S′∩T + χS∪T . This process
terminates ∑

S

|S| · |V (GB)− S|

calls each time. Now then S ′ − (family of cuts) contains two types of cut.
(1)-S1 those cuts that appear exactly once.
(2)-S2 those cuts that appear exactly twice.

Note: No arc appearing in a cut in S1 appears in a cut in S2(otherwise it
appears 3 times). Now consider the cuts in S1, let S ∈ S1 and set

α(S) := {T : T ∈ S ′, T ⊆ S or T ∩ S = Ø}

Let
Sodd

1 = {S ∈ S1 : |α(S) is odd}

Seven
1 = {S ∈ S1 : |α(S) is even}

Claim: sets in Sodd
1 (resp Seven

1 ) are arc disjoint.

54



Proof. Take S, T ∈ Sodd
1 with a ∈ δ+(S)∩δ+(T ) Since S ′ is cross-free we may

assume S ⊆ T .
(i) Suppose |α(T )| ≤ |α(S)| . But T ∈ α(T ) − α(S) so there is -R ∈
α(S)− α(T ). Now R ∩ S = Ø otherwise R ⊂ S ⊂ T .
-R ∩ TØ or R ∈ α(T )
-R * T . So R∪T = V (GB). Otherwise not-cross free family. Then a ∈ δ−(R)
so R is not a directed cut. ⇒⇐.

(ii) |α(T )| ≥ |α(S)|+ 2 So there is an R 6= T such that R ∈ α(T )− α(S)
So S ⊆ R ⊆ T . But then a is in 3 cuts ⇒⇐
(iii) |α(T )| = |α(S)|+ 1 ⇒⇐ −−must have same parity.

So cuts in Sodd
1 are disjoint. WLOG |Sodd

1 | > |Seven
1 | So S2 ∪ Sodd

1 gives
disjoint set of p(G) + 1 cuts in GB. So p(GB) ≥ p(G) + 1, ⇒⇐, as p(GB)−
p(G)⇒ τ(G) ≤ p(G)

Corollary 8. Given G := (V, A) and w : A→ Z+ min weight dijoin = max
number of dicuts , such that a is in at most w(a) cuts ∀a ∈ A

Proof. Replace a by path of length w(a). If w(a) ≥ 1. If w(a) = 0 contract
a. Apply previous theorem.

This means the following system is totally dual integral.
(P)

min
∑
a∈A

waxa

such that ∑
a∈δ+(S)

xa ≥ 1∀S is directed cut

xa ≥ 0

(D)

max
∑

S dicut

yS

such that ∑
S dicut=a∈δ+(S)

yS ≤ wa ∀a ∈ A

yS ≥ 0

55



20 Packing Arborescences

Theorem 30. Max number of arc-disjoint r-arborescences = min size of an
r − cut

We will prove something stronger. Given a set R ⊆ V , a branching with
root set R is a set of disjoint arborescences that span V . (eg if R = {r}
the branching = r-arb.) Let R1, R2, R3, ..., Rk ⊆ V . We refer to the i as
colors. The Ri may intersect so a vertex may have many colors. Let Γ(U) :=
#of colors missing U ⊆ V .

Lemma 11. There exists arc disjoint branchings rooted at R1, ..., Rk if and
only if

|δ−(U)| ≥ Γ(U)∀U ⊆ V

Proof. Clearly |δ−(U)| ≥ Γ(U) or there does not exist disjoint branchings.
For the other direction:
We use induction on

∑k
i=1 |V −Ri| (backward induction of sizes of R1, ..., Rk)

, eg Ri = V ∀i we are done. So assume R1 ⊂ V Let W be a minimal set such
that

(1) W ∩R1 6= Ø i.e.color

1 hits some vertex in W

(2)W −R1 6= Ø i.e. some vertex in W does not have color 1

(3)|δ−(W )| = Γ(W ) i.e.#in comming arcs = #colors missing

V satisfies properties so W exists.
Claim: there exists an arc (u, v) from W ∩R1 → W −R1

Proof.
|δ−(W −R1)| ≥ Γ(W −R1)

by assumption.
≥ Γ(W ) + 1

(color 1 hits W but misses W −R1) by (1).

> Γ(W )

by (3):
= |δ−(W )|

Therefore (u, v) exists.

56



G′ := G− (u, v)
Consider A− (u, v),
R′1 := R1 ∪ {v}, R′i := Ri∀i 6= 2
Suppose there exist disjoint branchings from R′1, ..., R

′
k in G′ . For i > 1 we

have the same branching , for i = 1 take the branching and add (u, v).

Show G′, R′i satisfy initial conditions and apply induction. If not

∃U st |δ−(U)| < Γ(U) with respect to G′, R′i

But condition held in G, Ri, |δ−(U)| ≥ Γ(U). Therefore must fall by 1, i.e.
(u, v) ∈ δ−(U), Γ(U) = Γ′(U) if it falls we still have ≥. i.e. R1 ∩ V 6= Ø
or it falls as v ∈ R′1 we have that (*) |δ−(U)| = Γ(U)

Back in G...

δ−(U ∩W )| ≤ |δ−(U)|+ |δ−(W )| − |δ−(U ∪W )|

by (*) and (3) we have

δ−(U ∩W )| ≤ Γ(U) + Γ(W )− |δ−(U ∪W )|

= # of colors missing

U or W
(.) ≤ #colors missing U ∩W = Γ(U ∩W )

. i.e.
δ−(U ∩W )| ≤ Γ(U ∩W )

So |δ−(U ∩W )| = Γ(U ∩W ) by initial assumption. Therefore all equalities
above. We know that 1 hits W by (1). We know that 1 hits U .

Claim: 1 hits U ∩W : Suppose not, then we dont have equality in (.) So
(U ∩W ) ∩R1 6= Ø.
(1′)

(2′) (U ∩W ) − R1 6= Ø so v ∈ U ∩W but v /∈ R1, (v ∈ R′1). Want to
show that U ∩W ⊂ W and we can by simply noting that u ∈ W − U .

Theorem 31. Max number of arc-disjoint r-arborescences = min size of an
r − cut

57



Proof. The theorem follows from this lemma by setting R1 = R2 = ... =
Rk = {r} and applying the result. Γ(u) = 0 if r ∈ U So Γ(U) > 0 only for
r − cuts

Consider the LP:
min

∑
a

caxa

s.t.∑
a∈δ−

xa ≥ k ∀r − cuts S

0 ≤ xa ≤ 1

This is TDI by results on r − arbs. So we have integral LP . So by
packing result these contain k disjoint arboresonces. Therefore min LP we
get min cost packing of k − arbs .

Given G = (V, E) with ce ≥ 0 Find min cost k − edge − connected sub-
graph. This is NP hard. k = 2, ca = 1(Hamilton cycle).

Approximation Algorithm:-Polytime, -gives feasible solution, cost ≤
α ·Optimal. There exists 2− approx− algorithm

Proof. Bidirect each edge (u, v)ce ⇒ (u, v)←ce
+ (u, v)→ce

pick any root r. Now δ−(u) ≥ k∀r − cuts because G is k − connected.
So in polytime can find min cost k − packing of r − arbs : T1, T2, ..., Tk

k∑
i=1

c(Ti)

Pick undirected ∪Ti in G. cost(∪Ti) ≤
∑

c(Ti)
∪Ti is k − edge connected. i.e. min cut is k. ≥ 1 arc in δ−(S)∀Ti therefore
k edges.

Take H ⊆ G min k edge connected subgraph Thus if we take both copies
this gives a feasible solution to LP so ∪Ti in G. cost(∪Ti) ≤

∑
c(Ti) ≤

2cost(H) = 2optimal

58



21 Information Theory

We have a set of symbols V , that can be used to create messages (words) for
transmission. Some pairs of symbols may be confused during transmission.
Represent this by ”‘confusion Graph”’. Two words can be confused if every
symbol in them can be confused(in order). e.g. if words have size 1 then
max # words = α(G) := Largest stable set.

e.g. suppose α(C5) = 2. If words have size 2 x1x2 and y1y2 can be con-
fused iff
(i) x1 = y1 and (x2, y2) ∈ E
(ii)(x, y) ∈ E, x2 = y2

(iii) (x1, y1), (x2, y2) ∈ E

This can be viewed as the product of graphs.

G1 ×G2

V := {v1v2 : v1 ∈ V1, v2 ∈ V2}

E := u1u2 adjacent to v1v2 iff ui = vi or (ui, vi ∈ Ei∀i

It follows easily that max # 2 symbol words is α(G × G) = α(G2) in
general for n − symbol words max # is α(Gn). The information rate of
words of length n is

bgz
α(Gn)

n = log(α(Gn)
1

2n )

Shannon asked what is the maximum info rate of G. i.e. max θ(G) =

maxnα(Gn)
1

2n )

Observe : Stable set {x1, x2, ..., xk} in G. Consider Gn vertices:y1, y2, ..., yn yi ∈
V
if yi = xr, r = 1, ..., k certainly have a stable set of size kn. i.e. α(Gn)

1
2n ) ≥

α(G).
We are interested in

θ(G) = supn≥1α(Gn)
1

2n )

Lemma 12. θ(C5) ≥
√

(5).

59



Proof. arrange the vertices in a 5× 5 grid. Each row is a 5− cycle, and each
column is a 5−cycle. There are other edges as well (2, 2)↔ (3, 2), (1, 2), (2, 1), (2, 3) plus diagonals :
(1, 1), (3, 1), (1, 3), (3, 3)
We can have a stable set of size 5, but not of size 6 since then we would have
2 in the same row .

Shannon calculated θ(G) for all 5− node graphs except C5.

21.1 Upperbounds

We can upperbound α(Gn)
1

2n by L.P duality. Towards this goal, let W be
the set of cliques in G. For any probability distribution x,

∑
xi = 1, xi ≥ 0

on vertices let
λ(x) = maxQ∈W

∑
v∈Q

xv

λ(G) = minxλ(x)

Take a stable set S. Set xv = 1
|S| if v ∈ S, 0 if v /∈ S

as a clique intersects S in at most one vertex. So λ(G) ≤ 1
α(G)

let S =

max stable set. in fact λ(G) ≤ 1

α(Gn)
1

2n
we will show

λ(G×H) = λ(G) · λ(H)

λ(Gn) = (λ(G))n ≤ 1

α(Gn)

Claim: λ(G×H) = λ(G)λ(H)
want

min maxQ∈W

∑
v∈Q

xv

∑
v∈V

xv = 1

xv ≥ 0 ∀v

we can write this as
minxβ

β −
∑
v∈Q

xv ≥ 0 ∀Q ∈ Q

60



∑
v∈V

xv ≥ 1 ∗ ∗(optimal solution must have
∑

xv = 1 anyway)

β, xv ≥ 0

(Dual)
maxΓ

such that
Γ−

∑
Q∈W :v∈Q

yQ ≤ 0 ∀v

∑
Q:Q∈W

yQ ≤ 1

Γ, yQ ≥ 0 ∀Q ∈ W

get a probability distribution on Q.
=

maxy minv∈V

∑
Q:v∈Q

yQ

∑
yQ = 1

yQ ≥ 0∀Q
So

minxmaxQ

∑
v∈Q

xv = maxyminv

∑
Q;v∈Q

yQ

Consider G × H and let x, x′ achieve mins on G, H respectively. For each
vertex in G×H let

Zuv = xu · x′v∑
u,v

zuv =
∑
u∈G

∑
v∈H

xux
′
v =

∑
u∈G

xu

∑
v∈H

xv = 1 ∗ 1 = 1

Claim: λ(G×H) = λ(G)λ(H)
i.e. z is a probability distribution. The maximal cliques in G×H are of the
form QG ×QH where QG, QH are cliques in G, H respectively. Hence

λ(G×H) ≤ λ(z) = maxQG×QH

∑
u,v∈QG×QH

zuv

= maxQG×QH
(
∑

u∈QG

)(
∑

v∈QH

x′v)

61



= maxQG

∑
u∈QG

xu ·maxQH

∑
v∈QH

x′v = λG(x)λH(x′)

= λ(G)λ(H)

Now
λ(G×H) ≥ λ(G)λ(H)

using same idea applied to the dual.

e.g. consider cycles Ck, k ≥ 4. Setting x = ( 1
k
, 1

k
, ..., 1

k
) So λ(Ck) ≤ 2

k
as

edge are max cliques.

Consider dual:
let yQ = 1

k
for each clique(edge) . So λ(Ck) ≥ 2

k
(each vertex has 2 cliques).

therefore λ(Ck) = 2
k

θ(G) ≤ 1
λ(G)

= k
2
. But θ(G) ≥ α(G) = k/2 if k is even, (k − 1)/2 for k odd

i.e.
θ(G) = k/2 even cycles

k

2
≥ θ(G) ≥ k − 1

2
odd cycles

5

2
≥ θ(C5) ≥

√
(5)

62


